Search results for: building energy simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15365

Search results for: building energy simulation

2585 Synthesis of Pyrimidine-Based Polymers Consist of 2-{3-[4,6-Bis-(4-Hexyl-Thiophen-2-yl)-Pyrimidin-2-yl]Phenyl}-Thiazolo[5,4-B]Pyridine as Electron-Deficient Unit for Photovoltaics

Authors: Hyehyeon Lee, Juwon Yu, Juwon Kim, Raquel Kristina Leoni Tumiar, Taewon Kim, Juae Kim, Hongsuk Suh

Abstract:

Recently, the development of photovoltaics is rapidly accelerating as one of green energy sources. So we designed pyrimidine-based polymers with 2-{3-[4,6-bis-(4-hexyl-thiophen-2-yl)-pyrimidin-2-yl]-phenyl}-thiazolo[5,4-b]pyridine (mPTP), as active layer substances for polymer solar cells. Polymers with push-pull types, mPTPBDT-12, mPTPBDT-EH, mPTPBDTT-EH and mPTPTTI, are comprised of electron pushing unit using benzo[1,2-b;3,4-b’]dithiophene (BDT) or 4,8-bis(5-thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (BDTT) or 6-(2-thienyl)-4H-thieno[3,2-b]indole(TTI) and electron pulling unit using mPTP. The device including mPTPTTI-12 indicated a VOC of 0.67 V, a JSC of 2.16 mA/cm², and a fill factor (FF) of 0.30, giving a power conversion efficiency (PCE) of 0.43%. The device including mPTPBDT-EH indicated a VOC of 0.56 V, a JSC of 2.64 mA/cm², and an FF of 0.30, giving a PCE of 0.44%. The device including mPTPBDTT-EH indicated a VOC of 0.44 V, a JSC of 2.45 mA/cm², and an FF of 0.29, giving a PCE of 0.31%. The device including mPTPTTI indicated a VOC of 0.72 V, a JSC of 4.95 mA/cm², and an FF of 0.32, giving a PCE of 1.15%. Therefore, mPTPBDT-12, mPTPBDT-EH, mPTPBDTT-EH and mPTPTTI were fabricated by Stille polymerization. Their optical properties were measured and the results show that pyrimidine-based polymers have a great promise to act as donor of active layer.

Keywords: polymer solar cells, photovoltaics, thiazolopyridine, conjugated polymer

Procedia PDF Downloads 274
2584 Using Pyrolitic Carbon Black Obtained from Scrap Tires as an Adsorbent for Chromium (III) Removal from Water

Authors: Mercedeh Malekzadeh

Abstract:

Scrap tires are the source of wastes that cause the environmental problems. The major components of these tires are rubber and carbon black. These components can be used again for different applications by utilizing physical and chemical processes. Pyrolysis is a way that converts rubber portion of scrap tires to oil and gas and the carbon black recovers to pyrolytic carbon black. This pyrolytic carbon black can be used to reinforce rubber and metal, coating preparation, electronic thermal manager and so on. The porous structure of this carbon black also makes it as a suitable choice for heavy metals removal from water. In this work, the application of base treated pyrolytic carbon black was studied as an adsorbent for chromium (III) removal from water in a batch process. Pyrolytic carbon blacks in two natural and base treated forms were characterized by scanning electron microscopy and energy dispersive analysis x-ray. The effects of adsorbent dosage, contact time, initial concentration of chromium (III) and pH were considered on the adsorption process. The adsorption capacity was 19.76 mg/g. Maximum adsorption was seen after 120 min at pH=3. The equilibrium data were considered and better fitted to Langmuir model. The adsorption kinetic was evaluated and confirmed with the pseudo second order kinetic. Results have shown that the base treated pyrolytic carbon black obtained from scrap tires can be used as a cheap adsorbent for removal of chromium (III) from the water.

Keywords: chromium (III), pyrolytic carbon, scrap tire, water

Procedia PDF Downloads 200
2583 Enhancing Tower Crane Safety: A UAV-based Intelligent Inspection Approach

Authors: Xin Jiao, Xin Zhang, Jian Fan, Zhenwei Cai, Yiming Xu

Abstract:

Tower cranes play a crucial role in the construction industry, facilitating the vertical and horizontal movement of materials and aiding in building construction, especially for high-rise structures. However, tower crane accidents can lead to severe consequences, highlighting the importance of effective safety management and inspection. This paper presents an innovative approach to tower crane inspection utilizing Unmanned Aerial Vehicles (UAVs) and an Intelligent Inspection APP System. The system leverages UAVs equipped with high-definition cameras to conduct efficient and comprehensive inspections, reducing manual labor, inspection time, and risk. By integrating advanced technologies such as Real-Time Kinematic (RTK) positioning and digital image processing, the system enables precise route planning and collection of safety hazards images. A case study conducted on a construction site demonstrates the practicality and effectiveness of the proposed method, showcasing its potential to enhance tower crane safety. On-site testing of UAV intelligent inspections reveals key findings: efficient tower crane hazard inspection within 30 minutes, with a full-identification capability coverage rates of 76.3%, 64.8%, and 76.2% for major, significant, and general hazards respectively and a preliminary-identification capability coverage rates of 18.5%, 27.2%, and 19%, respectively. Notably, UAVs effectively identify various tower crane hazards, except for those requiring auditory detection. The limitations of this study primarily involve two aspects: Firstly, during the initial inspection, manual drone piloting is required for marking tower crane points, followed by automated flight inspections and reuse based on the marked route. Secondly, images captured by the drone necessitate manual identification and review, which can be time-consuming for equipment management personnel, particularly when dealing with a large volume of images. Subsequent research efforts will focus on AI training and recognition of safety hazard images, as well as the automatic generation of inspection reports and corrective management based on recognition results. The ongoing development in this area is currently in progress, and outcomes will be released at an appropriate time.

Keywords: tower crane, inspection, unmanned aerial vehicle (UAV), intelligent inspection app system, safety management

Procedia PDF Downloads 42
2582 Thermal Performance of Fully Immersed Naturally Cooled Server

Authors: Yaser Al-Anii, Abdulmajeed Almaneea, Jonathan L. Summers, Harvey M. Thompson, Nikil Kapur

Abstract:

The natural convection cooling system of a fully immersed server in a dielectric liquid is studied numerically. In the present case study, the dielectric liquid represents working fluid and it is in contact with server inside capsule. The capsule includes electronic component and fluid which can be modeled as saturated porous media. This medium follow Darcy flow regime and assumed to be in balance between its components. The study focus is on role of spatial parameters on thermal behavior of convective heat transfer. Based on server known unit, which is 1U, two parameters Ly and S are changed to test their effect. Meanwhile, wide-range of modified Rayleigh number, which is 0.5 to 300, are covered to better understand thermal performance. Navier-Stokes equations are used to model physical domain. Furthermore, successive over-relaxation and time marching techniques are used to solve momentum and energy equation. From obtained correlation, the in-between distance S is more effective on Nusselt number than distance to edge Ly by approximately 14%. In addition, as S increases, the average Nusselt number of the upper unit increases sharply, whereas the lower one keeps on the same level.

