Search results for: liquid phase microextraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5869

Search results for: liquid phase microextraction

4639 Lipid Nanoparticles for Spironolactone Delivery: Physicochemical Characteristics, Stability and Invitro Release

Authors: H. R. Kelidari, M. Saeedi, J. Akbari, K. Morteza-Semnani, H. Valizadeh

Abstract:

Spironolactoe (SP) a synthetic steroid diuretic is a poorly water-soluble drug with a low and variable oral bioavailability. Regarding to the good solubility of SP in lipid materials, SP loaded Solid lipid nanoparticles (SP-SLNs) and nanostructured lipid carrier (SP-SLNs) were thus prepared in this work for accelerating dissolution of this drug. The SP loaded NLC with stearic acid (SA) as solid lipid and different Oleic Acid (OA) as liquid lipid content and SLN without OA were prepared by probe ultrasonication method. With increasing the percentage of OA from 0 to 30 wt% in SLN/NLC, the average size and zeta potential of nanoparticles felled down and entrapment efficiency (EE %) rose dramatically. The obtained micrograph particles showed pronounced spherical shape. Differential Scanning Calorimeter (DSC) measurements indicated that the presence of OA reduced the melting temperature and melting enthalpy of solid lipid in NLC structure. The results reflected good long-term stability of the nanoparticles and the measurements show that the particle size remains lower in NLC compare to SLN formulations, 6 months after production. Dissolution of SP-SLN and SP-NLC was about 5.1 and 7.2 times faster than raw drugs in 120 min respectively. These results indicated that the SP loaded NLC containing 70:30 solid lipid to liquid lipid ratio is a suitable carrier of SP with improved drug EE and steady drug release properties.

Keywords: drug release, lipid nanoparticles, spironolactone, stability

Procedia PDF Downloads 331
4638 The Spectral Power Amplification on the Regular Lattices

Authors: Kotbi Lakhdar, Hachi Mostefa

Abstract:

We show that a simple transformation between the regular lattices (the square, the triangular, and the honeycomb) belonging to the same dimensionality can explain in a natural way the universality of the critical exponents found in phase transitions and critical phenomena. It suffices that the Hamiltonian and the lattice present similar writing forms. In addition, it appears that if a property can be calculated for a given lattice then it can be extrapolated simply to any other lattice belonging to the same dimensionality. In this study, we have restricted ourselves on the spectral power amplification (SPA), we note that the SPA does not have an effect on the critical exponents but does have an effect by the criticality temperature of the lattice; the generalisation to other lattice could be shown according to the containment principle.

Keywords: ising model, phase transitions, critical temperature, critical exponent, spectral power amplification

Procedia PDF Downloads 311
4637 LCA of Waste Disposal from Olive Oil Production: Anaerobic Digestion and Conventional Disposal on Soil

Authors: T. Tommasi, E. Batuecas, G. Mancini, G. Saracco, D. Fino

Abstract:

Extra virgin olive-oil (EVO) production is an important economic activity for several countries, especially in the Mediterranean area such as Spain, Italy, Greece and Tunisia. The two major by-products from olive oil production, solid-liquid Olive Pomace (OP) and the Olive Mill Waste Waters (OMWW), are still mainly disposed on soil, in spite of the existence of legislation which already limits this practice. The present study compares the environmental impacts associated with two different scenarios for the management of waste from olive oil production through a comparative Life Cycle Assessment (LCA). The two alternative scenarios are: (I) Anaerobic Digestion and (II) current Disposal on soil. The analysis was performed through SimaPro software and the assessment of the impact categories was based on International Life Cycle Data and Cumulative Energy Demand methods. Both the scenarios are mostly related to the cultivation and harvesting phase and are highly dependent on the irrigation practice and related energy demand. Results from the present study clearly show that as the waste disposal on soil causes the worst environmental performance of all the impact categories here considered. Important environmental benefits have been identified when anaerobic digestion is instead chosen as the final treatment. It was consequently demonstrated that anaerobic digestion should be considered a feasible alternative for olive mills, to produce biogas from common olive oil residues, reducing the environmental burden and adding value to the olive oil production chain.

Keywords: anaerobic digestion, waste management, agro-food waste, biogas

Procedia PDF Downloads 146
4636 Total-Reflection X-Ray Spectroscopy as a Tool for Element Screening in Food Samples

Authors: Hagen Stosnach

Abstract:

The analytical demands on modern instruments for element analysis in food samples include the analysis of major, trace and ultra-trace essential elements as well as potentially toxic trace elements. In this study total reflection, X-ray fluorescence analysis (TXRF) is presented as an analytical technique, which meets the requirements, defined by the Association of Official Agricultural Chemists (AOAC) regarding the limit of quantification, repeatability, reproducibility and recovery for most of the target elements. The advantages of TXRF are the small sample mass required, the broad linear range from µg/kg up to wt.-% values, no consumption of gases or cooling water, and the flexible and easy sample preparation. Liquid samples like alcoholic or non-alcoholic beverages can be analyzed without any preparation. For solid food samples, the most common sample pre-treatment methods are mineralization, direct deposition of the sample onto the reflector without/with minimal treatment, mainly as solid suspensions or after extraction. The main disadvantages are due to the possible peaks overlapping, which may lower the accuracy of quantitative analysis and the limit in the element identification. This analytical technique will be presented by several application examples, covering a broad range of liquid and solid food types.

