Search results for: distinctive features
2937 Identifying Temporary Housing Main Vertexes through Assessing Post-Disaster Recovery Programs
Authors: S. M. Amin Hosseini, Oriol Pons, Carmen Mendoza Arroyo, Albert de la Fuente
Abstract:
In the aftermath of a natural disaster, the major challenge most cities and societies face, regardless of their diverse level of prosperity, is to provide temporary housing (TH) for the displaced population (DP). However, the features of TH, which have been applied in previous recovery programs, greatly varied from case to case. This situation demonstrates that providing temporary accommodation for DP in a short period time and usually in great numbers is complicated in terms of satisfying all the beneficiaries’ needs, regardless of the societies’ welfare levels. Furthermore, when previously used strategies are applied to different areas, the chosen strategies are most likely destined to fail, unless the strategies are context and culturally based. Therefore, as the population of disaster-prone cities are increasing, decision-makers need a platform to help to determine all the factors, which caused the outcomes of the prior programs. To this end, this paper aims to assess the problems, requirements, limitations, potential responses, chosen strategies, and their outcomes, in order to determine the main elements that have influenced the TH process. In this regard, and in order to determine a customizable strategy, this study analyses the TH programs of five different cases as: Marmara earthquake, 1999; Bam earthquake, 2003; Aceh earthquake and tsunami, 2004; Hurricane Katrina, 2005; and, L’Aquila earthquake, 2009. The research results demonstrate that the main vertexes of TH are: (1) local characteristics, including local potential and affected population features, (2) TH properties, which needs to be considered in four phases: planning, provision/construction, operation, and second life, and (3) natural hazards impacts, which embraces intensity and type. Accordingly, this study offers decision-makers the opportunity to discover the main vertexes, their subsets, interactions, and the relation between strategies and outcomes based on the local conditions of each case. Consequently, authorities may acquire the capability to design a customizable method in the face of complicated post-disaster housing in the wake of future natural disasters.Keywords: post-disaster temporary accommodation, urban resilience, natural disaster, local characteristic
Procedia PDF Downloads 2452936 Assessment the Quality of Telecommunication Services by Fuzzy Inferences System
Authors: Oktay Nusratov, Ramin Rzaev, Aydin Goyushov
Abstract:
Fuzzy inference method based approach to the forming of modular intellectual system of assessment the quality of communication services is proposed. Developed under this approach the basic fuzzy estimation model takes into account the recommendations of the International Telecommunication Union in respect of the operation of packet switching networks based on IP-protocol. To implement the main features and functions of the fuzzy control system of quality telecommunication services it is used multilayer feedforward neural network.Keywords: quality of communication, IP-telephony, fuzzy set, fuzzy implication, neural network
Procedia PDF Downloads 4732935 The Neuroscience Dimension of Juvenile Law Effectuates a Comprehensive Treatment of Youth in the Criminal System
Authors: Khushboo Shah
Abstract:
Categorical bans on the death penalty and life-without-parole sentences for juvenile offenders in a growing number of countries have established a new era in juvenile jurisprudence. This has been brought about by integration of the growing knowledge in cognitive neuroscience and appreciation of the inherent differences between adults and adolescents over the last ten years. This evolving understanding of being a child in the criminal system can be aptly reflected through policies that incorporate the mitigating traits of youth. First, the presentation will delineate the structures in cognitive neuroscience and in particular, focus on the prefrontal cortex, the amygdala, and the basal ganglia. These key anatomical structures in the brain are linked to three mitigating adolescent traits—an underdeveloped sense of responsibility, an increased vulnerability to negative influences, and transitory personality traits—that establish why juveniles have a lessened culpability. The discussion will delve into the details depicting how an underdeveloped prefrontal cortex results in the heightened emotional angst, high-energy and risky behavior characteristic of the adolescent time period or how the amygdala, the emotional center of the brain, governs different emotional expression resulting in why teens are susceptible to negative influences. Based on this greater understanding, it is incumbent that policies adequately reflect the adolescent physiology and psychology in the criminal system. However, it is important to ensure that these views are appropriately weighted while considering the jurisprudence for the treatment of children in the law. To ensure this balance is appropriately stricken, policies must incorporate the distinctive traits of youth in sentencing and legal considerations and yet refrain from the potential fallacies of absolving a juvenile offender of guilt and culpability. Accordingly, three policies will demonstrate how these results can be achieved: (1) eliminate housing of juvenile offenders in the adult prison system, (2) mandate fitness hearings for all transfers of juveniles to adult criminal court, and (3) use the post-disposition review as a type of rehabilitation method for juvenile offenders. Ultimately, this interdisciplinary approach of science and law allows for a better understanding of adolescent psychological and social functioning and can effectuate better legal outcomes for juveniles tried as adults.Keywords: criminal law, Juvenile Justice, interdisciplinary, neuroscience
Procedia PDF Downloads 3292934 Men Act, Women Are Acted Upon: Morphosyntactic Framing of the Sexual Intercourse in Online Pornography Titles
Authors: Aleksandra Tomic
Abstract:
According to reliable sources, 4% of all websites is devoted to pornographic material, yet these estimates are often reported to be much higher. The largest internet pornography streaming website reports 21.2 billion visits in 2015 only. Considering the ubiquity of online pornography and the frequency of use, it is necessary to examine its potential influence on the construal of the sexual act and the roles of participants. Apart from the verbal and physical interactions in the pornographic movies themselves, the language in the titles of movies has the power to frame the sexual intercourse. In this study, Critical Discourse Analysis and corpus linguistics approaches will be used to examine the way the sexual intercourse and the roles of the participants are ideologically construed and perpetuated in the Internet pornography discourse. To this end, the study will explore the association between the specific morphosyntactic aspects of the references to performers of both genders, the person and the thematic role, and the gender of referred performer in the corpus of online pornographic movie titles. Distinctive collexeme analysis will be conducted to uncover possible associations between for gender of the performer denoted by the linguistic expression, and the person and thematic role assigned to it in the titles of online pornography movies. Initial results of the chi-square procedure performed on a sample of 295 online pornography movie titles on the largest pornography streaming website ‘Pornhub’ yielded significant results. The use of the three person categories was not equally distributed between genders, X2 (2, N = 106) = 32.52, p < 0.001, with female performers being referred to in the third person in 71.7% of the instances, and speaking in the first person 20.8% of the time, whereas male performers spoke in the first person 68% of the time, and were referred to in the third person in 17% of the instances. Moreover, there was a gender disparity in the assignment of thematic roles, with linguistic expressions for women being assigned the Patient role and men the Agent role in 58.8% of the cases, whereas the roles were reversed in 41.2% of the instances, X2 (1, N = 262) = 8.07633, p < 0.005. The results are discussed in terms of the ideologies surrounding female and male sexuality in the pornography discourse. Potential patterns of power imbalance, objectification, and discrimination are highlighted. Finally, the evidence from psycholinguistic studies on the influence of the language structure on event construal is related to the results of the study.Keywords: corpus linguistics, gender studies, pornography, thematic roles
Procedia PDF Downloads 1912933 The Use of Videos: Effects on Children's Language and Literacy Skills
Authors: Rahimah Saimin
Abstract:
Previous research has shown that young children can learn from educational television programmes, videos or other technological media. However, the blending of any of these with traditional printed-based text appears to be omitted. Repeated viewing is an important factor in children's ability to comprehend the content or plot. The present study combined videos with traditional printed-based text and required repeated viewing and is original and distinctive. The first study was a pilot study to explore whether the intervention is implementable in ordinary classrooms. The second study explored whether the curricular embedding is important or whether the video with curricular embedding is effective. The third study explored the effect of “dosage”, i.e. whether a longer/ more intense intervention has a proportionately greater effect on outcomes. Both measured outcomes (comprehension, word sounds, and early word recognition) and unmeasured outcomes (engagement to reading traditional printed-based texts or/and multimodal texts) were obtained from this study. Observation indicated degree of engagement in reading. The theoretical framework was multimodality theory combined with Piaget’s and Vygotsky’s learning theories. An experimental design was used with 4-5-year-old children in nursery schools and primary schools. Six links to video clips exploring non-fiction science content were provided to teachers. The first session is whole-class and subsequent sessions small-group. The teacher then engaged the children in dialogue using supplementary materials. About half of each class was selected randomly for pre-post assessments. Two assessments were used the British Picture Vocabulary Scale (BPVSIII) and the York Assessment of Reading for Comprehension (YARC): Early Reading. Different programme fidelity means were deployed- observations, teacher self-reports attendance logs and post-delivery interviews. Data collection is in progress and results will be available shortly. If this multiphase study show effectiveness in one or other application, then teachers will have other tools which they can use to enhance vocabulary, letter knowledge and word reading. This would be a valuable addition to their repertoire.Keywords: language skills, literacy skills, multimodality, video
Procedia PDF Downloads 3392932 An Investigation of Vegetable Oils as Potential Insulating Liquid
Authors: Celal Kocatepe, Eyup Taslak, Celal Fadil Kumru, Oktay Arikan
Abstract:
While choosing insulating oil, characteristic features such as thermal cooling, endurance, efficiency and being environment-friendly should be considered. Mineral oils are referred as petroleum-based oil. In this study, vegetable oils investigated as an alternative insulating liquid to mineral oil. Dissipation factor, breakdown voltage, relative dielectric constant and resistivity changes with the frequency and voltage of mineral, rapeseed and nut oils were measured. Experimental studies were performed according to ASTM D924 and IEC 60156 standards.Keywords: breakdown voltage, dielectric dissipation factor, mineral oil, vegetable oils
Procedia PDF Downloads 6962931 On Performance of Cache Replacement Schemes in NDN-IoT
Authors: Rasool Sadeghi, Sayed Mahdi Faghih Imani, Negar Najafi
Abstract:
The inherent features of Named Data Networking (NDN) provides a robust solution for Internet of Thing (IoT). Therefore, NDN-IoT has emerged as a combined architecture which exploits the benefits of NDN for interconnecting of the heterogeneous objects in IoT. In NDN-IoT, caching schemes are a key role to improve the network performance. In this paper, we consider the effectiveness of cache replacement schemes in NDN-IoT scenarios. We investigate the impact of replacement schemes on average delay, average hop count, and average interest retransmission when replacement schemes are Least Frequently Used (LFU), Least Recently Used (LRU), First-In-First-Out (FIFO) and Random. The simulation results demonstrate that LFU and LRU present a stable performance when the cache size changes. Moreover, the network performance improves when the number of consumers increases.Keywords: NDN-IoT, cache replacement, performance, ndnSIM