Keywords: convective cooling of server, Darcy flow, liquid-immersed server, porous media

Procedia PDF Downloads 402
2581 Thermal Decomposition of Ammonium Perchlorate in the Presence of Ferric Oxide and Graphene Oxide Nonmaterial’s

Authors: Mourad Makhlouf, Bouabdellah Benaicha, Zoubir Benmaamar, Didier Villemin

Abstract:

The addition of combustion catalysts to ammonium perchlorate-based composite fuels can indeed significantly enhance their performance. In this work, a nanocomposite was synthesized using graphene oxide (GO) and hematite nanoparticles grafted onto graphene oxide as a catalyst support.To characterize the nanocomposite, several experimental techniques were employed, including Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM). FTIR is useful for analyzing chemical bonding and functional groups, while Raman spectroscopy provides information about the vibrational modes of the materials. SEM allows for visualizing the surface morphology and structure.The thermal analysis of two mixtures, one based on AP/GO and the other on AP/GO-Fe2O3, was conducted with varying percentages. The results indicated that the nanocomposite GO-Fe2O3 acted as a catalyst, significantly accelerating the thermal decomposition process of AP. This catalytic effect ultimately led to an improvement in the energy performance of the composite fuel.Overall, the synthesis and characterization of the nanocomposite, as well as the thermal analysis, demonstrated the effectiveness of GO-Fe2O3 as a combustion catalyst in enhancing the performance of ammonium perchlorate-based composite fuels.

Keywords: composite propellants, ammonium perchlorate, nanocomposite, catalytic support, hematite nanoparticles, graphene oxide, thermal decomposition

Procedia PDF Downloads 48
2580 Hydrological Benefits Sharing Concepts in Constructing Friendship Dams on Transboundary Tigris River Between Iraq and Turkey

Authors: Thair Mahmood Altaiee

Abstract:

Because of the increasing population and the growing water requirements from the transboundary water resources within riparian countries in addition to un-proper management of these transboundary water resources, it is likely that a conflicts on the water will be occurred. So it is mandatory to search solutions to mitigate the action and probabilities of these undesired conflicts. One of the solutions for these crises may be sharing the riparian countries in the management of their transboundary water resources and share benefit. Effective cooperation on a transboundary river is any action by the riparian countries that lead to improve management of the river to their mutual acceptance. In principle, friendship dams constructed by riparian countries may play an important role in preventing conflicts like the Turkish-Syrian friendship dam on Asi river (Orontes), Iranian-Tukmenistan dam on Hariroud river, Bulgarian-Turkish dam on Tundzha river, Brazil-Paraguay dam on Parana river, and Aras dam between Iran and Azerbaijan. The objective of this study is to focus the light on the hydrological aspects of cooperation in constructing dams on the transboundary rivers, which may consider an option to prevent conflicts on water between the riparian countries. The various kinds of benefits and external impacts associated with cooperation in dams construction on the transboundary rivers with a real examples will be presented and analyzed. The hydrological benefit sharing from cooperation in dams construction, which type of benefit sharing mechanisms are applicable to dams, and how they vary were discussed. The study considered the cooperative applicability to dams on shared rivers according to selected case study of friendship dams in the world to illustrate the relevance of the cooperation concepts and the feasibility of such propose cooperation between Turkey and Iraq within the Tigris river. It is found that the opportunities of getting benefit from cooperation depend mainly on the hydrological boundary and location of the dam in relation to them. The desire to cooperate on dams construction on transboundary rivers exists if the location of a dam upstream will increase aggregate net benefits. The case studies show that various benefit sharing mechanisms due to cooperation in constructing friendship dams on the riparian countries border are possible for example when the downstream state (Iraq) convinces the upstream state (Turkey) to share building a dam on Tigris river across the Iraqi –Turkish border covering the cost and sharing the net benefit derived from this dam. These initial findings may provide guidance for riparian states engaged in and donors facilitating negotiation on dam projects on transboundary rivers.

Keywords: friendship dams, transboundary rivers, water cooperation, benefit sharing

Procedia PDF Downloads 141
2579 Photocatalytic Degradation of Toxic Phenols Using Zinc Oxide Doped Prussian Blue Nanocomposite

Authors: Rachna, Uma Shanker

Abstract:

Aromatic phenols, being priority pollutants, are found in various industrial effluents and seeking the attention of environmentalists worldwide, owing to their life-threatening effects. In the present study, the coupling of zinc oxide with Prussian blue was achieved involving co-precipitation synthesis process using Azadirachta indica plant extract. The fabricated nanocatalyst was employed for the sunlight mediated photodegradation of various phenols (Phenol, 3-Aminophenol, and 2,4-Dinitrophenol). Doping of zinc oxide with Prussian blue caused an increase in the surface area to value 80.109 m²g⁻¹ and also enhanced the semiconducting tendency of the nanocomposite with band gap energy 1.101 eV. The experiment was performed at different parameters of phenols concentration, catalyst amount, pH, time, and exposure of sunlight. The obtained results showed a lower elimination of 2,4-DNP (93%) than 3-AP (97%) and phenol (95%) owing to their molecular weight and basicity differences. In comparison to the starting material (zinc oxide and Prussian blue), nanocomposite was more capable in degrading the phenols and lowered the t1/2 value of phenol (4.405 h), 3-AP (4.04 h) and 2,4-DNP (4.68 h) to a greater extent. Effect of different foreign anions was also studied to check nanocomposite’s liability under natural conditions. The extent of charge recombination being the most limiting factor in the photodegradation of pollutants was determined through the photoluminescence. Sunlight active ZnO@FeHCF nanocomposite was proven to exhibit good catalytic ability up to 10 cycles.