Keywords: essential elements, toxic metals, XRF, spectroscopy

Procedia PDF Downloads 133
4635 Properties of Nanostructured MgB₂ Films Deposited by Magnetron Sputtering

Authors: T. A. Prikhna, A. V. Shaternik, V. E. Moshchil, M. Eisterer, V. E. Shaternik

Abstract:

The paper presents the results of studying the structure, phase composition, relief, and superconducting characteristics of oxygen-containing thin films of magnesium diboride (MgB₂) deposited on a dielectric substrate by magnetron sputtering of diboride-magnesium targets. The possibility of forming films of varying degrees of crystalline perfection and phase composition in the process of precipitation and annealing is shown, depending on the conditions of deposition and annealing. In the films, it is possible to realize various combinations of the Abrikosov vortex pinning centers (in the places of fluctuations of the critical temperature of the superconducting transition (T

Keywords: critical current density, diboride, superconducting thin films, upper critical field

Procedia PDF Downloads 109
4634 Effect of Fluidized Granular Activated Carbon for the Mitigation of Membrane Fouling in Wastewater Treatment

Authors: Jingwei Wang, Anthony G. Fane, Jia Wei Chew

Abstract:

The use of fluidized Granular Activated Carbon (GAC) as a means of mitigation membrane fouling in membrane bioreactors (MBRs) has received much attention in recent years, especially in anaerobic fluidized bed membrane bioreactors (AFMBRs). It has been affirmed that the unsteady-state tangential shear conferred by GAC fluidization on membrane surface suppressed the extent of membrane fouling with energy consumption much lower than that of bubbling (i.e., air sparging). In a previous work, the hydrodynamics of the fluidized GAC particles were correlated with membrane fouling mitigation effectiveness. Results verified that the momentum transfer from particle to membrane held a key in fouling mitigation. The goal of the current work is to understand the effect of fluidized GAC on membrane critical flux. Membrane critical flux values were measured by a vertical Direct Observation Through the Membrane (DOTM) setup. The polystyrene particles (known as latex particles) with the particle size of 5 µm were used as model foulant thus to give the number of the foulant on the membrane surface. Our results shed light on the positive effect of fluidized GAC enhancing the critical membrane flux by an order-of-magnitude as compared to that of liquid shear alone. Membrane fouling mitigation was benefitted by the increasing of power input.

Keywords: membrane fouling mitigation, liquid-solid fluidization, critical flux, energy input

Procedia PDF Downloads 407
4633 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase

Authors: Antoine Lauvray, Fabien Poulhaon, Pierre Michaud, Pierre Joyot, Emmanuel Duc

Abstract:

Additive Friction Stir Manufacturing (AFSM) is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. Unlike in Friction Stir Welding (FSW) where abundant literature exists and addresses many aspects going from process implementation to characterization and modeling, there are still few research works focusing on AFSM. Therefore, there is still a lack of understanding of the physical phenomena taking place during the process. This research work aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system composed of the tool, the filler material, and the substrate and due to pure friction. Analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes, through numerical modeling followed by experimental validation, to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque, and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.

Keywords: numerical model, additive manufacturing, friction, process

Procedia PDF Downloads 147
4632 Influence of Dietary Herbal Blend on Crop Filling, Growth Performance and Nutrient Digestibility in Broiler Chickens

Authors: S. Ahmad, M. Rizwan, B. Ayub, S. Mehmood, P. Akhtar

Abstract:

This experiment was conducted to investigate the effect of supplementation of pure herbal blend on growth performance of boilers. One hundred and twenty birds were randomly distributed into 4 experimental units of 3 replicates (10 birds/replicate) as: negative control (basal diet), positive control (Lincomycin at the rate of 5g/bag), pure herbal blend at the rate of 150g/bag and pure herbal blend at the rate of 300g/bag. The data regarding weekly feed intake, body weight gain and feed conversion ratio were recorded, and fecal samples were collected at the end of starter and finisher phase for nutrient digestibility trial. The results of feed intake showed significant (P < 0.05) results in 1st (305g), 2nd (696.88g), 3rd (1046.9g) and 4th (1173.2g) week and feed conversion ratio indicated significant (P < 0.05) variations in 1st (2.54) and 4th (2.28) week of age. Also, both starter and finisher phase indicated significant (P < 0.05) differences among all treatment groups in feed intake (2023.4g) and (2302.6g) respectively. The statistical analysis indicated significant (P < 0.05) results in crop filling percentage (86.6%) after 2 hours of first feed supplementation. In case of nutrient digestibility trial, results showed significant (P < 0.05) values of crude protein and crude fat in starter phase as 69.65% and 56.62% respectively, and 69.57% and 48.55% respectively, in finisher phase. Based on overall results, it was concluded that the dietary inclusion of pure herbal blend containing neem tree leaves powder, garlic powder, ginger powder and turmeric powder increase the production performance of broilers.

