Search results for: modeling technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10177

Search results for: modeling technique

8947 A New Study on Mathematical Modelling of COVID-19 with Caputo Fractional Derivative

Authors: Sadia Arshad

Abstract:

The new coronavirus disease or COVID-19 still poses an alarming situation around the world. Modeling based on the derivative of fractional order is relatively important to capture real-world problems and to analyze the realistic situation of the proposed model. Weproposed a mathematical model for the investigation of COVID-19 dynamics in a generalized fractional framework. The new model is formulated in the Caputo sense and employs a nonlinear time-varying transmission rate. The existence and uniqueness solutions of the fractional order derivative have been studied using the fixed-point theory. The associated dynamical behaviors are discussed in terms of equilibrium, stability, and basic reproduction number. For the purpose of numerical implementation, an effcient approximation scheme is also employed to solve the fractional COVID-19 model. Numerical simulations are reported for various fractional orders, and simulation results are compared with a real case of COVID-19 pandemic. According to the comparative results with real data, we find the best value of fractional orderand justify the use of the fractional concept in the mathematical modelling, for the new fractional modelsimulates the reality more accurately than the other classical frameworks.

Keywords: fractional calculus, modeling, stability, numerical solution

Procedia PDF Downloads 113
8946 Multiple Fault Diagnosis in Digital Circuits using Critical Path Tracing and Enhanced Deduction Algorithm

Authors: Mohamed Mahmoud

Abstract:

This paper has developed an effect-cause analysis technique for fault diagnosis in digital circuits. The main algorithm of our technique is based on the Enhanced Deduction Algorithm, which processes the real response of the CUT to the applied test T to deduce the values of the internal lines. An experimental version of the algorithm has been implemented in C++. The code takes about 7592 lines. The internal values are determined based on the logic values under the permanent stuck-fault model. Using a backtracking strategy guarantees that the actual values are covered by at least one solution, or no solution is found.

Keywords: enhanced deduction algorithm, backtracking strategy, automatic test equipment, verfication

Procedia PDF Downloads 120
8945 Comparative Study of Various Treatment Positioning Technique: A Site Specific Study-CA. Breast

Authors: Kamal Kaushik, Dandpani Epili, Ajay G. V., Ashutosh, S. Pradhaan

Abstract:

Introduction: Radiation therapy has come a long way over a period of decades, from 2-dimensional radiotherapy to intensity-modulated radiation therapy (IMRT) or VMAT. For advanced radiation therapy, we need better patient position reproducibility to deliver precise and quality treatment, which raises the need for better image guidance technologies for precise patient positioning. This study presents a two tattoo simulation with roll correction technique which is comparable to other advanced patient positioning techniques. Objective: This is a site-specific study is aimed to perform a comparison between various treatment positioning techniques used for the treatment of patients of Ca- Breast undergoing radiotherapy. In this study, we are comparing 5 different positioning methods used for the treatment of ca-breast, namely i) Vacloc with 3 tattoos, ii) Breast board with three tattoos, iii) Thermoplastic cast with three fiducials, iv) Breast board with a thermoplastic mask with 3 tattoo, v) Breast board with 2 tattoos – A roll correction method. Methods and material: All in one (AIO) solution immobilization was used in all patient positioning techniques for immobilization. The process of two tattoo simulations includes positioning of the patient with the help of a thoracic-abdomen wedge, armrest & knee rest. After proper patient positioning, we mark two tattoos on the treatment side of the patient. After positioning, place fiducials as per the clinical borders markers (1) sternum notch (lower border of clavicle head) (2) 2 cm below from contralateral breast (3) midline between 1 & 2 markers (4) mid axillary on the same axis of 3 markers (Marker 3 & 4 should be on the same axis). During plan implementation, a roll depth correction is applied as per the anterior and lateral positioning tattoos, followed by the shifts required for the Isocentre position. The shifts are then verified by SSD on the patient surface followed by radiographic verification using Cone Beam Computed Tomography (CBCT). Results: When all the five positioning techniques were compared all together, the produced shifts in Vertical, Longitudinal and lateral directions are as follows. The observations clearly suggest that the Longitudinal average shifts in two tattoo roll correction techniques are less than every other patient positioning technique. Vertical and lateral Shifts are also comparable to other modern positioning techniques. Concluded: The two tattoo simulation with roll correction technique provides us better patient setup with a technique that can be implemented easily in most of the radiotherapy centers across the developing nations where 3D verification techniques are not available along with delivery units as the shifts observed are quite minimal and are comparable to those with Vacloc and modern amenities.