Keywords: nanocomposite, phenols, photodegradation, sunlight, water

Procedia PDF Downloads 126
2578 Commodifying Things Past: Comparative Study of Heritage Tourism Practices in Montenegro and Serbia

Authors: Jovana Vukcevic, Sanja Pekovic, Djurdjica Perovic, Tatjana Stanovcic

Abstract:

This paper presents a critical inquiry into the role of uncomfortable heritage in nation branding with the particular focus on the specificities of the politics of memory, forgetting and revisionism in the post-communist post-Yugoslavia. It addresses legacies of unwanted, ambivalent or unacknowledged past and different strategies employed by the former-Yugoslav states and private actors in “rebranding” their heritage, ensuring its preservation, but re-contextualizing the narrative of the past through contemporary tourism practices. It questions the interplay between nostalgia, heritage and market, and the role of heritage in polishing the history of totalitarian and authoritarian regimes in the Balkans. It argues that in post-socialist Yugoslavia, the necessity to limit correlations with former ideology and the use of the commercial brush in shaping a marketable version of the past instigated the emergence of the profit-oriented heritage practices. Building on that argument, the paper addresses these issues as “commodification” and “disneyfication” of Balkans’ ambivalent heritage, contributing to the analysis of changing forms of memorialisation and heritagization practices in Europe. It questions the process of ‘coming to terms with the past’ through marketable forms of heritage tourism, fetching the boundary between market-driven nostalgia and state-imposed heritage policies. In order to analyse plurality of ways of dealing with controversial, ambivalent and unwanted heritage of dictatorships in the Balkans, the paper considers two prominent examples of heritage commodification in Serbia and Montenegro, and the re-appropriations of those narratives for the nation branding purposes. The first one is the story of the Tito’s Blue Train, the landmark of the socialist past and the symbol of Yugoslavia which has nowadays being used for birthday parties and marriage celebrations, while the second emphasises the unusual business arrangement turning the fortress Mamula, former concentration camp through the Second World War, into a luxurious Mediterranean resort. Questioning how the ‘uneasy’ past was acknowledged and embedded into the official heritage institutions and tourism practices, study examines the changing relation towards the legacies of dictatorships, inviting us to rethink the economic models of the things past. Analysis of these processes should contribute to better understanding of the new mnemonics strategies and (converging?) ways of ‘doing’ past in Europe.

Keywords: commodification, heritage tourism, totalitarianism, Serbia, Montenegro

Procedia PDF Downloads 252
2577 Effects of Heat Treatment on the Mechanical Properties of Kenaf Fiber

Authors: Paulo Teodoro De Luna Carada, Toru Fujii, Kazuya Okubo

Abstract:

Natural fibers have wide variety of uses (e.g., rope, paper, and building materials). One specific application of it is in the field of composite materials (i.e., green composites). Huge amount of research are being done in this field due to rising concerns in the harmful effects of synthetic materials to the environment. There are several natural fibers used in this field, one of which can be extracted from a plant called kenaf (Hibiscus cannabinus L.). Kenaf fiber is regarded as a good alternative because the plant is easy to grow and the fiber is easy to extract. Additionally, it has good properties. Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the properties of the fiber. The aim of this study is to assess the effects of heat treatment in kenaf fiber. It specifically aims to observe the effect in the tensile strength and modulus of the fiber. Kenaf fiber bundles with an average diameter of at most 100μm was used for this purpose. Heat treatment was done using a constant temperature oven with the following heating temperatures: (1) 160̊C, (2) 180̊C, and (3) 200̊C for a duration of one hour. As a basis for comparison, tensile test was first done to kenaf fibers without any heat treatment. For every heating temperature, three groups of samples were prepared. Two groups of which were for doing tensile test (one group was tested right after heat treatment while the remaining group was kept inside a closed container with relative humidity of at least 95% for two days). The third group was used to observe how much moisture the treated fiber will absorb when it is enclosed in a high moisture environment for two days. The results showed that kenaf fiber can retain its tensile strength when heated up to a temperature of 160̊C. However, when heated at a temperature of about 180̊C or higher, the tensile strength decreases significantly. The same behavior was observed for the tensile modulus of the fiber. Additionally, the fibers which were stored for two days absorbed nearly the same amount of moisture (about 20% of the dried weight) regardless of the heating temperature. Heat treatment might have damaged the fiber in some way. Additional test was done in order to see if the damage due to heat treatment is attributed to changes in the viscoelastic property of the fiber. The findings showed that kenaf fibers can be heated for at most 160̊C to attain good tensile strength and modulus. Additionally, heating the fiber at high temperature (>180̊C) causes changes in its viscoelastic property. The results of this study is significant for processes which requires heat treatment not only in kenaf fiber but might also be helpful for natural fibers in general.

Keywords: heat treatment, kenaf fiber, natural fiber, mechanical properties

Procedia PDF Downloads 353
2576 Testicular Dose and Associated Risk from Common Pelvis Radiation Therapy in Iran

Authors: Ahmad Shanei, Milad Baradaran-Ghahfarokhi

Abstract:

This study aimed to investigate testicular dose (TD) and the associated risk of heritable disease from common pelvis radiotherapy of male patients in Iran. In this work, the relation between TD and changes in beam energy, pelvis size, source to skin distance (SSD) and beam directions (anterior or posterior) were also evaluated. The values of TDs were measured on 67 randomly selected male patients during common pelvis radiotherapy using 1.17 and 1.33 MeV, Theratron Cobalt-60 unit at SSD of 80 cm and 9 MV, Neptun 10 PC and 18 MV, GE Saturne 20 at SSD of 100 cm at Seyed-Al Shohada Hospital, Isfahan, Iran. Results showed that the maximum TD was up to 12% of the tumor dose. Considering the risk factor for radiation-induced heritable disorders of 0.1% per Sv, an excess risk of hereditary disorders of 72 per 10000 births was conservatively calculated. There was a significant difference in the measured TD using different treatment machines and energies (P < 0.001). The TD at 100 cm SSD were much less than that for 80 cm SSD (P <0.001). The Pearson Correlation test showed that, as expected, there was a strong correlation between TD and patient’s pelvis size (r = 0.275, P <0.001). Using the student’s t-tests, it was found that, there was not a significant difference between TD and beam direction (P = 0.231). Iranian male patients undergoing pelvic radiotherapy have the potential of receiving a TD of more than 1 Gy which might result in temporary azoospermia. The risk for induction of hereditary disorders in future generations should be considered as low but not negligible in comparison with the correspondent nominal risk.

