Search results for: vegetation classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2686

Search results for: vegetation classification

1456 Mapping the Land Use Changes in Cultivation Areas of Maize and Soybean from 2006 to 2017 in North West and Free State Provinces, South Africa

Authors: S. Ngcinela, A. Mushunje, A. Taruvinga, C. S. Mutengwa, T. S. Masehela

Abstract:

There is high demand and competing needs when it comes to land use practices. Several factors contribute to this trend, for example, the ever-increasing human population, the need to produce more food than before, and the expansion of industrial and agricultural areas. This paper, focused on the cultivation patterns, land use change over time, of maize and soybean (i.e. both genetically modified and non-genetically modified) in two South African provinces to establish their land cover changes over time. From a global context, genetically modified crops have been advocated by some to be saving land – due to more yield over small cultivation area(s); while other argue and even criticise their cultivation as they take up more land, replace other crops or are the expense of natural (pristine) vegetation. The study quantified and mapped land used for the cultivation of maize and soybean from 2006 to 2017 in Free State and North West provinces, using ArcGIS. The results show both provinces to have minimal expansion or change in cultivation area for both maize and soybean between 2006 and 2017. The results further indicate that both maize and soybean cultivation areas in these provinces, did not expand beyond the current agricultural areas (space), and did not encroach onto new land areas. This suggests that both maize and soybean, do not currently pose a threat to the surrounding landscape and are not in direct coemption with other neighboring land use practices.

Keywords: agriculture, crops, cultivation, genetically modified, land use, maize, soybean

Procedia PDF Downloads 165
1455 Riesz Mixture Model for Brain Tumor Detection

Authors: Mouna Zitouni, Mariem Tounsi

Abstract:

This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.

Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution

Procedia PDF Downloads 16
1454 Case Studies in Three Domains of Learning: Cognitive, Affective, Psychomotor

Authors: Zeinabsadat Haghshenas

Abstract:

Bloom’s Taxonomy has been changed during the years. The idea of this writing is about the revision that has happened in both facts and terms. It also contains case studies of using cognitive Bloom’s taxonomy in teaching geometric solids to the secondary school students, affective objectives in a creative workshop for adults and psychomotor objectives in fixing a malfunctioned refrigerator lamp. There is also pointed to the important role of classification objectives in adult education as a way to prevent memory loss.

Keywords: adult education, affective domain, cognitive domain, memory loss, psychomotor domain

Procedia PDF Downloads 462
1453 Strategic Management for Corporate Social Responsibility in Colombian Industries: A Typology of CSR

Authors: Iris Maria Velez Osorio

Abstract:

There has been in the last decade a concern about the environment, particularly about clean and enough water for human consumption but, some enterprises had some trouble to understand the limited resources in the environment. This research tries to understand how some industries are better oriented to the preservation of the environment through investment for strategic management of scarce resources and try in the best way possible, the contaminants. It was made an industry classification since four different group of theories for Corporate Social Responsibility agree with variables of: investment in environmental care, water protection, and residues treatment finding different levels of commitment with CSR.

Keywords: corporate social responsibility, environment, strategic management, water

Procedia PDF Downloads 375
1452 The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning

Authors: Kyle Saltmarsh

Abstract:

Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage.

Keywords: plates, deformation, acoustic features, machine learning

Procedia PDF Downloads 334
1451 Effect of Weed Control and Different Plant Densities the Yield and Quality of Safflower (Carthamus tinctorius L.)

Authors: Hasan Dalgic, Fikret Akinerdem

Abstract:

This trial was made to determine effect of different plant density and weed control on yield and quality of winter sowing safflower (Carthamus tinctorius L.) in Selcuk University, Agricultural Faculty trial fields and the effective substance of Trifluran was used as herbicide. Field trial was made during the vegetation period of 2009-2010 with three replications according to 'Split Plots in Randomized Blocks' design. The weed control techniques were made on main plots and row distances was set up on sub-plots. The trial subjects were consisting from three weed control techniques as fallowing: herbicide application (Trifluran), hoeing and control beside the row distances of 15 cm and 30 cm. The results were ranged between 59.0-76.73 cm in plant height, 40.00-47.07 cm in first branch height, 5.00-7.20 in number of branch per plant, 6.00-14.73 number of head per plant, 19.57-21.87 mm in head diameter, 2125.0-3968.3 kg ha-1 in seed yield, 27.10-28.08 % in crude oil rate and 531.7-1070.3 kg ha-1. According to the results, Remzibey safflower cultivar showed the highest seed yield on 30 cm of row distance and herbicide application by means of the direct effects of plant height, first branch height, number of branch per plant, number of head per plant, table diameter, crude oil rate and crude oil yield.