Keywords: neem tree leave, garlic, ginger, herbal blend, broiler

Procedia PDF Downloads 208
4631 Evaluating the Performance of Organic, Inorganic and Liquid Sheep Manure on Growth, Yield and Nutritive Value of Hybrid Napier CO-3

Authors: F. A. M. Safwan, H. N. N. Dilrukshi, P. U. S. Peiris

Abstract:

Less availability of high quality green forages leads to low productivity of national dairy herd of Sri Lanka. Growing grass and fodder to suit the production system is an efficient and economical solution for this problem. CO-3 is placed in a higher category, especially on tillering capacity, green forage yield, regeneration capacity, leaf to stem ratio, high crude protein content, resistance to pests and diseases and free from adverse factors along with other fodder varieties grown within the country. An experiment was designed to determine the effect of organic sheep manure, inorganic fertilizers and liquid sheep manure on growth, yield and nutritive value of CO-3. The study was consisted with three treatments; sheep manure (T1), recommended inorganic fertilizers (T2) and liquid sheep manure (T3) which was prepared using bucket fermentation method and each treatment was consisted with three replicates and those were assigned randomly. First harvest was obtained after 40 days of plant establishment and number of leaves (NL), leaf area (LA), tillering capacity (TC), fresh weight (FW) and dry weight (DW) were recorded and second harvest was obtained after 30 days of first harvest and same set of data were recorded. SPSS 16 software was used for data analysis. For proximate analysis AOAC, 2000 standard methods were used. Results revealed that the plants treated with T1 recorded highest NL, LA, TC, FW and DW and were statistically significant at first and second harvest of CO-3 (p˂ 0.05) and it was found that T1 was statistically significant from T2 and T3. Although T3 was recorded higher than the T2 in almost all growth parameters; it was not statistically significant (p ˃0.05). In addition, the crude protein content was recorded highest in T1 with the value of 18.33±1.61 and was lowest in T2 with the value of 10.82±1.14 and was statistically significant (p˂ 0.05). Apart from this, other proximate composition crude fiber, crude fat, ash, moisture content and dry matter were not statistically significant between treatments (p ˃0.05). In accordance with the results, it was found that the organic fertilizer is the best fertilizer for CO-3 in terms of growth parameters and crude protein content.

Keywords: fertilizer, growth parameters, Hybrid Napier CO-3, proximate composition

Procedia PDF Downloads 291
4630 Methodologies, Findings, Discussion, and Limitations in Global, Multi-Lingual Research: We Are All Alone - Chinese Internet Drama

Authors: Patricia Portugal Marques de Carvalho Lourenco

Abstract:

A three-phase methodological multi-lingual path was designed, constructed and carried out using the 2020 Chinese Internet Drama Series We Are All Alone as a case study. Phase one, the backbone of the research, comprised of secondary data analysis, providing the structure on which the next two phases would be built on. Phase one incorporated a Google Scholar and a Baidu Index analysis, Star Network Influence Index and Mydramalist.com top two drama reviews, along with an article written about the drama and scrutiny of Chinese related blogs and websites. Phase two was field research elaborated across Latin Europe, and phase three was social media focused, having into account that perceptions are going to be memory conditioned based on past ideas recall. Overall, research has shown the poor cultural expression of Chinese entertainment in Latin Europe and demonstrated the inexistence of Chinese content in French, Italian, Portuguese and Spanish Business to Consumer retailers; a reflection of their low significance in Latin European markets and the short-life cycle of entertainment products in general, bubble-gum, disposable goods without a mid to long-term effect in consumers lives. The process of conducting comprehensive international research was complex and time-consuming, with data not always available in Mandarin, the researcher’s linguistic deficiency, limited Chinese Cultural Knowledge and cultural equivalence. Despite steps being taken to minimize the international proposed research, theoretical limitations concurrent to Latin Europe and China still occurred. Data accuracy was disputable; sampling, data collection/analysis methods are heterogeneous; ascertaining data requirements and the method of analysis to achieve a construct equivalence was challenging and morose to operationalize. Secondary data was also not often readily available in Mandarin; yet, in spite of the array of limitations, research was done, and results were produced.

Keywords: research methodologies, international research, primary data, secondary data, research limitations, online dramas, china, latin europe

Procedia PDF Downloads 68
4629 Suboptimal Retiree Allocations with Housing

Authors: Asiye Aydilek, Harun Aydilek

Abstract:

We investigate the costs of various suboptimal allocations in housing, consumption, bond and stock holdings of a retiree in a setting with recursive utility, considering the extensive empirical evidence that investors make suboptimal decisions in different ways. We find that suboptimal stock holdings impose only modest costs on the retiree. This may have a merit in explaining the limited stock investment in the data. The cost of suboptimal bond holdings is higher than that of stocks, but still small. This may partially explain why many more people hold bonds compared to stocks. We find that positive deviations from the optimal level are less costly relative to the negative ones in suboptimal housing allocations. This may help us to clarify why the elderly are over consuming housing, as seen in the housing data. The cost of suboptimal consumption is quite high and the highest of all. Our paper suggests that, in terms of welfare, the decisions of how much of liquid wealth to use for consumption and for saving are more important than the decision about the composition of liquid savings. Suboptimal stock holdings are twice more costly in power utility and suboptimal bond holdings are twenty times more costly in recursive utility. Recursive utility is superior to power utility in terms of rationalizing many people's preference for bonds instead of stocks in investment.