Keywords: Ca. breast, breast board, roll correction technique, CBCT

Procedia PDF Downloads 135
8944 Modeling and Design of E-mode GaN High Electron Mobility Transistors

Authors: Samson Mil'shtein, Dhawal Asthana, Benjamin Sullivan

Abstract:

The wide energy gap of GaN is the major parameter justifying the design and fabrication of high-power electronic components made of this material. However, the existence of a piezo-electrics in nature sheet charge at the AlGaN/GaN interface complicates the control of carrier injection into the intrinsic channel of GaN HEMTs (High Electron Mobility Transistors). As a result, most of the transistors created as R&D prototypes and all of the designs used for mass production are D-mode devices which introduce challenges in the design of integrated circuits. This research presents the design and modeling of an E-mode GaN HEMT with a very low turn-on voltage. The proposed device includes two critical elements allowing the transistor to achieve zero conductance across the channel when Vg = 0V. This is accomplished through the inclusion of an extremely thin, 2.5nm intrinsic Ga₀.₇₄Al₀.₂₆N spacer layer. The added spacer layer does not create piezoelectric strain but rather elastically follows the variations of the crystal structure of the adjacent GaN channel. The second important factor is the design of a gate metal with a high work function. The use of a metal gate with a work function (Ni in this research) greater than 5.3eV positioned on top of n-type doped (Nd=10¹⁷cm⁻³) Ga₀.₇₄Al₀.₂₆N creates the necessary built-in potential, which controls the injection of electrons into the intrinsic channel as the gate voltage is increased. The 5µm long transistor with a 0.18µm long gate and a channel width of 30µm operate at Vd=10V. At Vg =1V, the device reaches the maximum drain current of 0.6mA, which indicates a high current density. The presented device is operational at frequencies greater than 10GHz and exhibits a stable transconductance over the full range of operational gate voltages.

Keywords: compound semiconductors, device modeling, enhancement mode HEMT, gallium nitride

Procedia PDF Downloads 261
8943 Bundle Block Detection Using Spectral Coherence and Levenberg Marquardt Neural Network

Authors: K. Padmavathi, K. Sri Ramakrishna

Abstract:

This study describes a procedure for the detection of Left and Right Bundle Branch Block (LBBB and RBBB) ECG patterns using spectral Coherence(SC) technique and LM Neural Network. The Coherence function finds common frequencies between two signals and evaluate the similarity of the two signals. The QT variations of Bundle Blocks are observed in lead V1 of ECG. Spectral Coherence technique uses Welch method for calculating PSD. For the detection of normal and Bundle block beats, SC output values are given as the input features for the LMNN classifier. Overall accuracy of LMNN classifier is 99.5 percent. The data was collected from MIT-BIH Arrhythmia database.

Keywords: bundle block, SC, LMNN classifier, welch method, PSD, MIT-BIH, arrhythmia database

Procedia PDF Downloads 283
8942 Novel Method of In-Situ Tracking of Mechanical Changes in Composite Electrodes during Charging-Discharging by QCM-D

Authors: M. D. Levi, Netanel Shpigel, Sergey Sigalov, Gregory Salitra, Leonid Daikhin, Doron Aurbach

Abstract:

We have developed an in-situ method for tracking ions adsorption into composite nanoporous carbon electrodes based on quartz-crystal microbalance (QCM). In these first papers QCM was used as a simple gravimetric probe of compositional changes in carbon porous composite electrodes during their charging since variation of the electrode potential did not change significantly width of the resonance. In contrast, when we passed from nanoporous carbons to a composite Li-ion battery material such as LiFePO4 olivine, the change in the resonance width was comparable with change of the resonance frequency (polymeric binder PVdF was shown to be completely rigid when used in aqueous solutions). We have provided a quantitative hydrodynamic admittance model of ion-insertion processes into electrode host accompanied by intercalation-induced dimensional changes of electrode particles, and hence the entire electrode coating. The change in electrode deformation and the related porosity modify hydrodynamic solid-liquid interactions tracked by QCM with dissipation monitoring. Using admittance modeling, we are able to evaluate the changes of effective thickness and permeability/porosity of composite electrode caused by applied potential and as a function of cycle number. This unique non-destructive technique may have great advantage in early diagnostics of cycling life durability of batteries and supercapacitors.