Procedia PDF Downloads 3652930 Towards the Design of Gripper Independent of Substrate Surface Structures
Authors: Annika Schmidt, Ausama Hadi Ahmed, Carlo Menon
Abstract:
End effectors for robotic systems are becoming more and more advanced, resulting in a growing variety of gripping tasks. However, most grippers are application specific. This paper presents a gripper that interacts with an object’s surface rather than being dependent on a defined shape or size. For this purpose, ingressive and astrictive features are combined to achieve the desired gripping capabilities. The developed prototype is tested on a variety of surfaces with different hardness and roughness properties. The results show that the gripping mechanism works on all of the tested surfaces. The influence of the material properties on the amount of the supported load is also studied and the efficiency is discussed.Keywords: claw, dry adhesion, insects, material properties
Procedia PDF Downloads 3592929 Clustering the Wheat Seeds Using SOM Artificial Neural Networks
Authors: Salah Ghamari
Abstract:
In this study, the ability of self organizing map artificial (SOM) neural networks in clustering the wheat seeds varieties according to morphological properties of them was considered. The SOM is one type of unsupervised competitive learning. Experimentally, five morphological features of 300 seeds (including three varieties: gaskozhen, Md and sardari) were obtained using image processing technique. The results show that the artificial neural network has a good performance (90.33% accuracy) in classification of the wheat varieties despite of high similarity in them. The highest classification accuracy (100%) was achieved for sardari.Keywords: artificial neural networks, clustering, self organizing map, wheat variety
Procedia PDF Downloads 6592928 Study on Clarification of the Core Technology in a Monozukuri Company
Authors: Nishiyama Toshiaki, Tadayuki Kyountani, Nguyen Huu Phuc, Shigeyuki Haruyama, Oke Oktavianty
Abstract:
It is important to clarify the company’s core technology in product development process to strengthen their power in providing technology that meets the customer requirement. QFD method is adopted to clarify the core technology through identifying the high element technologies that are related to the voice of customer, and offer the most delightful features for customer. AHP is used to determine the importance of evaluating factors. A case study was conducted by using this approach in Japan’s Monozukuri Company (so called manufacturing company) to clarify their core technology based on customer requirements.Keywords: core technology, QFD, voices of customer, analysis procedure
Procedia PDF Downloads 3872927 Two Taxa of Paradiacheopsis Genera Recordings of the Myxomycetes from Turkey
Authors: Dursun Yağız, Ahmet Afyon
Abstract:
The study materials were collected from Isparta province in 2008. These materials were moved to the laboratory. The 'Most Chamber Techniques' were applied to the materials in the laboratory. Materials were examined with a stereo microscope. As a result of investigations carried out on the samples of sporophores which were developed in the laboratory, Paradiacheopsis erythropodia (Ing) Nann.-Bremek. and Paradiacheopsis longipes Hooff & Nann.-Bremek. species were identified. As a result of the literature research, it is determined that these taxa were new recordings in Turkey. The identified taxa have been added to Turkey's myxomycota. These two taxa’ microscopic features, photos, localities and substrate information were given.Keywords: myxomycete, paradiacheopsis, Turkey, slime mould
Procedia PDF Downloads 2842926 Modal Composition and Tectonic Provenance of the Sandstones of Ecca Group, Karoo Supergroup in the Eastern Cape Province, South Africa
Authors: Christopher Baiyegunhi, Kuiwu Liu, Oswald Gwavava
Abstract:
Petrography of the sandstones of Ecca Group, Karoo Supergroup in the Eastern Cape Province of South Africa have been investigated on composition, provenance and influence of weathering conditions. Petrographic studies based on quantitative analysis of the detrital minerals revealed that the sandstones are composed mostly of quartz, feldspar and lithic fragments of metamorphic and sedimentary rocks. The sandstones have an average framework composition of 24.3% quartz, 19.3% feldspar, 26.1% rock fragments, and 81.33% of the quartz grains are monocrystalline. These sandstones are generally very fine to fine grained, moderate to well sorted, and subangular to subrounded in shape. In addition, they are compositionally immature and can be classified as feldspathic wacke and lithic wacke. The absence of major petrographically distinctive compositional variations in the sandstones perhaps indicate homogeneity of their source. As a result of this, it is inferred that the transportation distance from the source area was quite short and the main mechanism of transportation was by river systems to the basin. The QFL ternary diagrams revealed dissected and transitional arc provenance pointing to an active margin and uplifted basement preserving the signature of a recycled provenance. This is an indication that the sandstones were derived from a magmatic arc provenance. Since magmatic provenance includes transitional arc and dissected arc, it also shows that the source area of the Ecca sediments had a secondary sedimentary and metasedimentary rocks from a marginal belt that developed as a result of rifting. The weathering diagrams and semi-quantitative weathering index indicate that the Ecca sandstones are mostly from a plutonic source area, with climatic conditions ranging from arid to humid. The compositional immaturity of the sandstones is suggested to be due to weathering or recycling and low relief or short transport from the source area. The detrital modal compositions of these sandstones are related to back arc to island and continental margin arc. The origin and deposition of the Ecca sandstones are due to low-moderate weathering, recycling of pre-existing rocks, erosion and transportation of debris from the orogeny of the Cape Fold Belt.Keywords: petrography, tectonic setting, provenance, Ecca Group, Karoo Basin
Procedia PDF Downloads 4342925 Inquiry on Regenerative Tourism in an Avian Destination: A Case Study of Kaliveli in Tamil Nadu, India