Keywords: housing, recursive utility, retirement, suboptimal decisions, welfare cost

Procedia PDF Downloads 317
4628 Electro-Oxidation of Glycerol Using Nickel Deposited Carbon Ceramic Electrode and Product Analysis Using High Performance Liquid Chromatography

Authors: Mulatu Kassie Birhanu

Abstract:

Electro-oxidation of glycerol is an important process to convert the less price glycerol into other expensive (essential) and energy-rich chemicals. In this study, nickel was electro-deposited on laboratory-made carbon ceramic electrode (CCE) substrate using electrochemical techniques that is cyclic voltammetry (CV) to prepare an electro-catalyst (Ni/CCE) for electro-oxidation of glycerol. Carbon ceramic electrode was prepared from graphite and methyl tri-methoxy silane (MTMOS) through the processes called hydrolysis and condensation with methanol in acidic media (HCl) by a sol-gel technique. Physico-chemical characterization of bare CCE and modified (deposited) CCE (Ni/CCE) was measured and evaluated by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). Electro-oxidation of glycerol was performed in 0.1 M glycerol in alkaline media (0.5 M NaOH). High-Performance Liquid Chromatography (HPLC) technique was used to identify and determine the concentration of glycerol, reaction intermediates and oxidized products of glycerol after its electro-oxidation is performed. The conversion (%) of electro-oxidation of glycerol during 9-hour oxidation was 73% and 36% at 1.8V and 1.6V vs. RHE, respectively. Formate, oxalate, glycolate and glycerate are the main oxidation products of glycerol with selectivity (%) of 75%, 8.6%, 1.1% and 0.95 % at 1.8 V vs. RHE and 55.4%, 2.2%, 1.0% and 0.6% at 1.6 V vs. RHE respectively. The result indicates that formate is the main product in the electro-oxidation of glycerol on Ni/CCE using the indicated applied potentials.

Keywords: carbon-ceramic electrode, electrodeposition, electro-oxidation, Methyltrimethoxysilane

Procedia PDF Downloads 238
4627 Gas-Phase Noncovalent Functionalization of Pristine Single-Walled Carbon Nanotubes with 3D Metal(II) Phthalocyanines

Authors: Vladimir A. Basiuk, Laura J. Flores-Sanchez, Victor Meza-Laguna, Jose O. Flores-Flores, Lauro Bucio-Galindo, Elena V. Basiuk

Abstract:

Noncovalent nanohybrid materials combining carbon nanotubes (CNTs) with phthalocyanines (Pcs) is a subject of increasing research effort, with a particular emphasis on the design of new heterogeneous catalysts, efficient organic photovoltaic cells, lithium batteries, gas sensors, field effect transistors, among other possible applications. The possibility of using unsubstituted Pcs for CNT functionalization is very attractive due to their very moderate cost and easy commercial availability. However, unfortunately, the deposition of unsubstituted Pcs onto nanotube sidewalls through the traditional liquid-phase protocols turns to be very problematic due to extremely poor solubility of Pcs. On the other hand, unsubstituted free-base H₂Pc phthalocyanine ligand, as well as many of its transition metal complexes, exhibit very high thermal stability and considerable volatility under reduced pressure, which opens the possibility for their physical vapor deposition onto solid surfaces, including nanotube sidewalls. In the present work, we show the possibility of simple, fast and efficient noncovalent functionalization of single-walled carbon nanotubes (SWNTs) with a series of 3d metal(II) phthalocyanines Me(II)Pc, where Me= Co, Ni, Cu, and Zn. The functionalization can be performed in a temperature range of 400-500 °C under moderate vacuum and requires about 2-3 h only. The functionalized materials obtained were characterized by means of Fourier-transform infrared (FTIR), Raman, UV-visible and energy-dispersive X-ray spectroscopy (EDS), scanning and transmission electron microscopy (SEM and TEM, respectively) and thermogravimetric analysis (TGA). TGA suggested that Me(II)Pc weight content is 30%, 17% and 35% for NiPc, CuPc, and ZnPc, respectively (CoPc exhibited anomalous thermal decomposition behavior). The above values are consistent with those estimated from EDS spectra, namely, of 24-39%, 27-36% and 27-44% for CoPc, CuPc, and ZnPc, respectively. A strong increase in intensity of D band in the Raman spectra of SWNT‒Me(II)Pc hybrids, as compared to that of pristine nanotubes, implies very strong interactions between Pc molecules and SWNT sidewalls. Very high absolute values of binding energies of 32.46-37.12 kcal/mol and the highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO, respectively) distribution patterns, calculated with density functional theory by using Perdew-Burke-Ernzerhof general gradient approximation correlation functional in combination with the Grimme’s empirical dispersion correction (PBE-D) and the double numerical basis set (DNP), also suggested that the interactions between Me(II) phthalocyanines and nanotube sidewalls are very strong. The authors thank the National Autonomous University of Mexico (grant DGAPA-IN200516) and the National Council of Science and Technology of Mexico (CONACYT, grant 250655) for financial support. The authors are also grateful to Dr. Natalia Alzate-Carvajal (CCADET of UNAM), Eréndira Martínez (IF of UNAM) and Iván Puente-Lee (Faculty of Chemistry of UNAM) for technical assistance with FTIR, TGA measurements, and TEM imaging, respectively.

Keywords: carbon nanotubes, functionalization, gas-phase, metal(II) phthalocyanines

Procedia PDF Downloads 130
4626 Simulation of Immiscibility Regions in Sodium Borosilicate Glasses

Authors: Djamila Aboutaleb, Brahim Safi

Abstract:

In this paper, sodium borosilicates glasses were prepared by melting in air. These heat-resistant transparent glasses have subjected subsequently isothermal treatments at different times, which have transformed them at opaque glass (milky white color). Such changes indicate that these glasses showed clearly phase separation (immiscibility). The immiscibility region in a sodium borosilicate ternary system was investigated in this work, i.e. to determine the regions from which some compositions can show phase separation. For this we went through the conditions of thermodynamic equilibrium, which were translated later by mathematical equations to find an approximate solution. The latter has been translated in a simulation which was established thereafter to find the immiscibility regions in this type of special glasses.