Keywords: safflower, herbicide, row spacing, seed yield, oil ratio, oil yield

Procedia PDF Downloads 331
1450 Pyramid Binary Pattern for Age Invariant Face Verification

Authors: Saroj Bijarnia, Preety Singh

Abstract:

We propose a simple and effective biometrics system based on face verification across aging using a new variant of texture feature, Pyramid Binary Pattern. This employs Local Binary Pattern along with its hierarchical information. Dimension reduction of generated texture feature vector is done using Principal Component Analysis. Support Vector Machine is used for classification. Our proposed method achieves an accuracy of 92:24% and can be used in an automated age-invariant face verification system.

Keywords: biometrics, age invariant, verification, support vector machine

Procedia PDF Downloads 348
1449 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers

Procedia PDF Downloads 59
1448 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification

Authors: Abdelhadi Lotfi, Abdelkader Benyettou

Abstract:

In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.

Keywords: classification, probabilistic neural networks, network optimization, pattern recognition

Procedia PDF Downloads 260
1447 Exploring Students’ Visual Conception of Matter and Its Implications to Teaching and Learning Chemistry

Authors: Allen A. Espinosa, Arlyne C. Marasigan, Janir T. Datukan

Abstract:

The study explored how students visualize the states and classifications of matter using scientific models. It also identified misconceptions of students in using scientific models. In general, high percentage of students was able to use scientific models correctly and only a little misconception was identified. From the result of the study, a teaching framework was formulated wherein scientific models should be employed in classroom instruction to visualize abstract concepts in chemistry and for better conceptual understanding.

Keywords: visual conception, scientific models, mental models, states of matter, classification of matter

Procedia PDF Downloads 397
1446 Application of Machine Learning on Google Earth Engine for Forest Fire Severity, Burned Area Mapping and Land Surface Temperature Analysis: Rajasthan, India

Authors: Alisha Sinha, Laxmi Kant Sharma

Abstract:

Forest fires are a recurring issue in many parts of the world, including India. These fires can have various causes, including human activities (such as agricultural burning, campfires, or discarded cigarettes) and natural factors (such as lightning). This study presents a comprehensive and advanced methodology for assessing wildfire susceptibility by integrating diverse environmental variables and leveraging cutting-edge machine learning techniques across Rajasthan, India. The primary goal of the study is to utilize Google Earth Engine to compare locations in Sariska National Park, Rajasthan (India), before and after forest fires. High-resolution satellite data were used to assess the amount and types of changes caused by forest fires. The present study meticulously analyzes various environmental variables, i.e., slope orientation, elevation, normalized difference vegetation index (NDVI), drainage density, precipitation, and temperature, to understand landscape characteristics and assess wildfire susceptibility. In addition, a sophisticated random forest regression model is used to predict land surface temperature based on a set of environmental parameters.

Keywords: wildfire susceptibility mapping, LST, random forest, GEE, MODIS, climatic parameters

Procedia PDF Downloads 20
1445 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction

Procedia PDF Downloads 556
1444 Performance in Police Organizations: Approaches from the Literature Review

Authors: Felipe Haleyson Ribeiro dos Santos, Edson Ronaldo Guarido Filho

Abstract:

This article aims to review the literature on performance in police organizations. For that, the inOrdinatio method was adopted, which defines the form of selection and classification of articles. The search was carried out in databases, which resulted in a total of 619 documents that were cataloged and classified with the support of the Mendeley software. The theoretical scope intended here is to identify how performance in police organizations has been studied. After deepening the analysis and focusing on management, it was possible to classify the articles into three levels: individual, organizational, and institutional. However, to our best knowledge, no studies were found that addressed the performance relationship between the levels, which can be seen as a suggestion for further research.