Keywords: Li-ion batteries, particles deformations, QCM-D, viscoelasticity

Procedia PDF Downloads 446
8941 Performance Monitoring and Environmental Impact Analysis of a Photovoltaic Power Plant: A Numerical Modeling Approach

Authors: Zahzouh Zoubir

Abstract:

The widespread adoption of photovoltaic panel systems for global electricity generation is a prominent trend. Algeria, demonstrating steadfast commitment to strategic development and innovative projects for harnessing solar energy, emerges as a pioneering force in the field. Heat and radiation, being fundamental factors in any solar system, are currently subject to comprehensive studies aiming to discern their genuine impact on crucial elements within photovoltaic systems. This endeavor is particularly pertinent given that solar module performance is exclusively assessed under meticulously defined Standard Test Conditions (STC). Nevertheless, when deployed outdoors, solar modules exhibit efficiencies distinct from those observed under STC due to the influence of diverse environmental factors. This discrepancy introduces ambiguity in performance determination, especially when surpassing test conditions. This article centers on the performance monitoring of an Algerian photovoltaic project, specifically the Oued El Keberite power (OKP) plant boasting a 15 megawatt capacity, situated in the town of Souk Ahras in eastern Algeria. The study elucidates the behavior of a subfield within this facility throughout the year, encompassing various conditions beyond the STC framework. To ensure the optimal efficiency of solar panels, this study integrates crucial factors, drawing on an authentic technical sheet from the measurement station of the OKP photovoltaic plant. Numerical modeling and simulation of a sub-field of the photovoltaic station were conducted using MATLAB Simulink. The findings underscore how radiation intensity and temperature, whether low or high, impact the short-circuit current, open-circuit voltage; fill factor, and overall efficiency of the photovoltaic system.

Keywords: performance monitoring, photovoltaic system, numerical modeling, radiation intensity

Procedia PDF Downloads 70
8940 Mechanical Behavior of Corroded RC Beams Strengthened by NSM CFRP Rods

Authors: Belal Almassri, Amjad Kreit, Firas Al Mahmoud, Raoul François

Abstract:

Corrosion of steel in reinforced concrete leads to several major defects. Firstly, a reduction in the crosssectional area of the reinforcement and in its ductility results in premature bar failure. Secondly, the expansion of the corrosion products causes concrete cracking and steel–concrete bond deterioration and also affects the bending stiffness of the reinforced concrete members, causing a reduction in the overall load-bearing capacity of the reinforced concrete beams. This paper investigates the validity of a repair technique using Near Surface Mounted (NSM) carbon-fibre-reinforced polymer (CFRP) rods to restore the mechanical performance of corrosion-damaged RC beams. In the NSM technique, the CFRP rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. Experimental results were obtained on two beams: a corroded beam that had been exposed to natural corrosion for 25 years and a control beam, (both are 3 m long) repaired in bending only. Each beam was repaired with one 6-mm-diameter NSM CFRP rod. The beams were tested in a three-point bending test up to failure. Overall stiffness and crack maps were studied before and after the repair. Ultimate capacity, ductility and failure mode were also reviewed. Finally some comparisons were made between repaired and non-repaired beams in order to assess the effectiveness of the NSM technique. The experimental results showed that the NSM technique improved the overall characteristics (ultimate load capacity and stiffness) of the control and corroded beams and allowed sufficient ductility to be restored to the repaired corroded elements, thus restoring the safety margin, despite the non-classical mode of failure that occurred in the corroded beam, with the separation of the concrete cover due to corrosion products.

Keywords: carbon fibre, corrosion, strength, mechanical testing

Procedia PDF Downloads 452
8939 Machine Learning Techniques in Bank Credit Analysis

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner

Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines

Procedia PDF Downloads 104
8938 Settlement of the Foundation on the Improved Soil: A Case Study

Authors: Morteza Karami, Soheila Dayani

Abstract:

Deep Soil Mixing (DSM) is a soil improvement technique that involves mechanically mixing the soil with a binder material to improve its strength, stiffness, and durability. This technique is typically used in geotechnical engineering applications where weak or unstable soil conditions exist, such as in building foundations, embankment support, or ground improvement projects. In this study, the settlement of the foundation on the improved soil using the wet DSM technique has been analyzed for a case study. Before DSM production, the initial soil mixture has been determined based on the laboratory tests and then, the proper mix designs have been optimized based on the pilot scale tests. The results show that the spacing and depth of the DSM columns depend on the soil properties, the intended loading conditions, and other factors such as the available space and equipment limitations. Moreover, monitoring instruments installed in the pilot area verify that the settlement of the foundation has been placed in an acceptable range to ensure that the soil mixture is providing the required strength and stiffness to support the structure or load. As an important result, if the DSM columns touch or penetrate into the stiff soil layer, the settlement of the foundation can be significantly decreased. Furthermore, the DSM columns should be allowed to cure sufficiently before placing any significant loads on the structure to prevent excessive deformation or settlement.