Keywords: sodium borosilicate, heat-resistant, isothermal treatments, immiscibility, thermodynamics

Procedia PDF Downloads 337
4625 Noncritical Phase-Matched Fourth Harmonic Generation of Converging Beam by Deuterated Potassium Dihydrogen Phosphate Crystal

Authors: Xiangxu Chai, Bin Feng, Ping Li, Deyan Zhu, Liquan Wang, Guanzhong Wang, Yukun Jing

Abstract:

In high power large-aperture laser systems, such as the inertial confinement fusion project, the Nd: glass laser (1053nm) is usually needed to be converted to ultraviolet (UV) light and the fourth harmonic generation (FHG) is one of the most favorite candidates to achieve UV light. Deuterated potassium dihydrogen phosphate (DKDP) crystal is an optimal choice for converting the Nd: glass radiation to the fourth harmonic laser by noncritical phase matching (NCPM). To reduce the damage probability of focusing lens, the DKDP crystal is suggested to be set before the focusing lens. And a converging beam enters the FHG crystal consequently. In this paper, we simulate the process of FHG in the scheme and the dependence of FHG efficiency on the lens’ F is derived. Besides, DKDP crystal with gradient deuterium is proposed to realize the NCPM FHG of the converging beam. At every position, the phase matching is achieved by adjusting the deuterium level, and the FHG efficiency increases as a result. The relation of the lens’ F with the deuterium gradient is investigated as well.

Keywords: fourth harmonic generation, laser induced damage, converging beam, DKDP crystal

Procedia PDF Downloads 230
4624 Response Regimes and Vibration Mitigation in Equivalent Mechanical Model of Strongly Nonlinear Liquid Sloshing

Authors: Maor Farid, Oleg Gendelman

Abstract:

Equivalent mechanical model of liquid sloshing in partially-filled cylindrical vessel is treated in the cases of free oscillations and of horizontal base excitation. The model is designed to cover both the linear and essentially nonlinear sloshing regimes. The latter fluid behaviour might involve hydraulic impacts interacting with the inner walls of the tank. These impulsive interactions are often modeled by high-power potential and dissipation functions. For the sake of analytical description, we use the traditional approach by modeling the impacts with velocity-dependent restitution coefficient. This modelling is similar to vibro-impact nonlinear energy sink (VI NES) which was recently explored for its vibration mitigation performances and nonlinear response regimes. Steady-state periodic regimes and chaotic strongly modulated responses (CSMR) are detected. Those dynamical regimes were described by the system's slow motion on the slow invariant manifold (SIM). There is a good agreement between the analytical results and numerical simulations. Subsequently, Finite-Element (FE) method is used to determine and verify the model parameters and to identify dominant dynamical regimes, natural modes and frequencies. The tank failure modes are identified and critical locations are identified. Mathematical relation is found between degrees-of-freedom (DOFs) motion and the mechanical stress applied in the tank critical section. This is the prior attempt to take under consideration large-amplitude nonlinear sloshing and tank structure elasticity effects for design, regulation definition and resistance analysis purposes. Both linear (tuned mass damper, TMD) and nonlinear (nonlinear energy sink, NES) passive energy absorbers contribution to the overall system mitigation is firstly examined, in terms of both stress reduction and time for vibration decay.

Keywords: nonlinear energy sink (NES), reduced-order modelling, liquid sloshing, vibration mitigation, vibro-impact dynamics

Procedia PDF Downloads 145
4623 Mitigation of Lithium-ion Battery Thermal Runaway Propagation Through the Use of Phase Change Materials Containing Expanded Graphite

Authors: Jayson Cheyne, David Butler, Iain Bomphray

Abstract:

In recent years, lithium-ion batteries have been used increasingly for electric vehicles and large energy storage systems due to their high-power density and long lifespan. Despite this, thermal runaway remains a significant safety problem because of its uncontrollable and irreversible nature - which can lead to fires and explosions. In large-scale lithium-ion packs and modules, thermal runaway propagation between cells can escalate fire hazards and cause significant damage. Thus, safety measures are required to mitigate thermal runaway propagation. The current research explores composite phase change materials (PCM) containing expanded graphite (EG) for thermal runaway mitigation. PCMs are an area of significant interest for battery thermal management due to their ability to absorb substantial quantities of heat during phase change. Moreover, the introduction of EG can support heat transfer from the cells to the PCM (owing to its high thermal conductivity) and provide shape stability to the PCM during phase change. During the research, a thermal model was established for an array of 16 cylindrical cells to simulate heat dissipation with and without the composite PCM. Two conditions were modeled, including the behavior during charge/discharge cycles (i.e., throughout regular operation) and thermal runaway. Furthermore, parameters including cell spacing, composite PCM thickness, and EG weight percentage (WT%) were varied to establish the optimal material parameters for enabling thermal runaway mitigation and effective thermal management. Although numerical modeling is still ongoing, initial findings suggest that a 3mm PCM containing 15WT% EG can effectively suppress thermal runaway propagation while maintaining shape stability. The next step in the research is to validate the model through controlled experimental tests. Additionally, with the perceived fire safety concerns relating to PCM materials, fire safety tests, including UL-94 and Limiting Oxygen Index (LOI), shall be conducted to explore the flammability risk.