Keywords: pelvis radiotherapy, testicular dose, infertility, hereditary effects

Procedia PDF Downloads 545
2575 An Examination of Changes on Natural Vegetation due to Charcoal Production Using Multi Temporal Land SAT Data

Authors: T. Garba, Y. Y. Babanyara, M. Isah, A. K. Muktari, R. Y. Abdullahi

Abstract:

The increased in demand of fuel wood for heating, cooking and sometimes bakery has continued to exert appreciable impact on natural vegetation. This study focus on the use of multi-temporal data from land sat TM of 1986, land sat EMT of 1999 and lands sat ETM of 2006 to investigate the changes of Natural Vegetation resulting from charcoal production activities. The three images were classified based on bare soil, built up areas, cultivated land, and natural vegetation, Rock out crop and water bodies. From the classified images Land sat TM of 1986 it shows natural vegetation of the study area to be 308,941.48 hectares equivalent to 50% of the area it then reduces to 278,061.21 which is 42.92% in 1999 it again depreciated to 199,647.81 in 2006 equivalent to 30.83% of the area. Consequently cultivated continue increasing from 259,346.80 hectares (42%) in 1986 to 312,966.27 hectares (48.3%) in 1999 and then to 341.719.92 hectares (52.78%). These show that within the span of 20 years (1986 to 2006) the natural vegetation is depreciated by 119,293.81 hectares. This implies that if the menace is not control the natural might likely be lost in another twenty years. This is because forest cleared for charcoal production is normally converted to farmland. The study therefore concluded that there is the need for alternatives source of domestic energy such as the use of biomass which can easily be accessible and affordable to people. In addition, the study recommended that there should be strong policies enforcement for the protection forest reserved.

Keywords: charcoal, classification, data, images, land use, natural vegetation

Procedia PDF Downloads 365
2574 Adopting the Community Health Workers Master List Registry for Community Health Workforce in Kenya

Authors: Gikunda Aloise, Mjema Saida, Barasa Herbert, Wanyungu John, Kimani Maureen

Abstract:

Background: Community Health Workforce (CHW) is health care providers at the community level (Level 1) and serves as a bridge between the community and the formal healthcare system. This human resource has enormous potential to extend healthcare services and ensures that the vulnerable, marginalized, and hard-to-reach populations have access to quality healthcare services at the community and primary health facility levels. However, these cadres are neither recognized, remunerated, nor in most instances, registered in a master list. Management and supervision of CHWs is not easy if their individual demographics, training capacity and incentives is not well documented through a centralized registry. Description: In February 2022, Amref supported the Kenya Ministry of Health in developing a community health workforce database called Community Health Workers Master List Registry (CHWML), which is hosted in Kenya Health Information System (KHIS) tracker. CHW registration exercise was through a sensitization meeting conducted by the County Community Health Focal Person for the Sub-County Community Health Focal Person and Community Health Assistants who uploaded information on individual demographics, training undertaken and incentives received by CHVs. Care was taken to ensure compliance with Kenyan laws on the availability and use of personal data as prescribed by the Data Protection Act, 2019 (DPA). Results and lessons learnt: By June 2022, 80,825 CHWs had been registered in the system; 78,174 (96%) CHVs and 2,636 (4%) CHAs. 25,235 (31%) are male, 55,505 (68%) are female & 85 (1%) are transgender. 39,979. (49%) had secondary education and 2500 (3%) had no formal education. Only 27 641 (34%) received a monthly stipend. 68,436 CHVs (85%) had undergone basic training. However, there is a need to validate the data to align with the current situation in the counties. Conclusions/Next steps: The use of CHWML will unlock opportunities for building more resilient and sustainable health systems and inform financial planning, resource allocation, capacity development, and quality service delivery. The MOH will update the CHWML guidelines in adherence to the data protection act which will inform standard procedures for maintaining, updating the registry and integrate Community Health Workforce registry with the HRH system.

Keywords: community health registry, community health volunteers (CHVs), community health workers masters list (CHWML), data protection act

Procedia PDF Downloads 140
2573 The Psychological Effects of Nature on Subjective Well-Being: An Experimental Approach

Authors: Tatjana Kochetkova

Abstract:

This paper explores the pivotal role of environmental education, specifically outdoor education, in facilitating a psychological connection to nature among young adults. This research aims to contribute to building an empirical and conceptual basis of ecopsychology by providing a picture of psyche-nature interaction. It presents the results of the four-day connection-to-nature workshop. It intends to find out the effects of the awareness of nature on subjective well-being and perception of the meaning of life. This led to finding a battery-recharging effect of nature and the influence of nature at four levels of awareness: external physical perception, internal (bodily) sensation, emotions, and existential meaning. The research on the psychological bond of humans with the natural environment, the subject of ecopsychology, is still in its infancy. However, despite several courageous and fruitful attempts, there are still no direct answers to the fundamental questions about the way in which the natural environment influences humans and the specific role of nature in the human psyche. The urge to address this question was the primary reason for the current experiment. The methodology of this study was taken from the study of Patterson, and from White and Hendee. The methodology included a series of assignments on the perception of nature (the exercises are described in the attachment). Experiences were noted in a personal diary, which we used later for analysis. There are many trustworthy claims that contact with nature has positive effects on human subjective well-being and that it is of essential psychological and spiritual value. But, there is a need for more support and theoretical explanation for this phenomenon. As a contribution to filling these gaps, this qualitative study was conducted. The aim of this study is to explore the psychological effects of short-term awareness of wilderness on one’s subjective well-being and on one’s sense of the meaning of life. This specific study is based on the more general hypothesis that there are positive relationships between the experience of wilderness and the development of the self, feelings of community, and spiritual development. It restricted the study of the psychological effects of short term stay in nature to two variables (subjective well-being and the sense of meaning of life). The study aimed at (i) testing the hypothesis that there are positive effects of the awareness of wilderness on the subjective sense of well-being and meaning in life, (ii) understanding the nature of the psychological need for wilderness. Although there is a substantial amount of data on the psychological benefits of nature, we still lack a theory that explains the findings. The present research aims to contribute to such a theory. This is an experiment aimed specifically at the effects of nature on the sense of well-being and meaning in life.

Keywords: environmental education, psychological connection to nature, subjective well-being, symbolic meaning of nature, emotional reaction to nature, meaning of life

Procedia PDF Downloads 72
2572 Market Access for Foreign Investment in Host States: Municipal Law and International Law

Authors: Qiang Ren

Abstract:

A growing number of states are improving domestic law to better protect and promote foreign investment by changing/upgrading the existing law. However, inconsistency occurs because the new law is different from the ‘old’ law. For example, China has issued an unprecedented Foreign Investment Law and several regulations allowing comprehensive market access for foreign investment in most energy sectors since 2020. However, some laws, rules, regulations, etc. enacted previously remain valid, and the provisions regulating foreign investment do not grant full market access to foreign investment as such. The inconsistency above makes it necessary to investigatehow the international investment treaty law and dispute settlement practice respond to the ‘inconsistency and conflict’ in municipal law andwhat remedy foreign investors can seek under international law if the investment is denied due to inconsistency. Ultimately, it aims to examine how international tribunals should balance the gradually developing legal system of host states and the protection of foreign investors and investments if the host states cannot provide consistency during such a transition period of law development. The research seeks to answer these questions by making a comparative analysis of domestic law on market access to foreign investment, international investment treaties, and dispute arbitral practice. The objective is to examine how international investment treaty law and international investment dispute settlement practice evaluate the conflicts in the municipal law of host states in the admission of foreign investment. It also explores the possibility of harmonisation among them.