Keywords: deep soil mixing, soil mixture, settlement, instrumentation, curing age

Procedia PDF Downloads 86
8937 Study of Intergranular Corrosion in Austenitic Stainless Steels Using Electrochemical Impedance Spectroscopy

Authors: Satish Kolli, Adriana Ferancova, David Porter, Jukka Kömi

Abstract:

Electrochemical impedance spectroscopy (EIS) has been used to detect sensitization in austenitic stainless steels that are heat treated in the temperature regime 600-820 °C to produce different degrees of sensitization in the material. The tests were conducted at five different DC potentials in the transpassive region. The quantitative determination of degree of sensitization has been done using double loop electrochemical potentiokinetic reactivation tests (DL-EPR). The correlation between EIS Nyquist diagrams and DL-EPR degree of sensitization values has been studied. The EIS technique can be used as a qualitative tool in determining the intergranular corrosion in austenitic stainless steels that are heat treated at a given temperature.

Keywords: electrochemical technique, intergranular corrosion, sensitization, stainless steels

Procedia PDF Downloads 183
8936 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling

Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow

Abstract:

Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.

Keywords: dynamic modeling, missing data, mobility, multiple imputation

Procedia PDF Downloads 165
8935 Approach on Conceptual Design and Dimensional Synthesis of the Linear Delta Robot for Additive Manufacturing

Authors: Efrain Rodriguez, Cristhian Riano, Alberto Alvares

Abstract:

In recent years, robots manipulators with parallel architectures are used in additive manufacturing processes – 3D printing. These robots have advantages such as speed and lightness that make them suitable to help with the efficiency and productivity of these processes. Consequently, the interest for the development of parallel robots for additive manufacturing applications has increased. This article deals with the conceptual design and dimensional synthesis of the linear delta robot for additive manufacturing. Firstly, a methodology based on structured processes for the development of products through the phases of informational design, conceptual design and detailed design is adopted: a) In the informational design phase the Mudge diagram and the QFD matrix are used to aid a set of technical requirements, to define the form, functions and features of the robot. b) In the conceptual design phase, the functional modeling of the system through of an IDEF0 diagram is performed, and the solution principles for the requirements are formulated using a morphological matrix. This phase includes the description of the mechanical, electro-electronic and computational subsystems that constitute the general architecture of the robot. c) In the detailed design phase, a digital model of the robot is drawn on CAD software. A list of commercial and manufactured parts is detailed. Tolerances and adjustments are defined for some parts of the robot structure. The necessary manufacturing processes and tools are also listed, including: milling, turning and 3D printing. Secondly, a dimensional synthesis method applied on design of the linear delta robot is presented. One of the most important key factors in the design of a parallel robot is the useful workspace, which strongly depends on the joint space, the dimensions of the mechanism bodies and the possible interferences between these bodies. The objective function is based on the verification of the kinematic model for a prescribed cylindrical workspace, considering geometric constraints that possibly lead to singularities of the mechanism. The aim is to determine the minimum dimensional parameters of the mechanism bodies for the proposed workspace. A method based on genetic algorithms was used to solve this problem. The method uses a cloud of points with the cylindrical shape of the workspace and checks the kinematic model for each of the points within the cloud. The evolution of the population (point cloud) provides the optimal parameters for the design of the delta robot. The development process of the linear delta robot with optimal dimensions for additive manufacture is presented. The dimensional synthesis enabled to design the mechanism of the delta robot in function of the prescribed workspace. Finally, the implementation of the robotic platform developed based on a linear delta robot in an additive manufacturing application using the Fused Deposition Modeling (FDM) technique is presented.

Keywords: additive manufacturing, delta parallel robot, dimensional synthesis, genetic algorithms

Procedia PDF Downloads 190
8934 Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame

Authors: Keyvan Ramin

Abstract:

The geometric nonlinearity of Off-Diagonal Bracing System (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three-dimensional finite element modeling. Non-linear static analysis is considered to obtain performance level and seismic behavior, and then the response modification factors calculated from each model’s pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan, and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behavior and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.