Keywords: battery safety, electric vehicles, phase change materials, thermal management, thermal runaway

Procedia PDF Downloads 145
4622 Investigation of the Effects of Sampling Frequency on the THD of 3-Phase Inverters Using Space Vector Modulation

Authors: Khattab Al Qaisi, Nicholas Bowring

Abstract:

This paper presents the simulation results of the effects of sampling frequency on the total harmonic distortion (THD) of three-phase inverters using the space vector pulse width modulation (SVPWM) and space vector control (SVC) algorithms. The relationship between the variables was studied using curve fitting techniques, and it has been shown that, for 50 Hz inverters, there is an exponential relation between the sampling frequency and THD up to around 8500 Hz, beyond which the performance of the model becomes irregular, and there is an negative exponential relation between the sampling frequency and the marginal improvement to the THD. It has also been found that the performance of SVPWM is better than that of SVC with the same sampling frequency in most frequency range, including the range where the performance of the former is irregular.

Keywords: DSI, SVPWM, THD, DC-AC converter, sampling frequency, performance

Procedia PDF Downloads 485
4621 Non-Contact Measurement of Soil Deformation in a Cyclic Triaxial Test

Authors: Erica Elice Uy, Toshihiro Noda, Kentaro Nakai, Jonathan Dungca

Abstract:

Deformation in a conventional cyclic triaxial test is normally measured by using point-wise measuring device. In this study, non-contact measurement technique was applied to be able to monitor and measure the occurrence of non-homogeneous behavior of the soil under cyclic loading. Non-contact measurement is executed through image processing. Two-dimensional measurements were performed using Lucas and Kanade optical flow algorithm and it was implemented Labview. In this technique, the non-homogeneous deformation was monitored using a mirrorless camera. A mirrorless camera was used because it is economical and it has the capacity to take pictures at a fast rate. The camera was first calibrated to remove the distortion brought about the lens and the testing environment as well. Calibration was divided into 2 phases. The first phase was the calibration of the camera parameters and distortion caused by the lens. The second phase was to for eliminating the distortion brought about the triaxial plexiglass. A correction factor was established from this phase. A series of consolidated undrained cyclic triaxial test was performed using a coarse soil. The results from the non-contact measurement technique were compared to the measured deformation from the linear variable displacement transducer. It was observed that deformation was higher at the area where failure occurs.

Keywords: cyclic loading, non-contact measurement, non-homogeneous, optical flow

Procedia PDF Downloads 301
4620 Low-Temperature Fabrication of Reaction Bonded Composites, Based on Sic and (Sic+B4C) Mixture, Infiltrated with Si-Al Alloy

Authors: Helen Dilman, Eyal Oz, Shmuel Hayun, Nahum Frage

Abstract:

The conventional approach for manufacturing silicon carbide and boron carbide reaction bonded composites is based on infiltrating a ceramic porous preform with molten silicon. The relatively high melting temperature of the silicon infiltrating medium is a drawback of the process. The present contribution is concerned with an approach that allows obtaining reaction bonded composites by pressure-less infiltration at a significantly lower (850-1000oC) temperature range. This approach was applied for the fabrication of fully dense SiC/(Si-Al) and (SiC+B4C)/(Si-Al) composites. The key feature of the approach is based on using Si alloys with low melting temperature and the Mg-vapor atmosphere, under which an adequate wetting between ceramics and liquid alloys for the infiltration process is achieved. In the first set of the experiments ceramic performs compacted from multimodal SiC powders (with the green density of about 27 vol. %) without free carbon addition were infiltrated by Si-20%Al alloy at 950oC. In the second set, 19 vol. % of a fine boron carbide powder was added to SiC powders as a source of carbon. The green density of the SiC-B4C preforms was about 23-25 vol. %. In both cases, successful infiltration was achieved and the composites were fully dense. The density of the composites was about 3g/cm3. For the SiC based composites the hardness value was 750±150HV, Young modulus-280GPa and bending strength-240±30MPa. These values for (SiC-B4C)/(Si-Al) composites (1460±200HV, 317GPa and 360±20MPa) were significantly higher due to the formation of novel ceramics phases. Microstructural characteristics of the composites and their phase composition will be discussed.

Keywords: boron carbide, composites, infiltration, low temperatures, silicon carbide

Procedia PDF Downloads 547
4619 Vapor Phase Transesterification of Dimethyl Malonate with Phenol over Cordierite Honeycomb Coated with Zirconia and Its Modified Forms

Authors: Prathap S. Raghavendra, Mohamed S. Z. Shamshuddin, Thimmaraju N. Venkatesh

Abstract:

The transesterification of dimethyl malonate (DMM) with phenol has been studied in vapour phase over cordierite honeycomb coated with solid acid catalysts such as ZrO2,Mo(VI)/ZrO2 and SO42-/ZrO2. The catalytic materials were prepared honeycomb coated and powder forms and characterized for their total surface acidity by NH3-TPD and crystalinity by powder XRD methods. Phenyl methyl malonate (PMM) and diphenyl malonate (DPM) were obtained as the reaction products. A good conversion of DMM (up to 82%) of MPM with 95% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200 °C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. But over SO42-/ZrO2 catalyst, the yield of DPM was found to be higher. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of Mo(VI) or SO42– ions. Transesterification reactions were also carried out over powder forms of the catalytic materials and the yield of the desired phenyl ester products were compared with that of the HC coated catalytic materials. The solid acids were found to be reusable when used for at least 5 reaction cycles.

