Search results for: soil pressure
5621 Seismic Fragility Curves for Shallow Circular Tunnels under Different Soil Conditions
Authors: Siti Khadijah Che Osmi, Syed Mohd Ahmad
Abstract:
This paper presents a methodology to develop fragility curves for shallow tunnels so as to describe a relationship between seismic hazard and tunnel vulnerability. Emphasis is given to the influence of surrounding soil material properties because the dynamic behaviour of the tunnel mostly depends on it. Four ground properties of soils ranging from stiff to soft soils are selected. A 3D nonlinear time history analysis is used to evaluate the seismic response of the tunnel when subjected to five real earthquake ground intensities. The derived curves show the future probabilistic performance of the tunnels based on the predicted level of damage states corresponding to the peak ground acceleration. A comparison of the obtained results with the previous literature is provided to validate the reliability of the proposed fragility curves. Results show the significant role of soil properties and input motions in evaluating the seismic performance and response of shallow tunnels.Keywords: fragility analysis, seismic performance, tunnel lining, vulnerability
Procedia PDF Downloads 3165620 Effects of Lime and N100 on the Growth and Phytoextraction Capability of a Willow Variety (S. Viminalis × S. Schwerinii × S. Dasyclados) Grown in Contaminated Soils
Authors: Mir Md. Abdus Salam, Muhammad Mohsin, Pertti Pulkkinen, Paavo Pelkonen, Ari Pappinen
Abstract:
Soil and water pollution caused by extensive mining practices can adversely affect environmental components, such as humans, animals, and plants. Despite a generally positive contribution to society, mining practices have become a serious threat to biological systems. As metals do not degrade completely, they require immobilization, toxicity reduction, or removal. A greenhouse experiment was conducted to evaluate the effects of lime and N100 (11-amino-1-hydroxyundecylidene) chelate amendment on the growth and phytoextraction potential of the willow variety Klara (S. viminalis × S. schwerinii × S. dasyclados) grown in soils heavily contaminated with copper (Cu). The plants were irrigated with tap or processed water (mine wastewater). The sequential extraction technique and inductively coupled plasma-mass spectrometry (ICP-MS) tool were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The results suggest that the combined effects of the contaminated soil and processed water inhibited growth parameter values. In contrast, the accumulation of Cu in the plant tissues was increased compared to the control. When the soil was supplemented with lime and N100; growth parameter and resistance capacity were significantly higher compared to unamended soil treatments, especially in the contaminated soil treatments. The combined lime- and N100-amended soil treatment produced higher growth rate of biomass, resistance capacity and phytoextraction efficiency levels relative to either the lime-amended or the N100-amended soil treatments. This study provides practical evidence of the efficient chelate-assisted phytoextraction capability of Klara and highlights its potential as a viable and inexpensive novel approach for in-situ remediation of Cu-contaminated soils and mine wastewaters. Abandoned agricultural, industrial and mining sites can also be utilized by a Salix afforestation program without conflict with the production of food crops. This kind of program may create opportunities for bioenergy production and economic development, but contamination levels should be examined before bioenergy products are used.Keywords: copper, Klara, lime, N100, phytoextraction
Procedia PDF Downloads 1475619 OBD-Biofertilizer Impact on Crop Yield and Soil Quality in Lowland Rice Production, Badeggi, Niger State, Nigeria
Authors: Ayodele A. Otaiku
Abstract:
Purpose: Nigeria has become the largest importer of rice in Africa and second in the world, 2015. Investigate interactions of organic rice farming on soil quality and health from bio-waste converted to biofertilizer and its environmental impact on rice crop. Methodology: Bio-wastes, poultry waste, organic agriculture wastes, wood ash mixed with microbial inoculant organisms called OBD-Plus microbes (broad spectrum) composted in anaerobic digester to OBD-biofertilizer (2010 - 2012) uses microbes to build humus and other stable carbons. Two field experiments were carried out at Badeggi, Niger state in 2011 and 2012 to evaluate the response of lowland rice production using biofertilizer. The experimental field was laid out in a strip-plot design with five treatments and three replications and at twenty-one day old seedlings of FARO 44 and FARO 52 rice varieties were transplanted. Plots without fertiliser application served as control. Findings: The highest rice grain yield increase of 4.4 t/ha over the control in 2012 against the Nigeria average of lowland rice grain yields of 1.5 t/ha. The utilization of OBD-Biofertilizer can decrease the use of chemical nitrogen fertilizer, prevent the depletion of soil organic matter and reduce environmental pollution. Increasing the floodwater productivity and optimizing the recycling of nutrients cum grazer populations and disease by biocontrols microbes present in the OBD-Biofertilizer. Organic matter in the soil improves by 58% and C/N 15 (2011) and 13.35 (2012). Implications: OBD- Biofertilizer produce plant growth hormones such as indole acetic acid (IAA), glomalin related soil protein and extracellular enzymes as phosphatases that promote soil health and quality. Conclusion: Microorganisms can enhance nutrients use efficiency by increasing root surface area e.g., mycorrhizal, fungi, promoting other beneficial symbioses of the host plant and microbial interactions resulting to increase in soil organic matter. By 2030, climate change is projected to depress cereal production in Africa by 2 to 3 percent. Improved seeds and increased fertilizer use should more than compensate, but this factor will still weigh heavily on efforts to make progress.Keywords: OBD-plus microbial consortia, OBD-biofertilizer, rice production, soil quality, sustainable agriculture
Procedia PDF Downloads 2725618 Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling
Authors: F. Allag, S. Bouharati, M. Belmahdi, R. Zegadi
Abstract:
The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.Keywords: desert soil, climatic changes, bacteria, vegetation, artificial neural networks
Procedia PDF Downloads 3965617 Effect of Baking Temperature on the Mechanical Properties of Reinforced Clayey Soil
Authors: Gul Muhammad, Amanullah Marri, Asif Abbas
Abstract:
Thermal treatment changes the physical and mechanical properties of clayey soils. Thermally treated soils have been used since ancient times for making trails for access and bricks for residence. In this study, it has been focused to observe and analyze the effect of baking (burning) temperature on the mechanical properties of clayey soils usually used for the construction of adobe houses in the rural areas of many of the developing countries. In the first stage of experimental work, a series of tests on clayey soil moulds (100 mm height and 50 mm diameter in size) added different percentages of lime and wheat straw (typically 2%, 4%, 6%, 8%, and 10%) were conducted. In the second stage; samples were made of clayey soils and were subjected to six level of temperatures i.e., 25, 100, 200, 300, 400, and 500⁰C. In the third stage, the moulds of clayey soil were submerged in water prior to testing in order to investigate the flood resilience of the moulds prepared with and without the addition of lime and wheat straw. The experimental results suggest that samples with 6% of lime content and on 2% of wheat straw contents have shown the maximum value of compressive strength. The effect of baking temperature on the clayey soils has shown that maximum UCS is obtained at 200⁰C. The results also suggest reinforcement with 2% wheat straw, give 70.8% increase in the compressive strength compared to soil only, whereas the flooding resilience can be better resist by adding 6% lime and 2% wheat straw.Keywords: baked temperature, submersion, lime, uniaxial, wheat straw
Procedia PDF Downloads 2785616 Kinematic Behavior of Geogrid Reinforcements during Earthquakes
Authors: Ahmed Hosny Abdel-Rahman, Mohamed Abdel-Moneim
Abstract:
Reinforced earth structures are generally subjected to cyclic loading generated from earthquakes. This paper presents a summary of the results and analyses of a testing program carried out in a large-scale multi-function geosynthetic testing apparatus that accommodates soil samples up to 1.0 m3. This apparatus performs different shear and pullout tests under both static and cyclic loading. The testing program was carried out to investigate the controlling factors affecting soil/geogrid interaction under cyclic loading. The extensibility of the geogrids, the applied normal stresses, the characteristics of the cyclic loading (frequency, and amplitude), and initial static load within the geogrid sheet were considered in the testing program. Based on the findings of the testing program, the effect of these parameters on the pullout resistance of geogrids, as well as the displacement mobility under cyclic loading were evaluated. Conclusions and recommendations for the design of reinforced earth walls under cyclic loading are presented.Keywords: geogrid, soil, interface, cyclic loading, pullout, large scale testing
Procedia PDF Downloads 6235615 The Importance of the Fluctuation in Blood Sugar and Blood Pressure of Insulin-Dependent Diabetic Patients with Chronic Kidney Disease
Authors: Hitoshi Minakuchi, Izumi Takei, Shu Wakino, Koichi Hayashi, Hiroshi Itoh
Abstract:
Objectives: Among type 2 diabetics, patients with CKD(chronic kidney disease), insulin resistance, impaired glyconeogenesis in kidney and reduced degradation of insulin are recognized, and we observed different fluctuational patterns of blood sugar between CKD patients and non-CKD patients. On the other hand, non-dipper type blood pressure change is the risk of organ damage and mortality. We performed cross-sectional study to elucidate the characteristic of the fluctuation of blood glucose and blood pressure at insulin-treated diabetic patients with chronic kidney disease. Methods: From March 2011 to April 2013, at the Ichikawa General Hospital of Tokyo Dental College, we recruited 20 outpatients. All participants are insulin-treated type 2 diabetes with CKD. We collected serum samples, urine samples for several hormone measurements, and performed CGMS(Continuous glucose measurement system), ABPM (ambulatory blood pressure monitoring), brain computed tomography, carotid artery thickness, ankle brachial index, PWV, CVR-R, and analyzed these data statistically. Results: Among all 20 participants, hypoglycemia was decided blood glucose 70mg/dl by CGMS of 9 participants (45.0%). The event of hypoglycemia was recognized lower eGFR (29.8±6.2ml/min:41.3±8.5ml/min, P<0.05), lower HbA1c (6.44±0.57%:7.53±0.49%), higher PWV (1858±97.3cm/s:1665±109.2cm/s), higher serum glucagon (194.2±34.8pg/ml:117.0±37.1pg/ml), higher free cortisol of urine (53.8±12.8μg/day:34.8±7.1μg/day), and higher metanephrin of urine (0.162±0.031mg/day:0.076±0.029mg/day). Non-dipper type blood pressure change in ABPM was detected 8 among 9 participants with hypoglycemia (88.9%), 4 among 11 participants (36.4%) without hypoglycemia. Multiplex logistic-regression analysis revealed that the event of hypoglycemia is the independent factor of non-dipper type blood pressure change. Conclusions: Among insulin-treated type 2 diabetic patients with CKD, the events of hypoglycemia were frequently detected, and can associate with the organ derangements through the medium of non-dipper type blood pressure change.Keywords: chronic kidney disease, hypoglycemia, non-dipper type blood pressure change, diabetic patients
Procedia PDF Downloads 4165614 Correction Factors for Soil-Structure Interaction Predicted by Simplified Models: Axisymmetric 3D Model versus Fully 3D Model
Authors: Fu Jia
Abstract:
The effects of soil-structure interaction (SSI) are often studied using axial-symmetric three-dimensional (3D) models to avoid the high computational cost of the more realistic, fully 3D models, which require 2-3 orders of magnitude more computer time and storage. This paper analyzes the error and presents correction factors for system frequency, system damping, and peak amplitude of structural response computed by axisymmetric models, embedded in uniform or layered half-space. The results are compared with those for fully 3D rectangular foundations of different aspect ratios. Correction factors are presented for a range of the model parameters, such as fixed-base frequency, structure mass, height and length-to-width ratio, foundation embedment, soil-layer stiffness and thickness. It is shown that the errors are larger for stiffer, taller and heavier structures, deeper foundations and deeper soil layer. For example, for a stiff structure like Millikan Library (NS response; length-to-width ratio 1), the error is 6.5% in system frequency, 49% in system damping and 180% in peak amplitude. Analysis of a case study shows that the NEHRP-2015 provisions for reduction of base shear force due to SSI effects may be unsafe for some structures and need revision. The presented correction factor diagrams can be used in practical design and other applications.Keywords: 3D soil-structure interaction, correction factors for axisymmetric models, length-to-width ratio, NEHRP-2015 provisions for reduction of base shear force, rectangular embedded foundations, SSI system frequency, SSI system damping