Keywords: FEM, seismic behaviour, pushover analysis, geometric nonlinearity, time history analysis, equivalent viscous damping, passive control, crack investigation, hysteresis curve

Procedia PDF Downloads 378
8933 Kinetic Modeling Study and Scale-Up of Niogas Generation Using Garden Grass and Cattle Dung as Feedstock

Authors: Tumisang Seodigeng, Hilary Rutto

Abstract:

In this study we investigate the use of a laboratory batch digester to derive kinetic parameters for anaerobic digestion of garden grass and cattle dung. Laboratory experimental data from a 5 liter batch digester operating at mesophilic temperature of 32 C is used to derive parameters for Michaelis-Menten kinetic model. These fitted kinetics are further used to predict the scale-up parameters of a batch digester using DynoChem modeling and scale-up software. The scale-up model results are compared with performance data from 20 liter, 50 liter, and 200 liter batch digesters. Michaelis-Menten kinetic model shows to be a very good and easy to use model for kinetic parameter fitting on DynoChem and can accurately predict scale-up performance of 20 liter and 50 liter batch reactor based on parameters fitted on a 5 liter batch reactor.

Keywords: Biogas, kinetics, DynoChem Scale-up, Michaelis-Menten

Procedia PDF Downloads 497
8932 Hybrid Genetic Approach for Solving Economic Dispatch Problems with Valve-Point Effect

Authors: Mohamed I. Mahrous, Mohamed G. Ashmawy

Abstract:

Hybrid genetic algorithm (HGA) is proposed in this paper to determine the economic scheduling of electric power generation over a fixed time period under various system and operational constraints. The proposed technique can outperform conventional genetic algorithms (CGAs) in the sense that HGA make it possible to improve both the quality of the solution and reduce the computing expenses. In contrast, any carefully designed GA is only able to balance the exploration and the exploitation of the search effort, which means that an increase in the accuracy of a solution can only occure at the sacrifice of convergent speed, and vice visa. It is unlikely that both of them can be improved simultaneously. The proposed hybrid scheme is developed in such a way that a simple GA is acting as a base level search, which makes a quick decision to direct the search towards the optimal region, and a local search method (pattern search technique) is next employed to do the fine tuning. The aim of the strategy is to achieve the cost reduction within a reasonable computing time. The effectiveness of the proposed hybrid technique is verified on two real public electricity supply systems with 13 and 40 generator units respectively. The simulation results obtained with the HGA for the two real systems are very encouraging with regard to the computational expenses and the cost reduction of power generation.

Keywords: genetic algorithms, economic dispatch, pattern search

Procedia PDF Downloads 446
8931 Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province

Authors: Kourosh Nazarian

Abstract:

Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time. In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees.

Keywords: Stress, creep, faryab, surface runoff

Procedia PDF Downloads 180
8930 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability

Procedia PDF Downloads 291
8929 Resolution of Artificial Intelligence Language Translation Technique Alongside Microsoft Office Presentation during Classroom Teaching: A Case of Kampala International University in Tanzania

Authors: Abigaba Sophia

Abstract:

Artificial intelligence (AI) has transformed the education sector by revolutionizing educational frameworks by providing new opportunities and innovative advanced platforms for language translation during the teaching and learning process. In today's education sector, the primary key to scholarly communication is language; therefore, translation between different languages becomes vital in the process of communication. KIU-T being an International University, admits students from different nations speaking different languages, and English is the official language; some students find it hard to grasp a word during teaching and learning. This paper explores the practical aspect of using artificial intelligence technologies in an advanced language translation manner during teaching and learning. The impact of this technology is reflected in the education strategies to equip students with the necessary knowledge and skills for professional activity in the best way they understand. The researcher evaluated the demand for this practice since students have to apply the knowledge they acquire in their native language to their countries in the best way they understand. The main objective is to improve student's language competence and lay a solid foundation for their future professional development. A descriptive-analytic approach was deemed best for the study to investigate the phenomena of language translation intelligence alongside Microsoft Office during the teaching and learning process. The study analysed the responses of 345 students from different academic programs. Based on the findings, the researcher recommends using the artificial intelligence language translation technique during teaching, and this requires the wisdom of human content designers and educational experts. Lecturers and students will be trained in the basic knowledge of this technique to improve the effectiveness of teaching and learning to meet the student’s needs.