Keywords: municipal law, protect and promote foreign investment, international law, host states

Procedia PDF Downloads 94
2571 Public Environmental Investment Analysis of Japan

Authors: K. Y. Chen, H. Chua, C. W. Kan

Abstract:

Japan is a well-developed country but the environmental issues are still a hot issue. In this study, we will analyse how the environmental investment affects the sustainable development in Japan. This paper will first describe the environmental policy of Japan and the effort input by the Japan government. Then, we will collect the yearly environmental data and also information about the environmental investment. Based on the data collected, we try to figure out the relationship between environmental investment and sustainable development in Japan. In addition, we will analyse the SWOT of environmental investment in Japan. Based on the economic information collected, Japan established a sound material-cycle society through changes in business and life styles. A comprehensive legal system for this kind of society was established in Japan. In addition, other supporting measures, such as financial measures, utilization of economic instruments, implementation of research and promotion of education and science and technology, help Japan to cope with the recent environmental challenges. Japan’s excellent environmental technologies changed its socioeconomic system. They are at the highest global standards. This can be reflected by the number of patents registered in Japan which has been on the steady growth. Country by country comparison in the application for patents on environmental technologies also indicates that Japan ranks high in such areas as atmospheric pollution and water quality management, solid waste management and renewable energy. This is a result of the large expenditure invested on research and development.

Keywords: Japan, environmental investment, sustainable development, analysis

Procedia PDF Downloads 268
2570 The Algerian Experience in Developing Higher Education in the Country in Light of Modern Technology: Challenges and Prospects

Authors: Mohammed Messaoudi

Abstract:

The higher education sector in Algeria has witnessed in recent years a remarkable transformation, as it witnessed the integration of institutions within the modern technological environment and harnessing all appropriate mechanisms to raise the level of education and the level of training. Observers and those interested that it is necessary for the Algerian university to enter this field, especially with the efforts that seek to employ modern technology in the sector and encourage investment in this field, in addition to the state’s keenness to move towards building a path to benefit from modern technology, and to encourage energies in light of a reality that carries many Aspirations and challenges by achieving openness to the new digital environment and keeping pace with the ranks of international universities. Higher education is one of the engines of development for societies, as it is a vital field for the transfer of knowledge and scientific expertise, and the university is at the top of the comprehensive educational system for various disciplines in light of the achievement of a multi-dimensional educational system, and amid the integration of three basic axes that establish the sound educational process (teaching, research, relevant outputs efficiency), and according to a clear strategy that monitors the advancement of academic work, and works on developing its future directions to achieve development in this field. The Algerian University is considered one of the service institutions that seeks to find the optimal mechanisms to keep pace with the changes of the times, as it has become necessary for the university to enter the technological space and thus ensure the quality of education in it and achieve the required empowerment by dedicating a structure that matches the requirements of the challenges on which the sector is based, amid unremitting efforts to develop the capabilities. He sought to harness the mechanisms of communication and information technology and achieve transformation at the level of the higher education sector with what is called higher education technology. The conceptual framework of information and communication technology at the level of higher education institutions in Algeria is determined through the factors of organization, factors of higher education institutions, characteristics of the professor, characteristics of students, the outcomes of the educational process, and there is a relentless pursuit to achieve a positive interaction between these axes as they are basic components on which the success and achievement of higher education are based for his goals.

Keywords: Information and communication technology, Algerian university, scientific and cognitive development, challenges

Procedia PDF Downloads 85
2569 Changes in Inorganic Element Contents in Potamogeton Natans Exposed to Cement Factory Pollution

Authors: Yavuz Demir, Mucip Genisel, Hulya Turk, Turgay Sisman, Serkan Erdal

Abstract:

In this study, the changes in contents of inorganic elements in the aquatic plant (Potamogeton natans) as a reflection of the impact of chemical nature pollution in a cement factory region (CFR) was evaluated. For this purpose, P, S, K, Ca, Fe, Cl, Mn, Cu, Zn, Mo, Ni, Si, Al, and Cd concentrations were measured in the aquatic plant (Potamogeton natans) taken from a CFR. As a control, aquatic plant was collected at a distance of 2000 m from the outer zone of the cement factory. Inorganic element compositions were measured by energy dispersive X-ray fluorescence spectrometry (EDXRF). Three aquatic plant exhibited similar changes in contents of microelements and macroelements in their leaves. P, S, K, Cl, Ca, and Mo contents in plant grown in the CFR were reduced significantly compared to control plant, whereas their contents of Al, Mn, Fe, Ni, Cu, Zn and Cd were very high. According to these findings, it is possible that aquatic plant (Potamogeton natans) inhabiting in the vicinity of cement factory sustains the deficiency of important essential elements like P, S, K, Ca, and Mo and greatly accumulate heavy metals like Al, Mn, Fe, Ni, Cu, Zn, and Cd. In addition, results of water analysis showed that heavy metal content such as Cu, Pb, Zn, Co, and Al of water taken from CFR was remarkably high than that of outer zone of CFR. These findings with relation to changes in inorganic composition can contribute to be elucidated of effect mechanism on growth and development of aquatic plant (Potamogeton natans) of pollution resulted from cement factories.

Keywords: aquatic plant, cement factory, heavy metal pollution, inorganic element, Potamogeton natans

Procedia PDF Downloads 274
2568 Computational Modelling of Epoxy-Graphene Composite Adhesive towards the Development of Cryosorption Pump

Authors: Ravi Verma

Abstract:

Cryosorption pump is the best solution to achieve clean, vibration free ultra-high vacuum. Furthermore, the operation of cryosorption pump is free from the influence of electric and magnetic fields. Due to these attributes, this pump is used in the space simulation chamber to create the ultra-high vacuum. The cryosorption pump comprises of three parts (a) panel which is cooled with the help of cryogen or cryocooler, (b) an adsorbent which is used to adsorb the gas molecules, (c) an epoxy which holds the adsorbent and the panel together thereby aiding in heat transfer from adsorbent to the panel. The performance of cryosorption pump depends on the temperature of the adsorbent and hence, on the thermal conductivity of the epoxy. Therefore we have made an attempt to increase the thermal conductivity of epoxy adhesive by mixing nano-sized graphene filler particles. The thermal conductivity of epoxy-graphene composite adhesive is measured with the help of indigenously developed experimental setup in the temperature range from 4.5 K to 7 K, which is generally the operating temperature range of cryosorption pump for efficiently pumping of hydrogen and helium gas. In this article, we have presented the experimental results of epoxy-graphene composite adhesive in the temperature range from 4.5 K to 7 K. We have also proposed an analytical heat conduction model to find the thermal conductivity of the composite. In this case, the filler particles, such as graphene, are randomly distributed in a base matrix of epoxy. The developed model considers the complete spatial random distribution of filler particles and this distribution is explained by Binomial distribution. The results obtained by the model have been compared with the experimental results as well as with the other established models. The developed model is able to predict the thermal conductivity in both isotropic regions as well as in anisotropic region over the required temperature range from 4.5 K to 7 K. Due to the non-empirical nature of the proposed model, it will be useful for the prediction of other properties of composite materials involving the filler in a base matrix. The present studies will aid in the understanding of low temperature heat transfer which in turn will be useful towards the development of high performance cryosorption pump.