Procedia PDF Downloads 2695613 Deep Reinforcement Learning for Advanced Pressure Management in Water Distribution Networks
Authors: Ahmed Negm, George Aggidis, Xiandong Ma
Abstract:
With the diverse nature of urban cities, customer demand patterns, landscape topologies or even seasonal weather trends; managing our water distribution networks (WDNs) has proved a complex task. These unpredictable circumstances manifest as pipe failures, intermittent supply and burst events thus adding to water loss, energy waste and increased carbon emissions. Whilst these events are unavoidable, advanced pressure management has proved an effective tool to control and mitigate them. Henceforth, water utilities have struggled with developing a real-time control method that is resilient when confronting the challenges of water distribution. In this paper we use deep reinforcement learning (DRL) algorithms as a novel pressure control strategy to minimise pressure violations and leakage under both burst and background leakage conditions. Agents based on asynchronous actor critic (A2C) and recurrent proximal policy optimisation (Recurrent PPO) were trained and compared to benchmarked optimisation algorithms (differential evolution, particle swarm optimisation. A2C manages to minimise leakage by 32.48% under burst conditions and 67.17% under background conditions which was the highest performance in the DRL algorithms. A2C and Recurrent PPO performed well in comparison to the benchmarks with higher processing speed and lower computational effort.Keywords: deep reinforcement learning, pressure management, water distribution networks, leakage management
Procedia PDF Downloads 945612 A Study to Identify Resistant Hypertension and Role of Spironolactone in its Management
Authors: A. Kumar, D. Himanshu, Ak Vaish, K. Usman , A. Singh, R. Misra, V. Atam, S. P. Verma, S. Singhal
Abstract:
Introduction: Resistant and uncontrolled hypertension offer great challenge, in terms of higher risk of morbidity, mortality and not the least, difficulty in diagnosis and management. Our study tries to identify the importance of two crucial aspects of hypertension management, i.e. drug compliance and optimum dosing and also the effect of spironolactone on blood pressure in cases of resistant hypertension. Methodology: A prospective study was carried out among patients, who were referred as case of resistant hypertension to Hypertension Clinic at Gandhi memorial and associated hospital, Lucknow, India from August, 2013 to July 2014. A total of 122 Subjects having uncontrolled BP with ≥3 antihypertensives were selected. After ruling out secondary resistance and with appropriate lifestyle modifications, effect of adherence and optimum doses was seen with monitoring of BP. Only those having blood pressure still uncontrolled were true resistant. These patients were given spironolactone to see its effect on BP over next 12 weeks. Results: Mean baseline BP of all (n=122) patients was 150.4±7.2 mmHg systolic and 92.1±5.7 mmHg diastolic. After promoting adherence to the regimen, there was reduction of 4.20±3.65 mmHg systolic and 2.08±4.74 mmHg Diastolic blood pressure, with 26 patients achieving target blood pressure goal. Further reduction of 6.66±5.99 mmHg in systolic and 2.59±3.67 mmHg in diastolic BP was observed after optimizing the drug doses with another 66 patients achieving target blood pressure goal. Only 30 patients were true resistant hypertensive and prescribed spironolactone. Over 12 weeks, mean reduction of 20.62±3.65 mmHg in systolic and 10.08 ± 6.46 mmHg in diastolic BP was observed. Out of these 30, BP was controlled in 24 patients. Side effects observed were hyperkalemia in 2 patients and breast tenderness in 2 patients. Conclusion: Improper adherence and suboptimal regimen appear to be the important reasons for uncontrolled hypertension. By virtue of maintaining proper adherence to an optimum regimen, target BP goal can be reached in many without adding much to the regimen. Spironolactone is effective in patients with resistant hypertension, in terms of blood pressure reduction with minimal side effects.Keywords: resistant, hypertension, spironolactone, blood pressure
Procedia PDF Downloads 2795611 The Determination of Pb and Zn Phytoremediation Potential and Effect of Interaction between Cadmium and Zinc on Metabolism of Buckwheat (Fagopyrum Esculentum)
Authors: Nurdan Olguncelik Kaplan, Aysen Akay
Abstract:
Nowadays soil pollution has become a global problem. External added polluters to the soil are destroying and changing the structure of the soil and the problems are becoming more complex and in this sense the correction of these problems is going to be harder and more costly. Cadmium has got a fast mobility in the soil and plant system because of that cadmium can interfere very easily to the human and animal food chain and in the same time this can be very dangerous. The cadmium which is absorbed and stored by the plants is causing to many metabolic changes of the plants like; protein synthesis, nitrogen and carbohydrate metabolism, enzyme (nitrate reductase) activation, photo and chlorophyll synthesis. The biological function of cadmium is not known over the plants and it is not a necessary element. The plant is generally taking in small amounts the cadmium and this element is competing with the zinc. Cadmium is causing root damages. Buckwheat (Fagopyrum esculentum) is an important nutraceutical because of its high content of flavonoids, minerals and vitamins, and their nutritionally balanced amino-acid composition. Buckwheat has relatively high biomass productivity, is adapted to many areas of the world, and can flourish in sterile fields; therefore buckwheat plants are widely used for the phytoremediation process.The aim of this study were to evaluate the phytoremediation capacity of the high-yielding plant Buckwheat (Fagopyrum esculentum) in soils contaminated with Cd and Zn. The soils were applied to differrent doses cd(0-12.5-25-50-100 mg Cd kg−1 soil in the form of 3CdSO4.8H2O ) and Zn (0-10-30 mg Zn kg−1 soil in the form of ZnSO4.7H2O) and incubated about 60 days. Later buckwheat seeds were sown and grown for three mounth under greenhouse conditions. The test plants were irrigated by using pure water after the planting process. Buckwheat seeds (Gunes and Aktas species) were taken from Bahri Dagdas International Agricultural Research. After harvest, Cd and Zn concentrations of plant biomass and grain, yield and translocation factors (TFs) for Cd and Cd were determined. Cadmium accumulation in biomass and grain significantly increased in dose-dependent manner. Long term field trials are required to further investigate the potential of buckwheat to reclaimed the soil. But this could be undertaken in conjunction with actual remediation schemes. However, the differences in element accumulation among the genotypes were affected more by the properties of genotypes than by the soil properties. Gunes genotype accumulated higher lead than Aktas genotypes.Keywords: buckwheat, cadmium, phytoremediation, zinc