Keywords: artificial intelligence, language translation technique, teaching and learning process, Microsoft Office

Procedia PDF Downloads 80
8928 Building Information Modeling Implementation for Managing an Extra Large Governmental Building Renovation Project

Authors: Pornpote Nusen, Manop Kaewmoracharoen

Abstract:

In recent years, there was an observable shift in fully developed countries from constructing new buildings to modifying existing buildings. The issue was that although an effective instrument like BIM (Building Information Modeling) was well developed for constructing new buildings, it was not widely used to renovate old buildings. BIM was accepted as an effective means to overcome common managerial problems such as project delay, cost overrun, and poor quality of the project life cycle. It was recently introduced in Thailand and rarely used in a renovation project. Today, in Thailand, BIM is mostly used for creating aesthetic 3D models and quantity takeoff purposes, though it can be an effective tool to use as a project management tool in planning and scheduling. Now the governmental sector in Thailand begins to recognize the uses of using BIM to manage a construction project, but the knowledge about the BIM implementation to governmental construction projects is underdeveloped. Further studies need to be conducted to maximize its advantages for the governmental sector. An educational extra large governmental building of 17,000 square-meters was used in this research. It is currently under construction for a two-year renovation project. BIM models of the building for the exterior and interior areas were created for the whole five floors. Then 4D BIM with combination of 3D BIM plus time was created for planning and scheduling. Three focus groups had been done with executive committee, contractors, and officers of the building to discuss the possibility of usage and usefulness of BIM approach over the traditional process. Several aspects were discussed in the positive sides, especially several foreseen problems, such as the inadequate accessibility of ways, the altered ceiling levels, the impractical construction plan created through a traditional approach, and the lack of constructability information. However, for some parties, the cost of BIM implementation was a concern, though, this study believes, its uses outweigh the cost.

Keywords: building information modeling, extra large building, governmental building renovation, project management, renovation, 4D BIM

Procedia PDF Downloads 153
8927 A Blind Three-Dimensional Meshes Watermarking Using the Interquartile Range

Authors: Emad E. Abdallah, Alaa E. Abdallah, Bajes Y. Alskarnah

Abstract:

We introduce a robust three-dimensional watermarking algorithm for copyright protection and indexing. The basic idea behind our technique is to measure the interquartile range or the spread of the 3D model vertices. The algorithm starts by converting all the vertices to spherical coordinate followed by partitioning them into small groups. The proposed algorithm is slightly altering the interquartile range distribution of the small groups based on predefined watermark. The experimental results on several 3D meshes prove perceptual invisibility and the robustness of the proposed technique against the most common attacks including compression, noise, smoothing, scaling, rotation as well as combinations of these attacks.

Keywords: watermarking, three-dimensional models, perceptual invisibility, interquartile range, 3D attacks

Procedia PDF Downloads 474
8926 Modeling Standpipe Pressure Using Multivariable Regression Analysis by Combining Drilling Parameters and a Herschel-Bulkley Model

Authors: Seydou Sinde

Abstract:

The aims of this paper are to formulate mathematical expressions that can be used to estimate the standpipe pressure (SPP). The developed formulas take into account the main factors that, directly or indirectly, affect the behavior of SPP values. Fluid rheology and well hydraulics are some of these essential factors. Mud Plastic viscosity, yield point, flow power, consistency index, flow rate, drillstring, and annular geometries are represented by the frictional pressure (Pf), which is one of the input independent parameters and is calculated, in this paper, using Herschel-Bulkley rheological model. Other input independent parameters include the rate of penetration (ROP), applied load or weight on the bit (WOB), bit revolutions per minute (RPM), bit torque (TRQ), and hole inclination and direction coupled in the hole curvature or dogleg (DL). The technique of repeating parameters and Buckingham PI theorem are used to reduce the number of the input independent parameters into the dimensionless revolutions per minute (RPMd), the dimensionless torque (TRQd), and the dogleg, which is already in the dimensionless form of radians. Multivariable linear and polynomial regression technique using PTC Mathcad Prime 4.0 is used to analyze and determine the exact relationships between the dependent parameter, which is SPP, and the remaining three dimensionless groups. Three models proved sufficiently satisfactory to estimate the standpipe pressure: multivariable linear regression model 1 containing three regression coefficients for vertical wells; multivariable linear regression model 2 containing four regression coefficients for deviated wells; and multivariable polynomial quadratic regression model containing six regression coefficients for both vertical and deviated wells. Although that the linear regression model 2 (with four coefficients) is relatively more complex and contains an additional term over the linear regression model 1 (with three coefficients), the former did not really add significant improvements to the later except for some minor values. Thus, the effect of the hole curvature or dogleg is insignificant and can be omitted from the input independent parameters without significant losses of accuracy. The polynomial quadratic regression model is considered the most accurate model due to its relatively higher accuracy for most of the cases. Data of nine wells from the Middle East were used to run the developed models with satisfactory results provided by all of them, even if the multivariable polynomial quadratic regression model gave the best and most accurate results. Development of these models is useful not only to monitor and predict, with accuracy, the values of SPP but also to early control and check for the integrity of the well hydraulics as well as to take the corrective actions should any unexpected problems appear, such as pipe washouts, jet plugging, excessive mud losses, fluid gains, kicks, etc.