Authors: Anu Chandran, Reena Esther Rani
Abstract:
Background of the Study: Dotted with multiple Unique Destination Prepositions (UDPs), Tamil Nadu is an established tourism brand as regards leisure, MICE, culture, and ecological flavors. Albeit, the enchanting destination possesses distinctive attributes and resources yet to be tapped for better competitive advantage. Being a destination that allures an incredible variety of migratory birds, Tamil Nadu is deemed to be an ornithologist’s paradise. This study primarily explores the prospects of developing Kaliveli, recognized as a bird sanctuary in the Tindivanam forest division of the Villupuram district in the State. Kaliveli is an ideal nesting site for migratory birds and is currently apt for a prospective analysis of regenerative tourism. Objectives of the study: This research lays an accent on avian tourism as part and parcel of sustainable tourism ventures. The impacts of projects like the Ornithological Conservation Centre on tourists have been gauged in the present paper. It maps the futuristic proactive propositions linked to regenerative tourism on the site. How far technological innovations can do a world of good in Kaliveli through Artificial Intelligence, Smart Tourism, and similar latest coinages to entice real eco-tourists, have been conceptualized. The experiential dimensions of resource stewardship as regards facilitating tourists’ relish the offerings in a sustainable manner is at the crux of this work. Methodology: Modeled as a case study, this work tries to deliberate on the impact of existing projects attributed to avian fauna in Kalveli. Conducted in the qualitative research design mode, the case study method was adopted for the processing and presentation of study results drawn by applying thematic content analysis based on the data collected from the field. Result and discussion: One of the key findings relates to the kind of nature trails that can be a regenerative dynamic for eco-friendly tourism in Kaliveli. Field visits have been conducted to assess the niche tourism aspects which could be incorporated with the regenerative tourism model to be framed as part of the study.Keywords: regenerative tourism, Kaliveli bird sanctuary, sustainable development, resource Stewardship, Ornithology, Avian Fauna
Procedia PDF Downloads 812924 Morphological and Chemical Characterization of the Surface of Orthopedic Implant Materials
Authors: Bertalan Jillek, Péter Szabó, Judit Kopniczky, István Szabó, Balázs Patczai, Kinga Turzó
Abstract:
Hip and knee prostheses are one of the most frequently used medical implants, that can significantly improve patients’ quality of life. Long term success and biointegration of these prostheses depend on several factors, like bulk and surface characteristics, construction and biocompatibility of the material. The applied surgical technique, the general health condition and life-quality of the patient are also determinant factors. Medical devices used in orthopedic surgeries have different surfaces depending on their function inside the human body. Surface roughness of these implants determines the interaction with the surrounding tissues. Numerous modifications have been applied in the recent decades to improve a specific property of an implant. Our goal was to compare the surface characteristics of typical implant materials used in orthopedic surgery and traumatology. Morphological and chemical structure of Vortex plate anodized titanium, cemented THR (total hip replacement) stem high nitrogen REX steel (SS), uncemented THR stem and cup titanium (Ti) alloy with titanium plasma spray coating (TPS), cemented cup and uncemented acetabular liner HXL and UHMWPE and TKR (total knee replacement) femoral component CoCrMo alloy (Sanatmetal Ltd, Hungary) discs were examined. Visualization and elemental analysis were made by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Surface roughness was determined by atomic force microscopy (AFM) and profilometry. SEM and AFM revealed the morphological and roughness features of the examined materials. TPS Ti presented the highest Ra value (25 ± 2 μm, followed by CoCrMo alloy (535 ± 19 nm), Ti (227 ± 15 nm) and stainless steel (170 ± 11 nm). The roughness of the HXL and UHMWPE surfaces was in the same range, 147 ± 13 nm and 144 ± 15 nm, respectively. EDS confirmed typical elements on the investigated prosthesis materials: Vortex plate Ti (Ti, O, P); TPS Ti (Ti, O, Al); SS (Fe, Cr, Ni, C) CoCrMo (Co, Cr, Mo), HXL (C, Al, Ni) and UHMWPE (C, Al). The results indicate that the surface of prosthesis materials have significantly different features and the applied investigation methods are suitable for their characterization. Contact angle measurements and in vitro cell culture testing are further planned to test their surface energy characteristics and biocompatibility.Keywords: morphology, PE, roughness, titanium
Procedia PDF Downloads 1262923 Sustainable Development Approach for Coastal Erosion Problem in Thailand: Using Bamboo Sticks to Rehabilitate Coastal Erosion
Authors: Sutida Maneeanakekul, Dusit Wechakit, Somsak Piriyayota
Abstract:
Coastal erosion is a major problem in Thailand, in both the Gulf of Thailand and the Andaman Sea coasts. According to the Department of Marine and Coastal Resources, land erosion occurred along the 200 km coastline with an average rate of 5 meters/year. Coastal erosion affects public and government properties, as well as the socio-economy of the country, including emigration in coastal communities, loss of habitats, and decline in fishery production. To combat the problem of coastal erosion, projects utilizing bamboo sticks for coastal defense against erosion were carried out in 5 areas beginning in November, 2010, including: Pak Klong Munharn- Samut Songkhram Province; Ban Khun Samutmaneerat, Pak Klong Pramong and Chao Matchu Shrine-Samut Sakhon Province,and Pak Klong Hongthong – Chachoengsao Province by Marine and Coastal Resources Department. In 2012, an evaluation of the effectiveness of solving the problem of coastal erosion by using bamboo stick was carried out, with a focus on three aspects. Firstly, the change in physical and biological features after using the bamboo stick technique was assessed. Secondly, participation of people in the community in the way of managing the problem of coastal erosion were these aspects evaluated as part of the study. The last aspect that was