Procedia PDF Downloads 4185610 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-Fed Sesame (Sesamum Indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray, Ethiopia
Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu
Abstract:
Sesame is an important oilseed crop in Ethiopia, which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool, which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validate the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates, 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99, and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99 and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.Keywords: aquacrop model, normalized water productivity, nitrogen fertilizer, canopy cover, sesame
Procedia PDF Downloads 805609 Modeling and Analysis the Effects of Temperature and Pressure on the Gas-Crossover in Polymer Electrolyte Membrane Electrolyzer
Authors: Abdul Hadi Bin Abdol Rahim, Alhassan Salami Tijani
Abstract:
Hydrogen produced by means of polymer electrolyte membrane electrolyzer (PEME) is one of the most promising methods due to clean and renewable energy source. In the process, some energy loss due to mass transfer through a PEM is caused by diffusion, electro-osmotic drag, and the pressure difference between the cathode channel and anode channel. In PEME water molecules and ionic particles transferred between the electrodes from anode to cathode, Extensive mixing of the hydrogen and oxygen at anode channel due to gases cross-over must be avoided. In recent times the consciousness of safety issue in high pressure PEME where the oxygen mix with hydrogen at anode channel could create, explosive conditions have generated a lot of concern. In this paper, the steady state and simulation analysis of gases crossover in PEME on the temperature and pressure effect are presented. The simulations have been analysis in MATLAB based on the well-known Fick’s Law of molecular diffusion. The simulation results indicated that as temperature increases, there is a significant decrease in operating voltage.Keywords: diffusion, gases crosover, steady state, Fick’s law
Procedia PDF Downloads 3315608 Impact of Tillage and Crop Establishment on Fertility and Sustainability of the Rice-Wheat Cropping System in Inceptisols of Varanasi, Up, India
Authors: Pramod Kumar Sharma, Pratibha Kumari, Udai Pratap Singh, Sustainability
Abstract:
In the Indo-Gangetic Plains of South-East Asia, the rice-wheat cropping system (RWCS) is dominant with conventional tillage (CT) without residue management, which shows depletion of soil fertility and non-sustainable crop productivity. Hence, this investigation was planned to identify suitable natural resource management practices involving different tillage and crop establishment (TCE) methods along with crop residue and their effects, on the sustainability of dominant cropping systems through enhancing soil fertility and productivity. This study was conducted for two consecutive years 2018-19 and 2019-20 on a long-term field experiment that was started in the year 2015-16 taking six different combinations of TCE methods viz. CT, partial conservation agriculture (PCA) i.e. anchored residue of rice and full conservation agriculture (FCA)] i.e. anchored residue of rice and wheat under RWCS in terms of crop productivity, sustainability of soil health, and crop nutrition by the crops. Results showed that zero tillage direct-seeded rice (ZTDSR) - zero tillage wheat (ZTW) [FCA + green gram residue retention (RR)] recorded the highest yield attributes and yield during both the crops. Compared to conventional tillage rice (CTR)-conventional tillage wheat (CTW) [residue removal (R 0 )], the soil quality parameters were improved significantly with ZTDSR-ZTW (FCA+RR). Overall, ZTDSR-ZTW (FCA+RR) had higher nutrient uptake by the crops than CT-based treatment CTR-CTW (R 0 ) and CTR-CTW (RI).These results showed that there is significant profitability of yield and resource utilization by the adoption of FCA it may be a better alternative to the dominant tillage system i.e. CT in RWSC.Keywords: tillage and crop establishment, soil fertility, rice-wheat cropping system, sustainability
Procedia PDF Downloads 1085607 Hypotensive effect of Cardiospermum halicacabum Linn. in Anesthetized Rats
Authors: Huma Shareef, Ghazala H. Rizwani, Ahsana Dar
Abstract:
In traditional medicine Cardiospermum halicacabum L. (Sapindeaceae) is used against various ailments. In current investigation searching a new remedy that will available easily, non expensive, able to lower hypertension and standardize blood pressure, made us to develop an herbal medicine. Crude ethanol extract of C. halicacabum and its various fractions ethyl acetate and butanol showed a dose-dependent hypotensive effect in anaesthetized rats. The trachea was exposed and freed from connective tissue and incubated by cannula to facilitate spontaneous respiration. The right carotid artery and left jugular vein were cannulated with polyethylene tubing PE-50 for monitoring blood pressure changes via pressure transducer (Gould P23 ID) connected to a Grass model 79D polygraph and for i.v. injection, respectively. Drugs or the plant extracts were administered at a constant volume of 0.5 ml/kg, followed by injection of 0.2 ml of saline that flushed the cannula. Systolic, diastolic and mean arterial blood pressure (MABP) was measured in mm Hg and heart rate in beats/min. Ethanol extract of C. halicacabum showed a significant activity at 50 mg/kg dose. Ethyl acetate fraction (10, 20, 30, 40, and 50 mg/kg) induced dose dependent fall in systolic and diastolic blood pressure, heart rate of rats. At 10-30 mg/kg the hypotensive effect was non significantly reduced by 10 -15%. However, the extract at 40 mg/kg induced significant hypotensive effect calculated as 30.95±3.2% MABP and this effect persists till 50 mg/kg. The higher polar fraction (butanol) of the whole plant failed to produce any significant response against MABP at all the tested doses (10-50 mg/kg). C. halicacabum lowers blood pressure, exerts a dose-dependent hypotensive effect, can be used as hypotensor.Keywords: cardiospermum halicacabum, calcium channel blocker, hypotensive, various extracts
Procedia PDF Downloads 5075606 Optimization of Soybean Oil by Modified Supercritical Carbon Dioxide
Authors: N. R. Putra, A. H. Abdul Aziz, A. S. Zaini, Z. Idham, F. Idrus, M. Z. Bin Zullyadini, M. A. Che Yunus
Abstract:
The content of omega-3 in soybean oil is important in the development of infants and is an alternative for the omega-3 in fish oils. The investigation of extraction of soybean oil is needed to obtain the bioactive compound in the extract. Supercritical carbon dioxide extraction is modern and green technology to extract herbs and plants to obtain high quality extract due to high diffusivity and solubility of the solvent. The aim of this study was to obtain the optimum condition of soybean oil extraction by modified supercritical carbon dioxide. The soybean oil was extracted by using modified supercritical carbon dioxide (SC-CO2) under the temperatures of 40, 60, 80 °C, pressures of 150, 250, 350 Bar, and constant flow-rate of 10 g/min as the parameters of extraction processes. An experimental design was performed in order to optimize three important parameters of SC-CO2 extraction which are pressure (X1), temperature (X2) to achieve optimum yields of soybean oil. Box Behnken Design was applied for experimental design. From the optimization process, the optimum condition of extraction of soybean oil was obtained at pressure 338 Bar and temperature 80 °C with oil yield of 2.713 g. Effect of pressure is significant on the extraction of soybean oil by modified supercritical carbon dioxide. Increasing of pressure will increase the oil yield of soybean oil.Keywords: soybean oil, SC-CO₂ extraction, yield, optimization
Procedia PDF Downloads 2575605 Spatial Distribution and Source Identification of Trace Elements in Surface Soil from Izmir Metropolitan Area
Authors: Melik Kara, Gulsah Tulger Kara
Abstract:
The soil is a crucial component of the ecosystem, and in industrial and urban areas it receives large amounts of trace elements from several sources. Therefore, accumulated pollutants in surface soils can be transported to different environmental components, such as deep soil, water, plants, and dust particles. While elemental contamination of soils is caused mainly by atmospheric deposition, soil also affects the air quality since enriched trace elemental contents in atmospheric particulate matter originate from resuspension of polluted soils. The objectives of this study were to determine the total and leachate concentrations of trace elements in soils of city area in Izmir and characterize their spatial distribution and to identify the possible sources of trace elements in surface soils. The surface soil samples were collected from 20 sites. They were analyzed for total element concentrations and leachate concentrations. Analyses of trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Hf, Ho, K, La, Li, Lu, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pr, Rb, Sb, Sc, Se, Si, Sm, Sn, Sr, Tb, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr) were carried out using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). The elemental concentrations were calculated along with overall median, kurtosis, and skewness statistics. Elemental composition indicated that the soil samples were dominated by crustal elements such as Si, Al, Fe, Ca, K, Mg and the sea salt element, Na which is typical for Aegean region. These elements were followed by Ti, P, Mn, Ba and Sr. On the other hand, Zn, Cr, V, Pb, Cu, and Ni (which are anthropogenic based elements) were measured as 61.6, 39.4, 37.9, 26.9, 22.4, and 19.4 mg/kg dw, respectively. The leachate element concentrations were showed similar sorting although their concentrations were much lower than total concentrations. In the study area, the spatial distribution patterns of elemental concentrations varied among sampling sites. The highest concentrations were measured in the vicinity of industrial areas and main roads. To determine the relationships among elements and to identify the possible sources, PCA (Principal Component Analysis) was applied to the data. The analysis resulted in six factors. The first factor exhibited high loadings of Co, K, Mn, Rb, V, Al, Fe, Ni, Ga, Se, and Cr. This factor could be interpreted as residential heating because of Co, K, Rb, and Se. The second factor associated positively with V, Al, Fe, Na, Ba, Ga, Sr, Ti, Se, and Si. Therefore, this factor presents mixed city dust. The third factor showed high loadings with Fe, Ni, Sb, As, Cr. This factor could be associated with industrial facilities. The fourth factor associated with Cu, Mo, Zn, Sn which are the marker elements of traffic. The fifth factor presents crustal dust, due to its high correlation with Si, Ca, and Mg. The last factor is loaded with Pb and Cd emitted from industrial activities.Keywords: trace elements, surface soil, source apportionment, Izmir
Procedia PDF Downloads 1415604 Comparative Analysis of the Expansion Rate and Soil Erodibility Factor (K) of Some Gullies in Nnewi and Nnobi, Anambra State Southeastern Nigeria
Authors: Nzereogu Stella Kosi, Igwe Ogbonnaya, Emeh Chukwuebuka Odinaka
Abstract:
A comparative analysis of the expansion rate and soil erodibility of some gullies in Nnewi and Nnobi both of Nanka Formation were studied. The study involved an integration of field observations, geotechnical analysis, slope stability analysis, multivariate statistical analysis, gully expansion rate analysis, and determination of the soil erodibility factor (K) from Revised Universal Soil Loss Equation (RUSLE). Fifteen representative gullies were studied extensively, and results reveal that the geotechnical properties of the soil, topography, vegetation cover, rainfall intensity, and the anthropogenic activities in the study area were major factors propagating and influencing the erodibility of the soils. The specific gravity of the soils ranged from 2.45-2.66 and 2.54-2.78 for Nnewi and Nnobi, respectively. Grain size distribution analysis revealed that the soils are composed of gravel (5.77-17.67%), sand (79.90-91.01%), and fines (2.36-4.05%) for Nnewi and gravel (7.01-13.65%), sand (82.47-88.67%), and fines (3.78-5.02%) for Nnobi. The soils are moderately permeable with values ranging from 2.92 x 10-5 - 6.80 x 10-4 m/sec and 2.35 x 10-6 - 3.84 x 10⁻⁴m/sec for Nnewi and Nnobi respectively. All have low cohesion values ranging from 1–5kPa and 2-5kPa and internal friction angle ranging from 29-38° and 30-34° for Nnewi and Nnobi, respectively, which suggests that the soils have low shear strength and are susceptible to shear failure. Furthermore, the compaction test revealed that the soils were loose and easily erodible with values of maximum dry density (MDD) and optimum moisture content (OMC) ranging from 1.82-2.11g/cm³ and 8.20-17.81% for Nnewi and 1.98-2.13g/cm³ and 6.00-17.80% respectively. The plasticity index (PI) of the fines showed that they are nonplastic to low plastic soils and highly liquefiable with values ranging from 0-10% and 0-9% for Nnewi and Nnobi, respectively. Multivariate statistical analyses were used to establish relationship among the determined parameters. Slope stability analysis gave factor of safety (FoS) values in the range of 0.50-0.76 and 0.82-0.95 for saturated condition and 0.73-0.98 and 0.87-1.04 for unsaturated condition for both Nnewi and Nnobi, respectively indicating that the slopes are generally unstable to critically stable. The erosion expansion rate analysis for a fifteen-year period (2005-2020) revealed an average longitudinal expansion rate of 36.05m/yr, 10.76m/yr, and 183m/yr for Nnewi, Nnobi, and Nanka type gullies, respectively. The soil erodibility factor (K) are 8.57x10⁻² and 1.62x10-4 for Nnewi and Nnobi, respectively, indicating that the soils in Nnewi have higher erodibility potentials than those of Nnobi. From the study, both the Nnewi and Nnobi areas are highly prone to erosion. However, based on the relatively lower fine content of the soil, relatively lower topography, steeper slope angle, and sparsely vegetated terrain in Nnewi, soil erodibility and gully intensity are more profound in Nnewi than Nnobi.Keywords: soil erodibility, gully expansion, nnewi-nnobi, slope stability, factor of safety