Keywords: police management, performance, management, multi-level

Procedia PDF Downloads 106
1443 A Case Study on Management of Coal Seam Gas by-Product Water

Authors: Mojibul Sajjad, Mohammad G. Rasul, Md. Sharif Imam Ibne Amir

Abstract:

The rate of natural gas dissociation from the Coal Matrix depends on depressurization of reservoir through removing of the cleat water from the coal seam. These waters are similar to brine and aged of long years. For improving the connectivity through fracking /fracturing, high pressure liquids are pumped off inside the coal body. A significant quantity of accumulated water, a combined mixture of cleat water and fracking fluids (back flow water) is pumped out through gas well. In Queensland Coal Seam Gas industry is in booming state and estimated of 30,000 wells would be active for CSG production forecasting life span of 30 years. Integrated water management along with water softening programs is practiced for subsequent treatment and later on discharge to nearby surface water catchment. Water treatment is an important part of the CSG industry. A case study on a CSG site and review on the test results are discussed for assessing the Standards & Practices for management of CSG by-product water and their subsequent disposal activities. This study was directed toward (i) water management and softening process in Spring Gully Mine field, (ii) Comparative analysis on experimental study and standards and (iii) Disposal of the treated water. This study also aimed for alternative usages and their impact on vegetation, living species as well as long term effects.

Keywords: coal seam gas (CSG), cleat water, hydro-fracking, product water

Procedia PDF Downloads 417
1442 Floodnet: Classification for Post Flood Scene with a High-Resolution Aerial Imaginary Dataset

Authors: Molakala Mourya Vardhan Reddy, Kandimala Revanth, Koduru Sumanth, Beena B. M.

Abstract:

Emergency response and recovery operations are severely hampered by natural catastrophes, especially floods. Understanding post-flood scenarios is essential to disaster management because it facilitates quick evaluation and decision-making. To this end, we introduce FloodNet, a brand-new high-resolution aerial picture collection created especially for comprehending post-flood scenes. A varied collection of excellent aerial photos taken during and after flood occurrences make up FloodNet, which offers comprehensive representations of flooded landscapes, damaged infrastructure, and changed topographies. The dataset provides a thorough resource for training and assessing computer vision models designed to handle the complexity of post-flood scenarios, including a variety of environmental conditions and geographic regions. Pixel-level semantic segmentation masks are used to label the pictures in FloodNet, allowing for a more detailed examination of flood-related characteristics, including debris, water bodies, and damaged structures. Furthermore, temporal and positional metadata improve the dataset's usefulness for longitudinal research and spatiotemporal analysis. For activities like flood extent mapping, damage assessment, and infrastructure recovery projection, we provide baseline standards and evaluation metrics to promote research and development in the field of post-flood scene comprehension. By integrating FloodNet into machine learning pipelines, it will be easier to create reliable algorithms that will help politicians, urban planners, and first responders make choices both before and after floods. The goal of the FloodNet dataset is to support advances in computer vision, remote sensing, and disaster response technologies by providing a useful resource for researchers. FloodNet helps to create creative solutions for boosting communities' resilience in the face of natural catastrophes by tackling the particular problems presented by post-flood situations.

Keywords: image classification, segmentation, computer vision, nature disaster, unmanned arial vehicle(UAV), machine learning.

Procedia PDF Downloads 76
1441 Designing Bird-Friendly Kolkata city

Authors: Madhumita Roy

Abstract:

Kolkata, the city of joy, is an organic city with 45 lakhs of people till date. The increasing population stress is creating a constant pressure on the ground surface which in turn reducing the possible area for plantation. Humans, plants, and birds have a mutualistic relationship, and all are dependent on each other for their survival. Vegetation structure is very important for a bird life because it can be used as a residence, foraging, life cycle, and shelter from predators. On the other hand, in urban areas, buildings and structures also plays a major role for birds habitat w.r.t, nesting, resting, etc. City birds are constantly upgrading their adaptative mechanism with changing urban pattern with modern architectural designs. Urbanisation and unplanned development lead to environmental degradation and bird habitat fragmentation, which have impacts on the degradation of the quality and quantity of bird habitat. Declining green cover and habitat loss affects the diversity and population structure of birds. Their reducing number is an increasing threat not only to the bird community but also to the city as birds are considered as one of the most important environmental indicator. This study aims to check the present avian status like species richness, relative abundance, and diversity of bird species in the context of changing urban pattern in Kolkata city. Nesting strategy in the urban habitat of the avian community is another avenue of interest.