Keywords: standpipe, pressure, hydraulics, nondimensionalization, parameters, regression

Procedia PDF Downloads 84
8925 Rapid Soil Classification Using Computer Vision, Electrical Resistivity and Soil Strength

Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, Lionel L. J. Ang, Algernon C. S. Hong, Danette S. E. Tan, Grace H. B. Foo, K. Q. Hong, L. M. Cheng, M. L. Leong

Abstract:

This paper presents a novel rapid soil classification technique that combines computer vision with four-probe soil electrical resistivity method and cone penetration test (CPT), to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from local construction projects are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labour-intensive. Thus, a rapid classification method is needed at the SGs. Computer vision, four-probe soil electrical resistivity and CPT were combined into an innovative non-destructive and instantaneous classification method for this purpose. The computer vision technique comprises soil image acquisition using industrial grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). Complementing the computer vision technique, the apparent electrical resistivity of soil (ρ) is measured using a set of four probes arranged in Wenner’s array. It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the soil strength is measured using a modified mini cone penetrometer, and w is measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay” and an even mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay”. It is also found that these parameters can be integrated with the computer vision technique on-site to complete the rapid soil classification in less than three minutes.

Keywords: Computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification

Procedia PDF Downloads 219
8924 The Effect of Supercritical Fluid on the Extraction Efficiency of Heavy Metal from Soil

Authors: Haifa El-Sadi, Maria Elektorowicz, Reed Rushing, Ammar Badawieh, Asif Chaudry

Abstract:

Clay soils have particular properties that affect the assessment and remediation of contaminated sites. In clay soils, electro-kinetic transport of heavy metals has been carried out. The transport of these metals is predicated on maintaining a low pH throughout the cell, which, in turn, keeps the metals in the pore water phase where they are accessible to electro-kinetic transport. Supercritical fluid extraction and acid digestion were used for the analysis of heavy metals concentrations after the completion of electro-kinetic experimentation. Supercritical fluid (carbon dioxide) extraction is a new technique used to extract the heavy metal (lead, nickel, calcium and potassium) from clayey soil. The comparison between supercritical extraction and acid digestion of different metals was carried out. Supercritical fluid extraction, using ethylenediaminetetraacetic acid (EDTA) as a modifier, proved to be efficient and a safer technique than acid digestion technique in extracting metals from clayey soil. Mixing time of soil with EDTA before extracting heavy metals from clayey soil was investigated. The optimum and most practical shaking time for the extraction of lead, nickel, calcium and potassium was two hours.

Keywords: clay soil, heavy metals, supercritical fluid extraction, acid digestion

Procedia PDF Downloads 469
8923 Doping Density Effects on Minority Carrier Lifetime in Bulk GaAs by Means of Photothermal Deflection Technique

Authors: Soufiene Ilahi

Abstract:

Photothermal effect occurs when absorbed light energy that generate a thermal wave that propagate into the sample and surrounding media. Subsequently, the propagation of the vibration of phonons or electrons causes heat transfer. In fact, heat energy is provided by non-radiative recombination process that occurs in semiconductors sample. Three heats sources are identified: surface recombination, bulk recombination and carrier thermalisation. In the last few years, Photothermal Deflection Technique PTD is a nondestructive and accurate technique that prove t ability for electronics properties investigation. In this paper, we have studied the influence of doping on minority carrier lifetime, i.e, nonradiative lifetime, surface and diffusion coefficient. In fact, we have measured the photothermal signal of two sample of GaAs doped with C et Cr.In other hand , we have developed a theoretical model that takes into account of thermal and electronics diffusion equations .In order to extract electronics parameters of GaAs samples, we have fitted the theoretical signal of PTD to the experimental ones. As a results, we have found that nonradiative lifetime is around of 4,3 x 10-8 (±11,24%) and 5 x 10-8 (±14,32%) respectively for GaAs : Si doped and Cr doped. Accordingly, the diffusion coefficient is equal 4,6 *10-4 (± 3,2%) and 5* 10-4 (± 0,14%) foe the Cr, C and Si doped GaAs respectively.