Procedia PDF Downloads 1315603 Ductility Reduction Factors for Displacement Spectra Corresponding to Soft Soil Zone of the Valley of Mexico
Authors: Noé D. Lazos-Gallardo, Sonia E. Ruiz, Federico Valenzuela-Beltran
Abstract:
A simplified mathematical expression to estimate ductility reduction factors of the displacement spectra corresponding to the soft soil zone of Mexico City is proposed. The aim is to allow a better characterization of the displacement spectra and provide a simple expression to be used in displacement based design (DBD). Emphasis is on the Mexico City Building Code. The study is based on the analysis of single degree of freedom (SDOF) systems with elasto-plastic hysteretic behavior. Several seismic ground motions corresponding to subduction events with magnitudes equal to or greater than 6 and recorded in different stations of Mexico City are used. The proposed expression involves the ratio of elastic and inelastic pseudo-aceleration spectra, and depends on factors such the ductility demand and the vibration period of the structural system. The resulting ductility reduction factors obtained in this study are compared with others existing in the literature, and their advantages and disadvantages are discussed.Keywords: displacement based design, displacements spectrum, ductility reduction factors, soft soil
Procedia PDF Downloads 1755602 The Influence of Incorporating Coffee Grounds on Enhancing the Engineering Properties of Expansive Soils: Experimental Approach and Optimization
Authors: Bencheikh Messaouda, Aidoud Assia, Salima Boukour, Benamara Fatima Zohra, Boukhatem Ghania, Zegueur Chaouki Salah Eddine
Abstract:
The utilization of waste materials in civil engineering has gained widespread attention in recent years due to their adverse effects on the environment. One such waste material is coffee grounds, a black residue generated daily across the country after coffee brewing. Instead of disposing of it, there is a growing interest in repurposing it for various agricultural and industrial applications. Utilizing coffee grounds in geotechnical engineering, such as in road embankments, presents an opportunity for its valorization. The study aims to contribute to the valorization of coffee grounds by enhancing the physical and mechanical properties of clayey soils through their incorporation at varying weight percentages (3%, 6%, 9%, 12%) as partial replacements in these soils. This not only addresses the issue of coffee ground waste but also makes a tangible contribution to sustainable development. The findings demonstrate that incorporating coffee grounds generally has positive effects on the physical and mechanical properties of clayey soil. However, the extent of these effects depends on factors such as the quantity of coffee grounds added, the particle size of the grounds, and the characteristics of the soil. Additionally, coffee grounds can improve the compression and tensile strength of clayey soil, resulting in increased stability and reduced susceptibility to deformation under external forces.Keywords: clay soil, coffee grounds, optimizing, improvement, valorization, waste
Procedia PDF Downloads 475601 Nonlinear Free Surface Flow Simulations Using Smoothed Particle Hydrodynamics
Authors: Abdelraheem M. Aly, Minh Tuan Nguyen, Sang-Wook Lee
Abstract:
The incompressible smoothed particle hydrodynamics (ISPH) is used to simulate impact free surface flows. In the ISPH, pressure is evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection method. The current ISPH method is applied to simulate dam break flow over an inclined plane with different inclination angles. The effects of inclination angle in the velocity of wave front and pressure distribution is discussed. The impact of circular cylinder over water in tank has also been simulated using ISPH method. The computed pressures on the solid boundaries is studied and compared with the experimental results.Keywords: incompressible smoothed particle hydrodynamics, free surface flow, inclined plane, water entry impact
Procedia PDF Downloads 4035600 Structural Performance Evaluation of Power Boiler for the Pressure Release Valve in Consideration of the Thermal Expansion
Authors: Young-Hun Lee, Tae-Gwan Kim, Jong-Kyu Kim, Young-Chul Park
Abstract:
In this study, Spring safety valve Heat - structure coupled analysis was carried out. Full analysis procedure and performing thermal analysis at a maximum temperature, them to the results obtained through to give an additional load and the pressure on the valve interior, and Disc holder Heat-Coupled structure Analysis was carried out. Modeled using a 3D design program Solidworks, For the modeling of the safety valve was used 3D finite element analysis program ANSYS. The final result to be obtained through the Analysis examined the stability of the maximum displacement and the maximum stress to the valve internal components occurring in the high-pressure conditions.Keywords: finite element method, spring safety valve, gap, stress, strain, deformation
Procedia PDF Downloads 3725599 Phytoremediation: An Ecological Solution to Heavy-Metal-Polluted Soil
Authors: Nasreen Jeelani, Huining Shi , Di An, Lu Xia, Shuqing An
Abstract:
Heavy metals contamination in aquatic ecosystem is a major environmental problem since its accumulation along the food chain pose public health risk. The concentration of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in soil and plants species collected from different streams of Suoxu River, China was investigated. This aim was to define the level of pollutants in Suoxu River, find which plant species exhibits the greatest accumulation and to evaluate whether these species could be useful for phytoremediation. While total soil Cd, Cr, Cu, Ni, Pb, and Zn concentrations varied, respectively, from 0.09 to 0.23 , 58.6 to 98, 9.72 to 80.5, 15.3 to 41, 15.2 to 27.3 and 35 to 156 (mg-kg-1), those in plants ranged from 0.035 to 0.49, 2.91 to 75.6, 4.79 to 32.4, 1.27 to 16.1, 0.62 to10.2, 18.9 to 84.6 (mg-kg-1), respectively. Based on BCFs and TFs values, most of the studied species have potential for phytostabilization. The plants with most effective in the accumulation of metals in shoots are Phragmatis australis (TF=2.29) and Iris tectorum (TF =2.07) for Pb. While Chenopodium album, (BCF =3.55), Ranunculus sceleratus, (BCF= 3.0), Polygonum hydropiper (BCF =2.46) for Cd and Iris tectorum (BCF=2.0) for Cu was suitable for phytostabilization. Among the plant species screened for Cd, Cr, Cu, Ni, Pb and Zn, most of the species were efficient to take up more than one heavy metal in roots. Our study showed that the native plant species growing on contaminated sites may have the potential uses for phytoremediation.Keywords: heavy metals, huaihe river catchments, sediment, plants