Keywords: urbanisation, avian species, kolkata metropolis, planning

Procedia PDF Downloads 98
1440 A Hill Town in Nature to Urban Sprawl: Shimla (HP) India

Authors: Minakshi Jain, I. P. Singh

Abstract:

The mountain system makes the one fifth of the world’s landscape and is the home to the 600 million people. Though hills and mountains contain about 10 percent of the total population of the country, yet almost half of the country’s population living in or adjacent to the mountain areas depend directly or indirectly on the resources of the hills. Mountain environments are essential to the survival of the global ecosystems, as they sustain the economy of India through its perennial river system and precious forest wealth. Hill areas, with distinct climate, diverse vegetation and valuable flora & fauna are distinguished primarily by unique eco-system, rich both in bio-diversity and visual resources. These areas have special significance in terms of environment and economy. Still the irony is that these mountain ecosystems are fragile and highly susceptible to disturbance, with a low ability to rebound and heal after damage. Hills are home to endangered species, biological diversity and an essential part of the ecosystem. They are extremely sensitive to any human related development. Natural systems are the most ignored in the hills. The way the cities and towns have encroached them today has the serious repercussions on the climate. Amidst immense resources and constraints of nature, the town had a fantastic diversity of cultural and ethnic characteristics nurtured through ages along river basin and valley strung across the length and breadth of this Himalayan setting.

Keywords: eco-system, bio-diversity, urban sprawl, vernacular landscape

Procedia PDF Downloads 525
1439 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers

Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang

Abstract:

Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.

Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors

Procedia PDF Downloads 120
1438 GIS-Based Spatial Distribution and Evaluation of Selected Heavy Metals Contamination in Topsoil around Ecton Mining Area, Derbyshire, UK

Authors: Zahid O. Alibrahim, Craig D. Williams, Clive L. Roberts

Abstract:

The study area (Ecton mining area) is located in the southern part of the Peak District in Derbyshire, England. It is bounded by the River Manifold from the west. This area has been mined for a long period. As a result, huge amounts of potentially toxic metals were released into the surrounding area and are most likely to be a significant source of heavy metal contamination to the local soil, water and vegetation. In order to appraise the potential heavy metal pollution in this area, 37 topsoil samples (5-20 cm depth) were collected and analysed for their total content of Cu, Pb, Zn, Mn, Cr, Ni and V using ICP (Inductively Coupled Plasma) optical emission spectroscopy. Multivariate Geospatial analyses using the GIS technique were utilised to draw geochemical maps of the metals of interest over the study area. A few hotspot points, areas of elevated concentrations of metals, were specified, which are presumed to be the results of anthropogenic activities. In addition, the soil’s environmental quality was evaluated by calculating the Mullers’ Geoaccumulation index (I geo), which suggests that the degree of contamination of the investigated heavy metals has the following trend: Pb > Zn > Cu > Mn > Ni = Cr = V. Furthermore, the potential ecological risk, using the enrichment factor (EF), was also specified. On the basis of the calculated amount or the EF, the levels of pollution for the studied metals in the study area have the following order: Pb>Zn>Cu>Cr>V>Ni>Mn.

Keywords: enrichment factor, geoaccumulation index, GIS, heavy metals, multivariate analysis

Procedia PDF Downloads 355
1437 Remote Sensing and GIS for Land Use Change Assessment: Case Study of Oued Bou Hamed Watershed, Southern Tunisia

Authors: Ouerchefani Dalel, Mahdhaoui Basma

Abstract:

Land use change is one of the important factors needed to evaluate later on the impact of human actions on land degradation. This work present the application of a methodology based on remote sensing for evaluation land use change in an arid region of Tunisia. This methodology uses Landsat TM and ETM+ images to produce land use maps by supervised classification based on ground truth region of interests. This study showed that it was possible to rely on radiometric values of the pixels to define each land use class in the field. It was also possible to generate 3 land use classes of the same study area between 1988 and 2011.

Keywords: land use, change, remote sensing, GIS

Procedia PDF Downloads 563
1436 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment: A Practical Example

Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh

Abstract:

With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper, we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.