Keywords: composite adhesive, computational modelling, cryosorption pump, thermal conductivity

Procedia PDF Downloads 90
2567 Corrosion Inhibition of Brass in Phosphoric Acid Solution by 2-(5-Methyl-2-Nitro-1H-Imidazol-1-Yl) Ethyl Benzoate

Authors: R. Khrifou, M. Galai, R. Touir, M. Ebn Touhami, Y. Ramli

Abstract:

A 2-(5-methyl-2-Nitro-1H-imidazol-1-yl)ethyl benzoate (IMDZ-B) was synthesized and characterized using elemental analyses, NMR, and Fourier transform infrared (FTIR) techniques. Its effect on brass corrosion in 1.0 M H₃PO₄ solution was investigated by using electrochemical measurements coupled with X-ray diffraction analysis (XRD), Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX). The polarization measurements showed that the IMDZ-B acts as a mixed-type inhibitor. Indeed, it is found that the IMDZ-B compound is a very good inhibitor, and its inhibition efficiency increases with concentration to reach a maximum of 99.5 % at 10-³ M. In addition, the obtained electrochemical parameters from impedance indicated that the IMDZ-B molecules act by adsorption on metallic surfaces. This adsorption was found to obey Langmuir’s adsorption isotherm. However, the temperature effect on the performance of IMDZ-B was also studied. It is found that the IMDZ-B takes its performance at high temperatures. In addition, the obtained kinetic and thermodynamic parameters showed that the IMDZ-B molecules act via two adsorption modes, physisorption and chemisorptions, and its process is endothermic and spontaneous. Finally, the XRD and SEM/EDX analyses confirmed the electrochemical obtained results.

Keywords: low concentration, anti-corrosion brass, IMDZ-B product, phosphoric acid solution, electrochemical, SEM\EDAX analysis

Procedia PDF Downloads 65
2566 The Effect of Supercritical Carbon Dioxide Process Variables on The Recovery of Extracts from Bentong Ginger: Study on Process Variables

Authors: Muhamad Syafiq Hakimi Kamaruddin, Norhidayah Suleiman

Abstract:

Ginger extracts (Zingiber officinale Rosc.) have been attributed therapeutic properties primarily as antioxidant, anticancer, and anti-inflammatory properties. Conventional extractions including Soxhlet and maceration are commonly used to extract the bioactive compounds from plant material. Nevertheless, high energy consumption and being non-environmentally friendly are the predominant limitations of the conventional extractions method. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. A pressure (10-30 MPa), temperature (40-60 °C), and median particle size (300-600 µm) were conducted at a CO2 flow rate of 0.9 ± 0.2 g/min for 120 mins. The highest overall yield was 4.58% obtained by the scCO2 extraction conditions of 300 bar and 60 °C with 300µm of ginger powder for 120 mins. In comparison, the yield of the extract was increased considerably within a short extraction time. The results show that scCO2 has a remarkable ability over ginger extract and is a promising technology for extracting bioactive compounds from plant material.

Keywords: conventional, ginger, non-environmentally, supercritical carbon dioxide, technology

Procedia PDF Downloads 116
2565 Accurate Position Electromagnetic Sensor Using Data Acquisition System

Authors: Z. Ezzouine, A. Nakheli

Abstract:

This paper presents a high position electromagnetic sensor system (HPESS) that is applicable for moving object detection. The authors have developed a high-performance position sensor prototype dedicated to students’ laboratory. The challenge was to obtain a highly accurate and real-time sensor that is able to calculate position, length or displacement. An electromagnetic solution based on a two coil induction principal was adopted. The HPESS converts mechanical motion to electric energy with direct contact. The output signal can then be fed to an electronic circuit. The voltage output change from the sensor is captured by data acquisition system using LabVIEW software. The displacement of the moving object is determined. The measured data are transmitted to a PC in real-time via a DAQ (NI USB -6281). This paper also describes the data acquisition analysis and the conditioning card developed specially for sensor signal monitoring. The data is then recorded and viewed using a user interface written using National Instrument LabVIEW software. On-line displays of time and voltage of the sensor signal provide a user-friendly data acquisition interface. The sensor provides an uncomplicated, accurate, reliable, inexpensive transducer for highly sophisticated control systems.

Keywords: electromagnetic sensor, accurately, data acquisition, position measurement

Procedia PDF Downloads 285
2564 Technical and Economic Evaluation of Harmonic Mitigation from Offshore Wind Power Plants by Transmission Owners

Authors: A. Prajapati, K. L. Koo, F. Ghassemi, M. Mulimakwenda

Abstract:

In the UK, as the volume of non-linear loads connected to transmission grid continues to rise steeply, the harmonic distortion levels on transmission network are becoming a serious concern for the network owners and system operators. This paper outlines the findings of the study conducted to verify the proposal that the harmonic mitigation could be optimized and can be managed economically and effectively at the transmission network level by the Transmission Owner (TO) instead of the individual polluter connected to the grid. Harmonic mitigation studies were conducted on selected regions of the transmission network in England for recently connected offshore wind power plants to strategize and optimize selected harmonic filter options. The results – filter volume and capacity – were then compared against the mitigation measures adopted by the individual connections. Estimation ratios were developed based on the actual installed and optimal proposed filters. These estimation ratios were then used to derive harmonic filter requirements for future contracted connections. The study has concluded that a saving of 37% in the filter volume/capacity could be achieved if the TO is to centrally manage the harmonic mitigation instead of individual polluter installing their own mitigation solution.