Procedia PDF Downloads 3625598 Experimental Investigation on the Anchor Behavior of Planar Clamping Anchor for Carbon Fiber-Reinforced Polymer Plate
Authors: Yongyu Duo, Xiaogang Liu, Qingrui Yue
Abstract:
The anchor plays a critical role in the utilization of the tensile strength of carbon fiber-reinforced polymer (CFRP) plate when it is applied for the prestressed retrofitted and cable structures. In this paper, the anchor behavior of planar clamping anchor (PCA) under different interface treatment forms and normal pressures was investigated by the uniaxial static tensile test. Two interface treatment forms were adopted, including pure friction and the coupling action of friction and bonding. The results indicated that the load-bearing capacity of PCA could be obviously improved by the coupling action of friction and bonding compared with the action of pure friction. Under the normal pressure of 11 MPa, 22 MPa, and 33 MPa, the load-bearing capacity of PCA was enhanced by 164.61%, 68.40%, and 52.78%, respectively, and the tensile strength of the CFRP plate was fully exploited when the normal pressure reached 44 MPa. In addition, the experimental coefficient of static friction between the galling CFRP plate and a sandblasted steel plate was in the range of 0.28-0.30, corresponding to various normal pressure. Moreover, the failure mode was determined by the interface treatment form and normal pressure. The research in this paper has important guiding significance to optimize the design of the mechanical clamping anchor, contributing to promoting the application of CFRP plate in reinforcement and cable structure.Keywords: PCA, CFRP plate, interface treatment form, normal pressure, friction, coupling action
Procedia PDF Downloads 835597 Structural Design of a Relief Valve Considering Strength
Authors: Nam-Hee Kim, Jang-Hoon Ko, Kwon-Hee Lee
Abstract:
A relief valve is a mechanical element to keep safety by controlling high pressure. Usually, the high pressure is relieved by using the spring force and letting the fluid to flow from another way out of system. When its normal pressure is reached, the relief valve can return to initial state. The relief valve in this study has been applied for pressure vessel, evaporator, piping line, etc. The relief valve should be designed for smooth operation and should satisfy the structural safety requirement under operating condition. In general, the structural analysis is performed by following fluid flow analysis. In this process, the FSI (Fluid-Structure Interaction) is required to input the force obtained from the output of the flow analysis. Firstly, this study predicts the velocity profile and the pressure distribution in the given system. In this study, the assumptions for flow analysis are as follows: • The flow is steady-state and three-dimensional. • The fluid is Newtonian and incompressible. • The walls of the pipe and valve are smooth. The flow characteristics in this relief valve does not induce any problem. The commercial software ANSYS/CFX is utilized for flow analysis. On the contrary, very high pressure may cause structural problem due to severe stress. The relief valve is made of body, bonnet, guide, piston and nozzle, and its material is stainless steel. To investigate its structural safety, the worst case loading is considered as the pressure of 700 bar. The load is applied to inside the valve, which is greater than the load obtained from FSI. The maximum stress is calculated as 378 MPa by performing the finite element analysis. However, the value is greater than its allowable value. Thus, an alternative design is suggested to improve the structural performance through case study. We found that the sensitive design variable to the strength is the shape of the nozzle. The case study is to vary the size of the nozzle. Finally, it can be seen that the suggested design satisfy the structural design requirement. The FE analysis is performed by using the commercial software ANSYS/Workbench.Keywords: relief valve, structural analysis, structural design, strength, safety factor
Procedia PDF Downloads 3075596 Analysis of Vocal Pathologies Through Subglottic Pressure Measurement
Authors: Perla Elizabeth Jimarez Rocha, Carolina Daniela Tejeda Franco, Arturo Minor Martínez, Annel Gomez Coello
Abstract:
One of the biggest problems in developing new therapies for the management and treatment of voice disorders is the difficulty of objectively evaluating the results of each treatment. A system was proposed that captures and records voice signals, in addition to analyzing the vocal quality (fundamental frequency, zero crossings, energy, and amplitude spectrum), as well as the subglottic pressure (cm H2O) during the sustained phonation of the vowel / a /; a recording system is implemented, as well as an interactive system that records information on subglottic pressure. In Mexico City, a control group of 31 patients with phoniatric pathology is proposed; non-invasive tests were performed for these most common vocal pathologies (Nodules, Polyps, Irritative Laryngitis, Ventricular Dysphonia, Laryngeal Cancer, Dysphonia, and Dysphagia). The most common pathology was irritative laryngitis (32%), followed by vocal fold paralysis (unilateral and bilateral,19.4 %). We take into consideration men and women in the pathological groups due to the physiological difference. They were separated in gender by the difference in the morphology of the respiratory tract.Keywords: amplitude spectrum, energy, fundamental frequency, subglottic pressure, zero crossings
Procedia PDF Downloads 1235595 Investigation of Steady State Infiltration Rate for Different Head Condition
Authors: Nour Aljafari, Mariam, S. Maani, Serter Atabay, Tarig Ali, Said Daker, Lara Daher, Hamad Bukhammas, Mohammed Abou Shakra
Abstract:
This paper aims at determining the soil characteristics that influence the irrigation process of green landscapes and deciding on the optimum amount of water needed for irrigation. The laboratory experiments were conducted using the constant head methodology to determine the soil infiltration rates. The steady state infiltration rate was reached after 10 minutes of infiltration at a rate of 200 mm/hr. The effects of different water heads on infiltration rates were also investigated, and the head of 11 cm was found to be the optimum head for the test. The experimental results showed consistent infiltration results for the range between 11 cm and 15 cm. The study also involved finding the initial moisture content, which ranged between 5% and 25%, and finding the organic content, which occupied 1% to 2% of the soil. These results will be later utilized, using the water balance approach, to estimate the optimum amount of water needed for irrigation for changing weather conditions.Keywords: infiltration rate, moisture content, grass type, organic content
Procedia PDF Downloads 2945594 Thermo-Mechanical Approach to Evaluate Softening Behavior of Polystyrene: Validation and Modeling
Authors: Salah Al-Enezi, Rashed Al-Zufairi, Naseer Ahmad
Abstract:
A Thermo-mechanical technique was developed to determine softening point temperature/glass transition temperature (Tg) of polystyrene exposed to high pressures. The design utilizes the ability of carbon dioxide to lower the glass transition temperature of polymers and acts as plasticizer. In this apparatus, the sorption of carbon dioxide to induce softening of polymers as a function of temperature/pressure is performed and the extent of softening is measured in three-point-flexural-bending mode. The polymer strip was placed in the cell in contact with the linear variable differential transformer (LVDT). CO2 was pumped into the cell from a supply cylinder to reach high pressure. The results clearly showed that full softening point of the samples, accompanied by a large deformation on the polymer strip. The deflection curves are initially relatively flat and then undergo a dramatic increase as the temperature is elevated. It was found that increasing the pressure of CO2 causes the temperature curves to shift from higher to lower by increment of about 45 K, over the pressure range of 0-120 bars. The obtained experimental Tg values were validated with the values reported in the literature. Finally, it is concluded that the defection model fits consistently to the generated experimental results, which attempts to describe in more detail how the central deflection of a thin polymer strip affected by the CO2 diffusions in the polymeric samples.Keywords: softening, high-pressure, polystyrene, CO₂ diffusions
Procedia PDF Downloads 1305593 Treatment of Onshore Petroleum Drill Cuttings via Soil Washing Process: Characterization and Optimal Conditions
Authors: T. Poyai, P. Painmanakul, N. Chawaloesphonsiya, P. Dhanasin, C. Getwech, P. Wattana
Abstract:
Drilling is a key activity in oil and gas exploration and production. Drilling always requires the use of drilling mud for lubricating the drill bit and controlling the subsurface pressure. As drilling proceeds, a considerable amount of cuttings or rock fragments is generated. In general, water or Water Based Mud (WBM) serves as drilling fluid for the top hole section. The cuttings generated from this section is non-hazardous and normally applied as fill materials. On the other hand, drilling the bottom hole to reservoir section uses Synthetic Based Mud (SBM) of which synthetic oils are composed. The bottom-hole cuttings, SBM cuttings, is regarded as a hazardous waste, in accordance with the government regulations, due to the presence of hydrocarbons. Currently, the SBM cuttings are disposed of as an alternative fuel and raw material in cement kiln. Instead of burning, this work aims to propose an alternative for drill cuttings management under two ultimate goals: (1) reduction of hazardous waste volume; and (2) making use of the cleaned cuttings. Soil washing was selected as the major treatment process. The physiochemical properties of drill cuttings were analyzed, such as size fraction, pH, moisture content, and hydrocarbons. The particle size of cuttings was analyzed via light scattering method. Oil present in cuttings was quantified in terms of total petroleum hydrocarbon (TPH) through gas chromatography equipped with flame ionization detector (GC-FID). Other components were measured by the standard methods for soil analysis. Effects of different washing agents, liquid-to-solid (L/S) ratio, washing time, mixing speed, rinse-to-solid (R/S) ratio, and rinsing time were also evaluated. It was found that drill cuttings held the electrical conductivity of 3.84 dS/m, pH of 9.1, and moisture content of 7.5%. The TPH in cuttings existed in the diesel range with the concentration ranging from 20,000 to 30,000 mg/kg dry cuttings. A majority of cuttings particles held a mean diameter of 50 µm, which represented silt fraction. The results also suggested that a green solvent was considered most promising for cuttings treatment regarding occupational health, safety, and environmental benefits. The optimal washing conditions were obtained at L/S of 5, washing time of 15 min, mixing speed of 60 rpm, R/S of 10, and rinsing time of 1 min. After washing process, three fractions including clean cuttings, spent solvent, and wastewater were considered and provided with recommendations. The residual TPH less than 5,000 mg/kg was detected in clean cuttings. The treated cuttings can be then used for various purposes. The spent solvent held the calorific value of higher than 3,000 cal/g, which can be used as an alternative fuel. Otherwise, the recovery of the used solvent can be conducted using distillation or chromatography techniques. Finally, the generated wastewater can be combined with the produced water and simultaneously managed by re-injection into the reservoir.Keywords: drill cuttings, green solvent, soil washing, total petroleum hydrocarbon (TPH)
Procedia PDF Downloads 1575592 Behavior of Helical Piles as Foundation of Photovoltaic Panels in Tropical Soils
Authors: Andrea J. Alarcón, Maxime Daulat, Raydel Lorenzo, Renato P. Da Cunha, Pierre Breul
Abstract:
Brazil has increased the use of renewable energy during the last years. Due to its sunshine and large surface area, photovoltaic panels founded in helical piles have been used to produce solar energy. Since Brazilian territory is mainly cover by highly porous structured tropical soils, when the helical piles are installed this structure is broken and its soil properties are modified. Considering the special characteristics of these soils, helical foundations behavior must be extensively studied. The first objective of this work is to determine the most suitable method to estimate the tensile capacity of helical piles in tropical soils. The second objective is to simulate the behavior of these piles in tropical soil. To obtain the rupture to assess load-displacement curves and the ultimate load, also a numerical modelling using Plaxis software was conducted. Lastly, the ultimate load and the load-displacements curves are compared with experimental values to validate the implemented model.Keywords: finite element, helical piles, modelling, tropical soil, uplift capacity
Procedia PDF Downloads 174