Keywords: mobile health, data integration, expert systems, disease-related malnutrition

Procedia PDF Downloads 476
1435 Object Oriented Classification Based on Feature Extraction Approach for Change Detection in Coastal Ecosystem across Kochi Region

Authors: Mohit Modi, Rajiv Kumar, Manojraj Saxena, G. Ravi Shankar

Abstract:

Change detection of coastal ecosystem plays a vital role in monitoring and managing natural resources along the coastal regions. The present study mainly focuses on the decadal change in Kochi islands connecting the urban flatland areas and the coastal regions where sand deposits have taken place. With this, in view, the change detection has been monitored in the Kochi area to apprehend the urban growth and industrialization leading to decrease in the wetland ecosystem. The region lies between 76°11'19.134"E to 76°25'42.193"E and 9°52'35.719"N to 10°5'51.575"N in the south-western coast of India. The IRS LISS-IV satellite image has been processed using a rule-based algorithm to classify the LULC and to interpret the changes between 2005 & 2015. The approach takes two steps, i.e. extracting features as a single GIS vector layer using different parametric values and to dissolve them. The multi-resolution segmentation has been carried out on the scale ranging from 10-30. The different classes like aquaculture, agricultural land, built-up, wetlands etc. were extracted using parameters like NDVI, mean layer values, the texture-based feature with corresponding threshold values using a rule set algorithm. The objects obtained in the segmentation process were visualized to be overlaying the satellite image at a scale of 15. This layer was further segmented using the spectral difference segmentation rule between the objects. These individual class layers were dissolved in the basic segmented layer of the image and were interpreted in vector-based GIS programme to achieve higher accuracy. The result shows a rapid increase in an industrial area of 40% based on industrial area statistics of 2005. There is a decrease in wetlands area which has been converted into built-up. New roads have been constructed which are connecting the islands to urban areas as well as highways. The increase in coastal region has been visualized due to sand depositions. The outcome is well supported by quantitative assessments which will empower rich understanding of land use land cover change for appropriate policy intervention and further monitoring.

Keywords: land use land cover, multiresolution segmentation, NDVI, object based classification

Procedia PDF Downloads 181
1434 Afrikan Natural Medicines: An Innovation-Based Model for Medicines Production, Curriculum Development and Clinical Application

Authors: H. Chabalala, A. Grootboom, M. Tang

Abstract:

The innovative development, production, and clinical utilisation of African natural medicines requires frameworks from systematisation, innovation, registration. Afrika faces challenges when it comes to these sectors. The opposite is the case as is is evident in ancient Asian (Traditional Chinese Medicine and Indian Ayurveda and Siddha) medical systems, which are interfaced into their respective national health and educational systems. Afrikan Natural Medicines (ANMs) are yet to develop systematisation frameworks, i.e. disease characterisation and medicines classification. This paper explores classical medical systems drawn from Afrikan and Chinese experts in natural medicines. An Afrikological research methodology was used to conduct in-depth interviews with 20 key respondents selected through purposeful sampling technique. Data was summarised into systematisation frameworks for classical disease theories, patient categorisation, medicine classification, aetiology and pathogenesis of disease, diagnosis and prognosis techniques and treatment methods. It was discovered that ancient Afrika had systematic medical cosmologies, remnants of which are evident in most Afrikan cultural health practices. Parallels could be drawn from classical medical concepts of antiquity, like Chinese Taoist and Indian tantric health systems. Data revealed that both the ancient and contemporary ANM systems were based on living medical cosmologies. The study showed that African Natural Healing Systems have etiological systems, general pathogenesis knowledge, differential diagnostic techniques, comprehensive prognosis and holistic treatment regimes. Systematisation models were developed out of these frameworks, and this could be used for evaluation of clinical research, medical application including development of curriculum for high-education. It was envisaged that frameworks will pave way towards the development, production and commercialisation of ANMs. This was piloted in inclusive innovation, technology transfer and commercialisation of South African natural medicines, cosmeceuticals, nutraceuticals and health infusions. The central model presented here in will assist in curriculum development and establishment of Afrikan Medicines Hospitals and Pharmaceutical Industries.

Keywords: African Natural Medicines, Indigenous Knowledge Systems, Medical Cosmology, Clinical Application

Procedia PDF Downloads 127
1433 Prediction of Mental Health: Heuristic Subjective Well-Being Model on Perceived Stress Scale

Authors: Ahmet Karakuş, Akif Can Kilic, Emre Alptekin

Abstract:

A growing number of studies have been conducted to determine how well-being may be predicted using well-designed models. It is necessary to investigate the backgrounds of features in order to construct a viable Subjective Well-Being (SWB) model. We have picked the suitable variables from the literature on SWB that are acceptable for real-world data instructions. The goal of this work is to evaluate the model by feeding it with SWB characteristics and then categorizing the stress levels using machine learning methods to see how well it performs on a real dataset. Despite the fact that it is a multiclass classification issue, we have achieved significant metric scores, which may be taken into account for a specific task.