Keywords: C-type filter, harmonics, optimization, offshore wind farms, interconnectors, HVDC, renewable energy, transmission owner

Procedia PDF Downloads 157
2563 The Changing Role of Technology-Enhanced University Library Reform in Improving College Student Learning Experience and Career Readiness – A Qualitative Comparative Analysis (QCA)

Authors: Xiaohong Li, Wenfan Yan

Abstract:

Background: While it is widely considered that the university library plays a critical role in fulfilling the institution's mission and providing students’ learning experience beyond the classrooms, how the technology-enhanced library reform changed college students’ learning experience hasn’t been thoroughly investigated. The purpose of this study is to explore how technology-enhanced library reform affects students’ learning experience and career readiness and further identify the factors and effective conditions that enable the quality learning outcome of Chinese college students. Methodologies: This study selected the qualitative comparative analysis (QCA) method to explore the effects of technology-enhanced university library reform on college students’ learning experience and career readiness. QCA is unique in explaining the complex relationship between multiple factors from a holistic perspective. Compared with the traditional quantitative and qualitative analysis, QCA not only adds some quantitative logic but also inherits the characteristics of qualitative research focusing on the heterogeneity and complexity of samples. Shenyang Normal University (SNU) selected a sample of the typical comprehensive university in China that focuses on students’ learning and application of professional knowledge and trains professionals to different levels of expertise. A total of 22 current university students and 30 graduates who joined the Library Readers Association of SNU from 2011 to 2019 were selected for semi-structured interviews. Based on the data collected from these participating students, qualitative comparative analysis (QCA), including univariate necessity analysis and the multi-configuration analysis, was conducted. Findings and Discussion: QCA analysis results indicated that the influence of technology-enhanced university library restructures and reorganization on student learning experience and career readiness is the result of multiple factors. Technology-enhanced library equipment and other hardware restructured to meet the college students learning needs and have played an important role in improving the student learning experience and learning persistence. More importantly, the soft characteristics of technology-enhanced library reform, such as library service innovation space and culture space, have a positive impact on student’s career readiness and development. Technology-enhanced university library reform is not only the change in the building's appearance and facilities but also in library service quality and capability. The study also provides suggestions for policy, practice, and future research.

Keywords: career readiness, college student learning experience, qualitative comparative analysis (QCA), technology-enhanced library reform

Procedia PDF Downloads 79
2562 Effective Validation Model and Use of Mobile-Health Apps for Elderly People

Authors: Leonardo Ramirez Lopez, Edward Guillen Pinto, Carlos Ramos Linares

Abstract:

The controversy brought about by the increasing use of mHealth apps and their effectiveness for disease prevention and diagnosis calls for immediate control. Although a critical topic in research areas such as medicine, engineering, economics, among others, this issue lacks reliable implementation models. However, projects such as Open Web Application Security Project (OWASP) and various studies have helped to create useful and reliable apps. This research is conducted under a quality model to optimize two mHealth apps for older adults. Results analysis on the use of two physical activity monitoring apps - AcTiv (physical activity) and SMCa (energy expenditure) - is positive and ideal. Through a theoretical and practical analysis, precision calculations and personal information control of older adults for disease prevention and diagnosis were performed. Finally, apps are validated by a physician and, as a result, they may be used as health monitoring tools in physical performance centers or any other physical activity. The results obtained provide an effective validation model for this type of mobile apps, which, in turn, may be applied by other software developers that along with medical staff would offer digital healthcare tools for elderly people.

Keywords: model, validation, effective, healthcare, elderly people, mobile app

Procedia PDF Downloads 218
2561 Importance of Occupational Safety and Health in Dam Construction Site

Authors: Naci Büyükkaraciğan, Yildirim Akyol

Abstract:

Large plants that covering the back and accumulate water of a river valley for energy production, drinking, irrigation water supply, economic benefits that serve many purposes, such as regulation of flood protection, are called dams. Place, in which unites in order to achieve an optimum balance between manpower for Lowest cost and economic as belonging to that structure to create machines, materials and construction of the project, is called as the site. Dam construction sites are combined sites in together in many businesses. Therefore, there can be found in the many workers and machines are many accidents in this type of construction sites. The necessity of systematic and scientific studies due to various reasons arises in order to be protected from conditions that could damage the health, During the execution of the work on construction sites. Occupational health and safety of the study, called the case, also in the European Union has begun to be addressed by weight since the 1980s. In particular, issued in 1989 89/391/EEC on occupational health and safety directive, occupational health and adopted the Directive within the framework of the security field, and then exposed to a large number of individual directive within this framework on the basis of the directive. Turkey's Law No. 6331 entered into force in June 2012 on the subject. In this study, measures related to the construction site of the dam should be taken with occupational safety and health have been examined and tried to put forward recommendations on the subject.

Keywords: civil engineering, dam, occupational safety and health, site organizations

Procedia PDF Downloads 333
2560 Computational Studies of the Reactivity Descriptors and the Optoelectronic Properties on the Efficiency Free-Base- and Zn-Porphyrin-Sensitized Solar Cells

Authors: Soraya Abtouche, Zeyneb Ghoualem, Syrine Daoudi, Lina Ouldmohamed, Xavier Assfeld

Abstract:

This work reports density functional theory calculations of the optimized geometries, molecular reactivity, energy gap,and thermodynamic properties of the free base (H2P) and their Zn (II) metallated (ZnP), bearing one, two, or three carboxylic acid groups using the hybrid functional B3LYP, Cam-B3lYP, wb97xd with 6-31G(d,p) basis sets. When donating groups are attached to the molecular dye, the bond lengths are slightly decreased, which is important for the easy transfer of an electron from donating to the accepting group. For all dyes, the highest occupied molecular orbital/lowest occupied molecular orbital analysis results in positive outcomes upon electron injection to the semiconductor and subsequent dye regeneration by the electrolyte. The ionization potential increases with increasing conjugation; therefore, the compound dye attached to one carboxylic acid group has the highest ionization potential. The results show higher efficiencies of those sensitized with ZnP. These results have been explained, taking into account the electronic character of the metal ion, which acts as a mediator in the injection step, and, on the other hand, considering the number of anchoring groups to which it binds to the surface of TiO2.