evaluated is the satisfaction of the community toward this technique. The results of evaluation showed that the amounts of sediment have dramatically changed behind the bamboo sticks lines. The increase of sediment was found to be about 23.50-56.20 centimeters (during 2012-2013). In terms of biological aspect, there has been an increase in mangrove forest areas, especially at Bang Ya Prak, Samut Sakhon Province. Average tree density was found to be about 4,167 trees per square meter. Additionally, an increase in production of fisheries was observed. Presently, the change in the evaluated physical features tends to increase in every aspect, including the satisfaction of people in community toward the process of solving the erosion problem. People in the community are involved in the preparatory, operation, monitoring and evaluation process to resolve the problem in the medium levels.Keywords: bamboo sticks, coastal erosion, rehabilitate, Thailand sustainable development approach
Procedia PDF Downloads 2512922 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 172921 Concepts of Creation and Destruction as Cognitive Instruments in World View Study
Authors: Perizat Balkhimbekova
Abstract:
Evolutionary changes in cognitive world view taking place in the last decades are followed by changes in perception of the key concepts which are related to the certain lingua-cultural sphere. Also, such concepts reflect the person’s attitude to essential processes in the sphere of concepts, e.g. the opposite operations like creation and destruction. These changes in people’s life and thinking are displayed in a language world view. In order to open the maintenance of mental structures and concepts we should use language means as observable results of people’s cognitive activity. Semantics of words, free phrases and idioms should be considered as an authoritative source of information concerning concepts. The regularized set of concepts in people consciousness forms the sphere of concepts. Cognitive linguistics widely discusses the sphere of concepts as its crucial category defining it as the field of knowledge which is made of concepts. It is considered that a sphere of concepts comprises the various types of association and forms conceptual fields. As a material for the given research, the data from Russian National Corpus and British National Corpus were used. In is necessary to point out that data provided by computational studies, are intrinsic and verifiable; so that we have used them in order to get the reliable results. The procedure of study was based on such techniques as extracting of the context containing concepts of creation|destruction from the Russian National Corpus (RNC), and British National Corpus (BNC); analyzing and interpreting of those context on the basis of cognitive approach; finding of correspondence between the given concepts in the Russian and English world view. The key problem of our study is to find the correspondence between the elements of world view represented by opposite concepts such as creation and destruction. Findings: The concept of "destruction" indicates a process which leads to full or partial destruction of an object. In other words, it is a loss of the object primary essence: structures, properties, distinctive signs and its initial integrity. The concept of "creation", on the contrary, comprises positive characteristics, represents the activity aimed at improvement of the certain object, at the creation of ideal models of the world. On the other hand, destruction is represented much more widely in RNC than creation (1254 cases of the first concept by comparison to 192 cases for the second one). Our hypothesis consists in the antinomy represented by the aforementioned concepts. Being opposite both in respect of semantics and pragmatics, and from the point of view of axiology, they are at the same time complementary and interrelated concepts.Keywords: creation, destruction, concept, world view
Procedia PDF Downloads 3462920 Comparative Performance Analysis of Nonlinearity Cancellation Techniques for MOS-C Realization in Integrator Circuits
Authors: Hasan Çiçekli, Ahmet Gökçen, Uğur Çam
Abstract:
In this paper, a comparative performance analysis of mostly used four nonlinearity cancellation techniques used to realize the passive resistor by MOS transistors is presented. The comparison is done by using an integrator circuit which is employing sequentially Op-amp, OTRA and ICCII as active element. All of the circuits are implemented by MOS-C realization and simulated by PSPICE program using 0.35 µm process TSMC MOSIS model parameters. With MOS-C realization, the circuits became electronically tunable and fully integrable which is very important in IC design. The output waveforms, frequency responses, THD analysis results and features of the nonlinearity cancellation techniques are also given.Keywords: integrator circuits, MOS-C realization, nonlinearity cancellation, tuneable resistors
Procedia PDF Downloads 5342919 Use of Machine Learning Algorithms to Pediatric MR Images for Tumor Classification
Authors: I. Stathopoulos, V. Syrgiamiotis, E. Karavasilis, A. Ploussi, I. Nikas, C. Hatzigiorgi, K. Platoni, E. P. Efstathopoulos
Abstract:
Introduction: Brain and central nervous system (CNS) tumors form the second most common group of cancer in children, accounting for 30% of all childhood cancers. MRI is the key imaging technique used for the visualization and management of pediatric brain tumors. Initial characterization of tumors from MRI scans is usually performed via a radiologist’s visual assessment. However, different brain tumor types do not always demonstrate clear differences in visual appearance. Using only conventional MRI to provide a definite diagnosis could potentially lead to inaccurate results, and so histopathological examination of biopsy samples is currently considered to be the gold standard for obtaining definite diagnoses. Machine learning is defined as the study of computational algorithms that can use, complex or not, mathematical relationships and patterns from empirical and scientific data to make reliable decisions. Concerning the above, machine learning techniques could provide effective and accurate ways to automate and speed up the analysis and diagnosis for medical images. Machine learning applications in radiology are or could potentially be useful in practice for medical image segmentation and registration, computer-aided detection and diagnosis