Keywords: cordierite honeycomb, methyl phenyl malonate, vapour phase transesterification, zirconia

Procedia PDF Downloads 316
4618 Antimicrobial Activity of Eucalyptus globulus Essential Oil: Disc Diffusion versus Vapour Diffusion Methods

Authors: Boukhatem Mohamed Nadjib, Ferhat Mohamed Amine

Abstract:

Essential Oils (EO) produced by medicinal plants have been traditionally used for respiratory tract infections and are used nowadays as ethical medicines for colds. The aim of this study was to test the efficacy of the Algerian EGEO against some respiratory tract pathogens by disc diffusion and vapour diffusion methods at different concentrations. The chemical composition of the EGEO was analysed by Gas Chromatography-Mass Spectrometry. Fresh leaves of E. globulus on steam distillation yielded 0.96% (v/w) of essential oil whereas the analysis resulted in the identification of a total of 11 constituents, 1.8 cineole (85.8%), α-pinene (7.2%) and β-myrcene (1.5%) being the main components. By disc diffusion method, EGEO showed potent antimicrobial activity against Gram-positive more than Gram-negative bacteria. The Diameter of Inhibition Zone (DIZ) varied from 69 mm to 75 mm for Staphylococcus aureus and Bacillus subtilis (Gram +) and from 13 to 42 mm for Enterobacter sp and Escherichia coli (Gram-), respectively. However, the results obtained by both agar diffusion and vapour diffusion methods were different. Significantly higher antibacterial activity was observed in the vapour phase at lower concentrations. A. baumanii and Klebsiella pneumoniae were the most susceptible strains to the oil vapour with DIZ varied from 38 to 42 mm. Therefore, smaller doses of EO in the vapour phase can be inhibitory to pathogenic bacteria. Else, the DIZ increased with increase in the concentration of the oil. There is growing evidence that EGEO in the vapour phase are effective antibacterial systems and appears worthy to be considered for practical uses in the treatment or prevention of patients with respiratory tract infections or as air decontaminants in the hospital. The present study indicates that EGEO has considerable antimicrobial activity, deserving further investigation for clinical applications.

Keywords: eucalyptus globulus, essential oils, respiratory tract pathogens, antimicrobial activity, vapour phase

Procedia PDF Downloads 367
4617 Investigation of Ceramic-Metal Composites Produced by Electroless Ni Plating of AlN- Astaloy Cr-M

Authors: A. Yönetken, A. Erol, A. Yakar, G. Peşmen

Abstract:

The microstructure, mechanical properties and metalgraphic characteristics of Ni plated AlN-Astaloy Cr-M powders were investigated using specimens produced by tube furnace sintering at 1000-1400 °C temperature. A uniform nickel layer on AlN powders was deposited prior to sintering using electroless plating technique. A composite consisting of ternary additions, metallic phase, Ni and ceramic phase AlN within a matrix of Astaloy Cr-M had been prepared under Ar shroud and then tube furnace sintered. The experimental results carried out by using XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope) for composition (10% AlN-Astaloy Cr-M) 10% Ni at 1400 °C suggest that the best properties as 132.45HB and permittivity were obtained at 1400 °C.

Keywords: composite, electroless nickel plating, powder metallurgy, sintering

Procedia PDF Downloads 277
4616 Effect of Capillary Forces on Wet Granular Avalanches

Authors: Ahmed Jarray, Vanessa Magnanimo, Stefan Luding

Abstract:

Granular avalanches are ubiquitous in nature and occur in numerous industrial processes associated with particulate systems. When a small amount of liquid is added to a pile of particles, pendular bridges form and the particles are attracted by capillary forces, creating complex structure and flow behavior. We have performed an extensive series of experiments to investigate the effect of capillary force and particle size on wet granular avalanches, and we established a methodology that ensures the control of the granular flow in a rotating drum. The velocity of the free surface and the angle of repose of the particles in the rotating drum are determined using particle tracking method. The capillary force between the particles is significantly reduced by making the glass beads hydrophobic via chemical silanization. We show that the strength of the capillary forces between two adjacent particles can be deliberately manipulated through surface modification of the glass beads, thus, under the right conditions; we demonstrate that the avalanche dynamics can be controlled. The results show that the avalanche amplitude decreases when increasing the capillary force. We also find that liquid-induced cohesion increases the width of the gliding layer and the dynamic angle of repose, however, it decreases the velocity of the free surface.

Keywords: avalanche dynamics, capillary force, granular material, granular flow

Procedia PDF Downloads 276
4615 Chemical Modification of Biosorbent for Prconcentation of Cadmium in Water Sample

Authors: Homayon Ahmad Panahi, Niusha Mohseni Darabi, Elham Moniri

Abstract:

A new biosorbent is prepared by coupling a cibacron blue to yeast cells. The modified yeast cells with cibacron blue has been characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis and applied for the preconcentration and solid phase extraction of trace cadmium ion from water samples. The optimum pH value for sorption of the cadmium ions by yeast cells- cibacron blue was 5.5. The sorption capacity of modified biosorbent was 45 mg. g−1. A recovery of 98.2% was obtained for Cd(II) when eluted with 0.5 M nitric acid. The method was applied for Cd(II) preconcentration and determination in sea water sample.