Keywords: DSSC, porphyrin, TD-DFT, electronic properties, donor-acceptor groups

Procedia PDF Downloads 78
2559 An Experimental Investigation on Explosive Phase Change of Liquefied Propane During a Bleve Event

Authors: Frederic Heymes, Michael Albrecht Birk, Roland Eyssette

Abstract:

Boiling Liquid Expanding Vapor Explosion (BLEVE) has been a well know industrial accident for over 6 decades now, and yet it is still poorly predicted and avoided. BLEVE is created when a vessel containing a pressure liquefied gas (PLG) is engulfed in a fire until the tank rupture. At this time, the pressure drops suddenly, leading the liquid to be in a superheated state. The vapor expansion and the violent boiling of the liquid produce several shock waves. This works aimed at understanding the contribution of vapor ad liquid phases in the overpressure generation in the near field. An experimental work was undertaken at a small scale to reproduce realistic BLEVE explosions. Key parameters were controlled through the experiments, such as failure pressure, fluid mass in the vessel, and weakened length of the vessel. Thirty-four propane BLEVEs were then performed to collect data on scenarios similar to common industrial cases. The aerial overpressure was recorded all around the vessel, and also the internal pressure changed during the explosion and ground loading under the vessel. Several high-speed cameras were used to see the vessel explosion and the blast creation by shadowgraph. Results highlight how the pressure field is anisotropic around the cylindrical vessel and highlights a strong dependency between vapor content and maximum overpressure from the lead shock. The time chronology of events reveals that the vapor phase is the main contributor to the aerial overpressure peak. A prediction model is built upon this assumption. Secondary flow patterns are observed after the lead. A theory on how the second shock observed in experiments forms is exposed thanks to an analogy with numerical simulation. The phase change dynamics are also discussed thanks to a window in the vessel. Ground loading measurements are finally presented and discussed to give insight into the order of magnitude of the force.

Keywords: phase change, superheated state, explosion, vapor expansion, blast, shock wave, pressure liquefied gas

Procedia PDF Downloads 77
2558 Examination of Relationship between Internet Addiction and Cyber Bullying in Adolescents

Authors: Adem Peker, Yüksel Eroğlu, İsmail Ay

Abstract:

As the information and communication technologies have become embedded in everyday life of adolescents, both their possible benefits and risks to adolescents are being identified. The information and communication technologies provide opportunities for adolescents to connect with peers and to access to information. However, as with other social connections, users of information and communication devices have the potential to meet and interact with in harmful ways. One emerging example of such interaction is cyber bullying. Cyber bullying occurs when someone uses the information and communication technologies to harass or embarrass another person. Cyber bullying can take the form of malicious text messages and e-mails, spreading rumours, and excluding people from online groups. Cyber bullying has been linked to psychological problems for cyber bullies and victims. Therefore, it is important to determine how internet addiction contributes to cyber bullying. Building on this question, this study takes a closer look at the relationship between internet addiction and cyber bullying. For this purpose, in this study, based on descriptive relational model, it was hypothesized that loss of control, excessive desire to stay online, and negativity in social relationships, which are dimensions of internet addiction, would be associated positively with cyber bullying and victimization. Participants were 383 high school students (176 girls and 207 boys; mean age, 15.7 years). Internet addiction was measured by using Internet Addiction Scale. The Cyber Victim and Bullying Scale was utilized to measure cyber bullying and victimization. The scales were administered to the students in groups in the classrooms. In this study, stepwise regression analyses were utilized to examine the relationships between dimensions of internet addiction and cyber bullying and victimization. Before applying stepwise regression analysis, assumptions of regression were verified. According to stepwise regression analysis, cyber bullying was predicted by loss of control (β=.26, p<.001) and negativity in social relationships (β=.13, p<.001). These variables accounted for 9 % of the total variance, with the loss of control explaining the higher percentage (8 %). On the other hand, cyber victimization was predicted by loss of control (β=.19, p<.001) and negativity in social relationships (β=.12, p<.001). These variables altogether accounted for 8 % of the variance in cyber victimization, with the best predictor loss of control (7 % of the total variance). The results of this study demonstrated that, as expected, loss of control and negativity in social relationships predicted cyber bullying and victimization positively. However, excessive desire to stay online did not emerge a significant predictor of both cyberbullying and victimization. Consequently, this study would enhance our understanding of the predictors of cyber bullying and victimization since the results proposed that internet addiction is related with cyber bullying and victimization.

Keywords: cyber bullying, internet addiction, adolescents, regression

Procedia PDF Downloads 310
2557 Comparative Economic Analysis of Floating Photovoltaic Systems Using a Synthesis Approach

Authors: Ching-Feng Chen

Abstract:

The floating photovoltaic (FPV) system highlights economic benefits and energy performance to carbon dioxide (CO₂) discharges. Due to land resource scarcity and many negligent water territories, such as reservoirs, dams, and lakes in Japan and Taiwan, both countries are actively developing FPV and responding to the pricing of the emissions trading systems (ETS). This paper performs a case study through a synthesis approach to compare the economic indicators between the FPVs of Taiwan’s Agongdian Reservoir and Japan’s Yamakura Dam. The research results show that the metrics of the system capacity, installation costs, bank interest rates, and ETS and Electricity Bills affect FPV operating gains. In the post-Feed-In-Tariff (FIT) phase, investing in FPV in Japan is more profitable than in Taiwan. The former’s positive net present value (NPV), eminent internal rate of return (IRR) (11.6%), and benefit-cost ratio (BCR) above 1 (2.0) at the discount rate of 10% indicate that investing the FPV in Japan is more favorable than in Taiwan. In addition, the breakeven point is modest (about 61.3%.). The presented methodology in the study helps investors evaluate schemes’ pros and cons and determine whether a decision is beneficial while funding PV or FPV projects.

Keywords: carbon border adjustment mechanism, floating photovoltaic, emissions trading systems, net present value, internal rate of return, benefit-cost ratio

Procedia PDF Downloads 75
2556 Evaluation of Drilling Performance through Bit-Rock Interaction Using Passive Vibration Assisted Rotation Drilling (PVARD) Tool

Authors: Md. Shaheen Shah, Abdelsalam Abugharara, Dipesh Maharjan, Syed Imtiaz, Stephen Butt

Abstract:

Drilling performance is an essential goal in petroleum and mining industry. Drilling rate of penetration (ROP), which is inversely proportional to the mechanical specific energy (MSE) is influenced by numerous factors among which are the applied parameter: torque (T), weight on bit (WOB), fluid flow rate, revolution per minute (rpm), rock related parameters: rock type, rock homogeneousness, rock anisotropy orientation, and mechanical parameters: bit type, configuration of the bottom hole assembly (BHA). This paper is focused on studying the drilling performance by implementing a passive vibration assisted rotary drilling tool (pVARD) as part of the BHA through using different bit types: coring bit, roller cone bit, and PDC bit and various rock types: rock-like material, granite, sandstone, etc. The results of this study aim to produce a pVARD index for optimal drilling performance considering the recommendations of the pVARD’s spring compression tests and stress-strain analysis of rock samples conducted prior to drilling experiments, analyzing the cutting size distribution, and evaluating the applied drilling parameters as a function of WOB. These results are compared with those obtained from drilling without pVARD, which represents the typical rigid BHA of the conventional drilling.

Keywords: BHA, drilling performance, MSE, pVARD, rate of penetration, ROP, tensile and shear fractures, unconfined compressive strength

Procedia PDF Downloads 146