Keywords: nonradiative lifetime, mobility of minority carrier, diffusion length, surface and interface recombination in GaAs

Procedia PDF Downloads 65
8922 Effect of Measured and Calculated Static Torque on Instantaneous Torque Profile of Switched Reluctance Motor

Authors: Ali Asghar Memon

Abstract:

The simulation modeling of switched reluctance (SR) machine often relies and uses the three data tables identified as static torque characteristics that include flux linkage characteristics, co energy characteristics and static torque characteristics separately. It has been noticed from the literature that the data of static torque used in the simulation model is often calculated so far the literature is concerned. This paper presents the simulation model that include the data of measured and calculated static torque separately to see its effect on instantaneous torque profile of the machine. This is probably for the first time so far the literature review is concerned that static torque from co energy information, and measured static torque directly from experiments are separately used in the model. This research is helpful for accurate modeling of switched reluctance drive.

Keywords: static characteristics, current chopping, flux linkage characteristics, switched reluctance motor

Procedia PDF Downloads 293
8921 The Effect of the Incorporation of Glass Powder into Cement Sorel

Authors: Rim Zgueb, Noureddine Yacoubi

Abstract:

The work concerns thermo-mechanical properties of cement Sorel mixed with different proportions of glass powder. Five specimens were developed. Four different glass powder mixtures were developed 5%, 10%, 15% and 20% with one control sample without glass powder. The research presented in this study focused on evaluating the effects of replacing portion of glass powder with various percentages of cement Sorel. The influence of the glass powder on the thermal conductivity, thermal diffusivity, bulk density and compressive strength of the cement Sorel at 28 days of curing were determined. The thermal property of cement was measured by using Photothermal deflection technique PTD. The results revealed that the glass powder additive affected greatly on the thermal properties of the cement.

Keywords: cement sorel, photothermal deflection technique, thermal conductivity, thermal diffusivity

Procedia PDF Downloads 425
8920 Influence of Entrepreneurial Passion in the Relationship between the Entrepreneurship Education and Entrepreneurial Intention: The Case of Moroccan Students

Authors: Soukaina Boutaky, Abdelhak Sahibeddine

Abstract:

A study was carried out among students who have especially a scientific and technical educational background and who had opportunities to benefit from a program entrepreneurship course of 50 hours; at Higher School of Technology Khenifra, Morocco. This article has as a goal to explain the relationship between entrepreneurial education, entrepreneurial passion and entrepreneurial intention. The authors chose Bandura’s theory of social cognition as a theoretical framework. The modeling methods equation is adopted to analyze the hypotheses by SMART PLS for 188 students. The results show a strong positive relationship between entrepreneurial education and entrepreneurial passion. They also reveal that entrepreneurship education affects entrepreneurial intention through the effect of entrepreneurial passion, particularly among women than men. In addition, this study contributes in a theoretical way to the level of the relationship between entrepreneurial education and entrepreneurial passion, and these results provide educators and public decision-makers with advice on the importance of entrepreneurship training based on emotional traits such as passion; which constitutes a key and essential element to encourage young graduates to choose an entrepreneurial career as an alternative option or to develop entrepreneurial passion among the business leaders of tomorrow.

Keywords: entrepreneurship education, entrepreneurial passion, entrepreneurial intention, equation modeling methods

Procedia PDF Downloads 194
8919 Fuzzy Logic Modeling of Evaluation the Urban Skylines by the Entropy Approach

Authors: Murat Oral, Seda Bostancı, Sadık Ata, Kevser Dincer

Abstract:

When evaluating the aesthetics of cities, an analysis of the urban form development depending on design properties with a variety of factors is performed together with a study of the effects of this appearance on human beings. Different methods are used while making an aesthetical evaluation related to a city. Entropy, in its preliminary meaning, is the mathematical representation of thermodynamic results. Measuring the entropy is related to the distribution of positional figures of a message or information from the probabilities standpoint. In this study, analysis of evaluation the urban skylines by the entropy approach was modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Input-output parameters were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between application data and RBMTF is done by using absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of evaluation the urban skylines by the entropy approach. As a result, RBMTF model has shown satisfying relation with experimental results, which suggests an alternative method to evaluation of the urban skylines by the entropy approach.

Keywords: urban skylines, entropy, rule-based Mamdani type, fuzzy logic

Procedia PDF Downloads 290
8918 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs

Authors: Queen Suraajini Rajendran, Sai Hung Cheung

Abstract:

Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.

Keywords: statistical downscaling, global climate model, climate change, uncertainty

Procedia PDF Downloads 371