Keywords: solid phase extraction, yeast cells, Nickl, isotherm study

Procedia PDF Downloads 264
4614 On-Chip Aging Sensor Circuit Based on Phase Locked Loop Circuit

Authors: Ararat Khachatryan, Davit Mirzoyan

Abstract:

In sub micrometer technology, the aging phenomenon starts to have a significant impact on the reliability of integrated circuits by bringing performance degradation. For that reason, it is important to have a capability to evaluate the aging effects accurately. This paper presents an accurate aging measurement approach based on phase-locked loop (PLL) and voltage-controlled oscillator (VCO) circuit. The architecture is rejecting the circuit self-aging effect from the characteristics of PLL, which is generating the frequency without any aging phenomena affects. The aging monitor is implemented in low power 32 nm CMOS technology, and occupies a pretty small area. Aging simulation results show that the proposed aging measurement circuit improves accuracy by about 2.8% at high temperature and 19.6% at high voltage.

Keywords: aging effect, HCI, NBTI, nanoscale

Procedia PDF Downloads 359
4613 Analysis of the Annual Proficiency Testing Procedure for Intermediate Reference Laboratories Conducted by the National Reference Laboratory from 2013 to 2017

Authors: Reena K., Mamatha H. G., Somshekarayya, P. Kumar

Abstract:

Objectives: The annual proficiency testing of intermediate reference laboratories is conducted by the National Reference Laboratory (NRL) to assess the efficiency of the laboratories to correctly identify Mycobacterium tuberculosis and to determine its drug susceptibility pattern. The proficiency testing results from 2013 to 2017 were analyzed to determine laboratories that were consistent in reporting quality results and those that had difficulty in doing so. Methods: A panel of twenty cultures were sent out to each of these laboratories. The laboratories were expected to grow the cultures in their own laboratories, set up drug susceptibly testing by all the methods they were certified for and report the results within the stipulated time period. The turnaround time for reporting results, specificity, sensitivity positive and negative predictive values and efficiency of the laboratory in identifying the cultures were analyzed. Results: Most of the laboratories had reported their results within the stipulated time period. However, there was enormous delay in reporting results from few of the laboratories. This was mainly due to improper functioning of the biosafety level III laboratory. Only 40% of the laboratories had 100% efficiency in solid culture using Lowenstein Jensen medium. This was expected as a solid culture, and drug susceptibility testing is not used for diagnosing drug resistance. Rapid molecular methods such as Line probe assay and Genexpert are used to determine drug resistance. Automated liquid culture system such as the Mycobacterial growth indicator tube is used to determine prognosis of the patient while on treatment. It was observed that 90% of the laboratories had achieved 100% in the liquid culture method. Almost all laboratories had achieved 100% efficiency in the line probe assay method which is the method of choice for determining drug-resistant tuberculosis. Conclusion: Since the liquid culture and line probe assay technologies are routinely used for the detection of drug-resistant tuberculosis the laboratories exhibited higher level of efficiency as compared to solid culture and drug susceptibility testing which are rarely used. The infrastructure of the laboratory should be maintained properly so that samples can be processed safely and results could be declared on time.

Keywords: annual proficiency testing, drug susceptibility testing, intermediate reference laboratory, national reference laboratory

Procedia PDF Downloads 182
4612 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning

Authors: Shayla He

Abstract:

Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.

Keywords: homeless, prediction, model, RNN

Procedia PDF Downloads 121
4611 Storage Tank Overfill Protection in Compliance with Functional Safety Standard: IEC 61511

Authors: Hassan Alsada

Abstract:

Tank overfill accidents are major concerns for industries handling large volumes of hydrocarbons. Buncefield, Jaipur, Puerto Rico, and West Virginia are just a few accidents with catastrophic consequences. Thus, it is very important for any industry to take the right safety measures for overfill prevention. Moreover, one of the main causative factors in the overfill accidents was inadequate risk analysis and, subsequently, inadequate design. This study aims to provide a full assessment in accordance with the Functional safety standard: “IEC 615 11 – Safety instrumented systems for the process industry” to the tank overfill scenario according to the standard’s Safety Life Cycle (SLC), which includes: the analysis phase, the implementation phase, and the operation phase. The paper discusses in depth the tank overfills Independent Protection Layers (IPLs) with systematic analysis to avoid the safety risks of under-design and the financial risk of facility overdesign. The result shows a clear and systematic assessment in compliance with the standards that can help to assist existing tank overfilling setup or a guide to support designing new storage facilities overfill protection.

Keywords: IEC 61511, PHA, LOPA, process safety, safety, health, environment, safety instrumented systems, safety instrumented function, functional safety, safety life cycle

Procedia PDF Downloads 90
4610 Matrix Completion with Heterogeneous Cost

Authors: Ilqar Ramazanli

Abstract:

The matrix completion problem has been studied broadly under many underlying conditions. The problem has been explored under adaptive or non-adaptive, exact or estimation, single-phase or multi-phase, and many other categories. In most of these cases, the observation cost of each entry is uniform and has the same cost across the columns. However, in many real-life scenarios, we could expect elements from distinct columns or distinct positions to have a different cost. In this paper, we explore this generalization under adaptive conditions. We approach the problem under two different cost models. The first one is that entries from different columns have different observation costs, but within the same column, each entry has a uniform cost. The second one is any two entry has different observation cost, despite being the same or different columns. We provide complexity analysis of our algorithms and provide tightness guarantees.

Keywords: matroid optimization, matrix completion, linear algebra, algorithms

Procedia PDF Downloads 109