Keywords: machine learning, multiclassification problem, subjective well-being, perceived stress scale

Procedia PDF Downloads 129
1432 A Review on the Re-Usage of Single-Use Medical Devices

Authors: Lucas B. Naves, Maria José Abreu

Abstract:

Reprocessing single-use device has attracted interesting on the medical environment over the last decades. The reprocessing technique was sought in order to reduce the cost of purchasing the new medical device, which can achieve almost double of the price of the reprocessed product. In this manuscript, we have done a literature review, aiming the reuse of medical device that was firstly designed for single use only, but has become, more and more, effective on its reprocessing procedure. We also show the regulation, the countries which allows this procedure, the classification of these device and also the most important issue concerning the re-utilization of medical device, how to minimizing the risk of gram positive and negative bacteria, avoid cross-contamination, hepatitis B (HBV), and C (HCV) virus, and also human immunodeficiency virus (HIV).

Keywords: reusing, reprocessing, single-use medical device, HIV, hepatitis B and C

Procedia PDF Downloads 391
1431 Perspectives and Challenges a Functional Bread With Yeast Extract to Improve Human Diet

Authors: Cláudia Patrocínio, Beatriz Fernandes, Ana Filipa Pires

Abstract:

Background: Mirror therapy (MT) is used to improve motor function after stroke. During MT, a mirror is placed between the two upper limbs (UL), thus reflecting movements of the non- affected side as if it were the affected side. Objectives: The aim of this review is to analyze the evidence on the effec.tiveness of MT in the recovery of UL function in population with post chronic stroke. Methods: The literature search was carried out in PubMed, ISI Web of Science, and PEDro database. Inclusion criteria: a) studies that include individuals diagnosed with stroke for at least 6 months; b) intervention with MT in UL or comparing it with other interventions; c) articles published until 2023; d) articles published in English or Portuguese; e) randomized controlled studies. Exclusion criteria: a) animal studies; b) studies that do not provide a detailed description of the intervention; c) Studies using central electrical stimulation. The methodological quality of the included studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. Studies with < 4 on PEDro scale were excluded. Eighteen studies met all the inclusion criteria. Main results and conclusions: The quality of the studies varies between 5 and 8. One article compared muscular strength training (MST) with MT vs without MT and four articles compared the use of MT vs conventional therapy (CT), one study compared extracorporeal shock therapy (EST) with and without MT and another study compared functional electrical stimulation (FES), MT and biofeedback, three studies compared MT with Mesh Glove (MG) or Sham Therapy, five articles compared performing bimanual exercises with and without MT and three studies compared MT with virtual reality (VR) or robot training (RT). The assessment of changes in function and structure (International Classification of Functioning, Disability and Health parameter) was carried out, in each article, mainly using the Fugl Meyer Assessment-Upper Limb scale, activity and participation (International Classification of Functioning, Disability and Health parameter) were evaluated using different scales, in each study. The positive results were seen in these parameters, globally. Results suggest that MT is more effective than other therapies in motor recovery and function of the affected UL, than these techniques alone, although the results have been modest in most of the included studies. There is also a more significant improvement in the distal movements of the affected hand than in the rest of the UL.

Keywords: physical therapy, mirror therapy, chronic stroke, upper limb, hemiplegia

Procedia PDF Downloads 51
1430 Time Estimation of Return to Sports Based on Classification of Health Levels of Anterior Cruciate Ligament Using a Convolutional Neural Network after Reconstruction Surgery

Authors: Zeinab Jafari A., Ali Sharifnezhad B., Mohammad Razi C., Mohammad Haghpanahi D., Arash Maghsoudi

Abstract:

Background and Objective: Sports-related rupture of the anterior cruciate ligament (ACL) and following injuries have been associated with various disorders, such as long-lasting changes in muscle activation patterns in athletes, which might last after ACL reconstruction (ACLR). The rupture of the ACL might result in abnormal patterns of movement execution, extending the treatment period and delaying athletes’ return to sports (RTS). As ACL injury is especially prevalent among athletes, the lengthy treatment process and athletes’ absence from sports are of great concern to athletes and coaches. Thus, estimating safe time of RTS is of crucial importance. Therefore, using a deep neural network (DNN) to classify the health levels of ACL in injured athletes, this study aimed to estimate the safe time for athletes to return to competitions. Methods: Ten athletes with ACLR and fourteen healthy controls participated in this study. Three health levels of ACL were defined: healthy, six-month post-ACLR surgery and nine-month post-ACLR surgery. Athletes with ACLR were tested six and nine months after the ACLR surgery. During the course of this study, surface electromyography (sEMG) signals were recorded from five knee muscles, namely Rectus Femoris (RF), Vastus Lateralis (VL), Vastus Medialis (VM), Biceps Femoris (BF), Semitendinosus (ST), during single-leg drop landing (SLDL) and forward hopping (SLFH) tasks. The Pseudo-Wigner-Ville distribution (PWVD) was used to produce three-dimensional (3-D) images of the energy distribution patterns of sEMG signals. Then, these 3-D images were converted to two-dimensional (2-D) images implementing the heat mapping technique, which were then fed to a deep convolutional neural network (DCNN). Results: In this study, we estimated the safe time of RTS by designing a DCNN classifier with an accuracy of 90 %, which could classify ACL into three health levels. Discussion: The findings of this study demonstrate the potential of the DCNN classification technique using sEMG signals in estimating RTS time, which will assist in evaluating the recovery process of ACLR in athletes.

Keywords: anterior cruciate ligament reconstruction, return to sports, surface electromyography, deep convolutional neural network

Procedia PDF Downloads 77
1429 Comparison of Slope Data between Google Earth and the Digital Terrain Model, for Registration in Car

Authors: André Felipe Gimenez, Flávia Alessandra Ribeiro da Silva, Roberto Saverio Souza Costa

Abstract:

Currently, the rural producer has been facing problems regarding environmental regularization, which is precisely why the CAR (Rural Environmental Registry) was created. CAR is an electronic registry for rural properties with the purpose of assimilating notions about legal reserve areas, permanent preservation areas, areas of limited use, stable areas, forests and remnants of native vegetation, and all rural properties in Brazil. . The objective of this work was to evaluate and compare altimetry and slope data from google Earth with a digital terrain model (MDT) generated by aerophotogrammetry, in three plots of a steep slope, for the purpose of declaration in the CAR (Rural Environmental Registry). The realization of this work is justified in these areas, in which rural landowners have doubts about the reliability of the use of the free software Google Earth to diagnose inclinations greater than 25 degrees, as recommended by federal law 12651/2012. Added to the fact that in the literature, there is a deficiency of this type of study for the purpose of declaration of the CAR. The results showed that when comparing the drone altimetry data with the Google Earth image data, in areas of high slope (above 40% slope), Google underestimated the real values of terrain slope. Thus, it is concluded that Google Earth is not reliable for diagnosing areas with an inclination greater than 25 degrees (46% declivity) for the purpose of declaration in the CAR, being essential to carry out the local topographic survey.

Keywords: MDT, drone, RPA, SiCar, photogrammetry

Procedia PDF Downloads 130
1428 Multi-Channel Information Fusion in C-OTDR Monitoring Systems: Various Approaches to Classify of Targeted Events

Authors: Andrey V. Timofeev

Abstract:

The paper presents new results concerning selection of optimal information fusion formula for ensembles of C-OTDR channels. The goal of information fusion is to create an integral classificator designed for effective classification of seismoacoustic target events. The LPBoost (LP-β and LP-B variants), the Multiple Kernel Learning, and Weighing of Inversely as Lipschitz Constants (WILC) approaches were compared. The WILC is a brand new approach to optimal fusion of Lipschitz Classifiers Ensembles. Results of practical usage are presented.

Keywords: Lipschitz Classifier, classifiers ensembles, LPBoost, C-OTDR systems

Procedia PDF Downloads 459
1427 The Communicative Nature of Linguistic Interference in Learning and Teaching of Slavic Languages

Authors: Kseniia Fedorova

Abstract:

The article is devoted to interlinguistic homonymy and enantiosemy analysis. These phenomena belong to the process of linguistic interference, which leads to violation of the communicative utterances integrity and causes misunderstanding between foreign interlocutors - native speakers of different Slavic languages. More attention is paid to investigation of non-typical speech situations, which occurred spontaneously or created by somebody intentionally being based on described phenomenon mechanism. The classification of typical students' mistakes connected with the paradox of interference is being represented in the article. The survey contributes to speech act theory, contemporary linguodidactics, translation science and comparative lexicology of Slavonic languages.

Keywords: adherent enantiosemy, interference, interslavonic homonymy, speech act

Procedia PDF Downloads 242