systems for CT, MR or radiography images and functional MR (fMRI) images for brain activity analysis and neurological disease diagnosis. Purpose: The objective of this study is to provide an automated tool, which may assist in the imaging evaluation and classification of brain neoplasms in pediatric patients by determining the glioma type, grade and differentiating between different brain tissue types. Moreover, a future purpose is to present an alternative way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow. Materials and Methods: A cohort, of 80 pediatric patients with a diagnosis of posterior fossa tumor, was used: 20 ependymomas, 20 astrocytomas, 20 medulloblastomas and 20 healthy children. The MR sequences used, for every single patient, were the following: axial T1-weighted (T1), axial T2-weighted (T2), FluidAttenuated Inversion Recovery (FLAIR), axial diffusion weighted images (DWI), axial contrast-enhanced T1-weighted (T1ce). From every sequence only a principal slice was used that manually traced by two expert radiologists. Image acquisition was carried out on a GE HDxt 1.5-T scanner. The images were preprocessed following a number of steps including noise reduction, bias-field correction, thresholding, coregistration of all sequences (T1, T2, T1ce, FLAIR, DWI), skull stripping, and histogram matching. A large number of features for investigation were chosen, which included age, tumor shape characteristics, image intensity characteristics and texture features. After selecting the features for achieving the highest accuracy using the least number of variables, four machine learning classification algorithms were used: k-Nearest Neighbour, Support-Vector Machines, C4.5 Decision Tree and Convolutional Neural Network. The machine learning schemes and the image analysis are implemented in the WEKA platform and MatLab platform respectively. Results-Conclusions: The results and the accuracy of images classification for each type of glioma by the four different algorithms are still on process.Keywords: image classification, machine learning algorithms, pediatric MRI, pediatric oncology
Procedia PDF Downloads 1492918 Unsteady Reactive Hydromagnetic Fluid Flow of a Two-Step Exothermic Chemical Reaction through a Channel
Authors: J. A. Gbadeyan, R. A. Kareem
Abstract:
In this paper, we investigated the effects of unsteady internal heat generation of a two-step exothermic reactive hydromagnetic fluid flow under different chemical kinetics namely: Sensitized, Arrhenius and Bimolecular kinetics through an isothermal wall temperature channel. The resultant modeled nonlinear partial differential equations were simplified and solved using a combined Laplace-Differential Transform Method (LDTM). The solutions obtained were discussed and presented graphically to show the salient features of the fluid flow and heat transfer characteristics.Keywords: unsteady, reactive, hydromagnetic, couette ow, exothermi creactio
Procedia PDF Downloads 4492917 Environmental Factors and Executive Functions of Children in 5-Year-Old Kindergarten
Authors: Stephanie Duval
Abstract:
The concept of educational success, combined with the overall development of the child in kindergarten, is at the center of current interests, both in research and in the environments responsible for the education of young children. In order to promote it, researchers emphasize the importance of studying the executive functions [EF] of children in preschool education. More precisely, the EFs, which refers to working memory [WM], inhibition, mental flexibility and planning, would be the pivotal element of the child’s educational success. In order to support the EFs of the child, and even his educational success, the quality of the environments is beginning to be explored more and more. The question that arises now is how to promote EFs for young children in the educational environment, in order to support their educational success? The objective of this study is to investigate the link between the quality of interactions in 5-year-old kindergarten and child’s EFs. The sample consists of 118 children (70 girls, 48 boys) in 12 classes. The quality of the interactions is observed from the Classroom Assessment Scoring System [CLASS], and the EFs (i.e., working memory, inhibition, cognitive flexibility, and planning) are measured with administered tests. The hypothesis of this study was that the quality of teacher-child interactions in preschool education, as measured by the CLASS, was associated with the child’s EFs. The results revealed that the quality of emotional support offered by adults in kindergarten, included in the CLASS tool, was positively and significantly related to WM and inhibition skills. The results also suggest that WM is a key skill in the development of EFs, which may be associated with the educational success of the child. However, this hypothesis remains to be clarified, as is the link with educational success. In addition, results showed that factors associated to the family (ex. parents’ income) moderate the relationship between the domain ‘instructional support’ of the CLASS (ex. concept development) and child’s WM skills. These data suggest a moderating effect related to family characteristics in the link between ‘quality of classroom interactions’ and ‘EFs’. This project proposes, as a future avenue, to check the distinctive effect of different environments (familial and educational) on the child’s EFs. More specifically, future study could examine the influence of the educational environment on EF skills, as well as whether or not there is a moderating effect of the family environment (ex. parents' income) on the link between the quality of the interactions in the classroom and the EFs of the children, as anticipated by this research.Keywords: executive functions [EFs], environmental factors, quality of interactions, preschool education
Procedia PDF Downloads 3652916 Prediction of Mental Health: Heuristic Subjective Well-Being Model on Perceived Stress Scale
Authors: Ahmet Karakuş, Akif Can Kilic, Emre Alptekin
Abstract:
A growing number of studies have been conducted to determine how well-being may be predicted using well-designed models. It is necessary to investigate the backgrounds of features in order to construct a viable Subjective Well-Being (SWB) model. We have picked the suitable variables from the literature on SWB that are acceptable for real-world data instructions. The goal of this work is to evaluate the model by feeding it with SWB characteristics and then categorizing the stress levels using machine learning methods to see how well it performs on a real dataset. Despite the fact that it is a multiclass classification issue, we have achieved significant metric scores, which may be taken into account for a specific task.Keywords: machine learning, multiclassification problem, subjective well-being, perceived stress scale
Procedia PDF Downloads 1332915 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data
Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine
Procedia PDF Downloads 2412914 Crafting of Paper Cutting Techniques for Embellishment of Fashion Textiles
Authors: A. Vaidya-Soocheta, K. M. Wong-Hon-Lang
Abstract:
Craft and fashion have always been interlinked. The combination of both often gives stunning results. The present study introduces ‘Paper Cutting Craft Techniques’ like the Japanese –Kirigami, Mexican –PapelPicado, German –Scherenschnitte, Polish –Wycinankito in textiles to develop innovative and novel design structures as embellishments and ornamentation. The project studies various ways of using these paper cutting techniques to obtain interesting features and delicate design patterns on fabrics. While paper has its advantages and related uses, it is fragile rigid and thus not appropriate for clothing. Fabric is sturdy, flexible, dimensionally stable and washable. In the present study, the cut out techniques develop creative design motifs and patterns to give an inventive and unique appeal to the fabrics. The beauty and fascination of lace in garments have always given them a nostalgic charm. Laces with their intricate and delicate complexity in combination with other materials add a feminine touch to a garment and give it a romantic, mysterious appeal. Various textured and decorative effects through fabric manipulation are experimented along with the use of paper cutting craft skills as an innovative substitute for developing lace or “Broderie Anglaise” effects on textiles. A number of assorted fabric types with varied textures were selected for the study. Techniques to avoid fraying and unraveling of the design cut fabrics were introduced. Fabrics were further manipulated by use of interesting prints with embossed effects on cut outs. Fabric layering in combination with assorted techniques such as cutting of folded fabric, printing, appliqué, embroidery, crochet, braiding, weaving added a novel exclusivity to the fabrics. The fabrics developed by these innovative methods were then tailored into garments. The study thus tested the feasibility and practicability of using these fabrics by designing a collection of evening wear garments based on the theme ‘Nostalgia’. The prototypes developed were complemented by designing fashion accessories with the crafted fabrics. Prototypes of accessories add interesting features to the study. The adaptation and application of this novel technique of paper cutting craft on textiles can be an innovative start for a new trend in textile and fashion industry. The study anticipates that this technique will open new avenues in the world of fashion to incorporate its use commercially.Keywords: collection, fabric cutouts, nostalgia, prototypes
Procedia PDF Downloads 3592913 Neural Networks Underlying the Generation of Neural Sequences in the HVC
Authors: Zeina Bou Diab, Arij Daou
Abstract:
The neural mechanisms of sequential behaviors are intensively studied, with songbirds a focus for learned vocal production. We are studying the premotor nucleus HVC at a nexus of multiple pathways contributing to song learning and production. The HVC consists of multiple classes of neuronal populations, each has its own cellular, electrophysiological and functional properties. During singing, a large subset of motor cortex analog-projecting HVCRA neurons emit a single 6-10 ms burst of spikes at the same time during each rendition of song, a large subset of basal ganglia-projecting HVCX neurons fire 1 to 4 bursts that are similarly time locked to vocalizations, while HVCINT neurons fire tonically at average high frequency throughout song with prominent modulations whose timing in relation to song remains unresolved. This opens the opportunity to define models relating explicit HVC circuitry to how these neurons work cooperatively to control learning and singing. We developed conductance-based Hodgkin-Huxley models for the three classes of HVC neurons (based on the ion channels previously identified from in vitro recordings) and connected them in several physiologically realistic networks (based on the known synaptic connectivity and specific glutaminergic and gabaergic pharmacology) via different architecture patterning scenarios with the aim to replicate the in vivo firing patterning behaviors. We are able, through these networks, to reproduce the in vivo behavior of each class of HVC neurons, as shown by the experimental recordings. The different network architectures developed highlight different mechanisms that might be contributing to the propagation of sequential neural activity (continuous or punctate) in the HVC and to the distinctive firing patterns that each class exhibits during singing. Examples of such possible mechanisms include: 1) post-inhibitory rebound in HVCX and their population patterns during singing, 2) different subclasses of HVCINT interacting via inhibitory-inhibitory loops, 3) mono-synaptic HVCX to HVCRA excitatory connectivity, and 4) structured many-to-one inhibitory synapses from interneurons to projection neurons, and others. Replication is only a preliminary step that must be followed by model prediction and testing.Keywords: computational modeling, neural networks, temporal neural sequences, ionic currents, songbird
Procedia PDF Downloads 722912 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos
Authors: Nassima Noufail, Sara Bouhali
Abstract:
In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.Keywords: video segmentation, action detection, classification, Kmeans, C3D
Procedia PDF Downloads 792911 Recommendations for Teaching Word Formation for Students of Linguistics Using Computer Terminology as an Example
Authors: Svetlana Kostrubina, Anastasia Prokopeva
Abstract:
This research presents a comprehensive study of the word formation processes in computer terminology within English and Russian languages and provides listeners with a system of exercises for training these skills. The originality is that this study focuses on a comparative approach, which shows both general patterns and specific features of English and Russian computer terms word formation. The key point is the system of exercises development for training computer terminology based on Bloom’s taxonomy. Data contain 486 units (228 English terms from the Glossary of Computer Terms and 258 Russian terms from the Terminological Dictionary-Reference Book). The objective is to identify the main affixation models in the English and Russian computer terms formation and to develop exercises. To achieve this goal, the authors employed Bloom’s Taxonomy as a methodological framework to create a systematic exercise program aimed at enhancing students’ cognitive skills in analyzing, applying, and evaluating computer terms. The exercises are appropriate for various levels of learning, from basic recall of definitions to higher-order thinking skills, such as synthesizing new terms and critically assessing their usage in different contexts. Methodology also includes: a method of scientific and theoretical analysis for systematization of linguistic concepts and clarification of the conceptual and terminological apparatus; a method of nominative and derivative analysis for identifying word-formation types; a method of word-formation analysis for organizing linguistic units; a classification method for determining structural types of abbreviations applicable to the field of computer communication; a quantitative analysis technique for determining the productivity of methods for forming abbreviations of computer vocabulary based on the English and Russian computer terms, as well as a technique of tabular data processing for a visual presentation of the results obtained. a technique of interlingua comparison for identifying common and different features of abbreviations of computer terms in the Russian and English languages. The research shows that affixation retains its productivity in the English and Russian computer terms formation. Bloom’s taxonomy allows us to plan a training program and predict the effectiveness of the compiled program based on the assessment of the teaching methods used.Keywords: word formation, affixation, computer terms, Bloom's taxonomy
Procedia PDF Downloads 182910 The Paradox of Design Aesthetics and the Sustainable Design
Authors: Asena Demirci, Gozen Guner Aktaş, Nur Ayalp
Abstract:
Nature provides a living space for humans, also in contrast it is destroyed by humans for their personal needs and ambitions. For decreasing these damages against nature, solutions are started to generate and to develop. Moreover, precautions are implemented. After 1960s, especially when the ozone layer got harmed and got thinner by toxic substances coming from man made structures, environmental problems which effected human’s activities of daily living. Thus, this subject about environmental solutions and precautions is becoming a priority issue for scientists. Most of the environmental problems are caused by buildings and factories which are built without any concerns about protecting nature. This situation creates awareness about environmental issues and also the terms like sustainability, Renewable energy show up in building, Construction and architecture sectors to provide environmental protection. In this perspective, the design disciplines also should be respectful to nature and the sustainability. Designs which involve the features like sustainability, renewability and being ecologic have specialties to be less detrimental to the environment rather than the designs which do not involve. Furthermore, these designs produce their own energy for consuming, So they do not use the natural resources. They do not contain harmful substances and they are made of recyclable materials. Thus, they are becoming environmentally friendly structures. There is a common concern among designers about the issue of sustainable design. They believe that the idea of sustainability inhibits the creativity. All works of design resemble each other from the point of aesthetics and technological matters. In addition, there is a concern about design ethics which aesthetic designs cannot be accepted as a priority. For these reasons, there are few designs included the features of being eco-friendly and well-designed and also had design concerns around the world. Despite the other design disciplines, The concept of sustainability is getting more important each day in interior architecture and interior design. As it is known that human being spends 90 % of his life in interior spaces, The importance of that concept in interior spaces is obvious. Aesthetic is another vital concern in interior space design also. Most of the time sustainable materials and sustainable interior design applications conflicts with personal aesthetic parameters. This study aims to discuss the great paradox between the design aesthetic and the sustainable design. Does the sustainable approach in interior design disturbs the design aesthetic? This is one of the most popular questions that have been discussed for a while. With this paper this question will be evaluated with a case study which analyzes the aesthetic perceptions and preferences of the users and designers in sustainable interior spaces.Keywords: aesthetics, interior design, sustainable design, sustainability
Procedia PDF Downloads 2932909 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection
Authors: Ali Hamza
Abstract:
Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network
Procedia PDF Downloads 842908 Linguistic Trend in the Qur'anic Tafsir of 'Al Tahreer Wa Al Tanveer' by Sheikh Tahir Bin A'shur
Authors: Numan Hasan
Abstract:
We have tried to highlight the linguistic trend in the Qur’anic Tafsir of ‘Al Tahreer wa Al Tanveer’ by Sheikh Tahir Bin A’shur, the brightest linguistic commentator in the modern era. We have started studying the life of Bin A’shur and his contributions to the field of Qur’anic knowledge. We have also studied to focus on the linguistic approach of ‘Al Tahreer wa Al Tanveer’ and emphasized the importance of linguistic interpretations. We have tried to have a clear understanding about the features and characteristics of his Tafsir. We have also reflected on the methodological approach and linguistic reference of his interpretation. In the conclusion we presented the main results of a research.Keywords: Sheikh Tahir Bin A’shur, tafsir, linguistics, interpretation, Islamic studies
Procedia PDF Downloads 377