Search results for: data driven diagnosis
26183 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area
Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim
Abstract:
In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.Keywords: data estimation, link data, machine learning, road network
Procedia PDF Downloads 51026182 Customer Data Analysis Model Using Business Intelligence Tools in Telecommunication Companies
Authors: Monica Lia
Abstract:
This article presents a customer data analysis model using business intelligence tools for data modelling, transforming, data visualization and dynamic reports building. Economic organizational customer’s analysis is made based on the information from the transactional systems of the organization. The paper presents how to develop the data model starting for the data that companies have inside their own operational systems. The owned data can be transformed into useful information about customers using business intelligence tool. For a mature market, knowing the information inside the data and making forecast for strategic decision become more important. Business Intelligence tools are used in business organization as support for decision-making.Keywords: customer analysis, business intelligence, data warehouse, data mining, decisions, self-service reports, interactive visual analysis, and dynamic dashboards, use cases diagram, process modelling, logical data model, data mart, ETL, star schema, OLAP, data universes
Procedia PDF Downloads 43126181 EGF Serum Level in Diagnosis and Prediction of Mood Disorder in Adolescents and Young Adults
Authors: Monika Dmitrzak-Weglarz, Aleksandra Rajewska-Rager, Maria Skibinska, Natalia Lepczynska, Piotr Sibilski, Joanna Pawlak, Pawel Kapelski, Joanna Hauser
Abstract:
Epidermal growth factor (EGF) is a well-known neurotrophic factor that involves in neuronal growth and synaptic plasticity. The proteomic research provided in order to identify novel candidate biological markers for mood disorders focused on elevated EGF serum level in patients during depression episode. However, the EGF association with mood disorder spectrum among adolescents and young adults has not been studied extensively. In this study, we aim to investigate the serum levels of EGF in adolescents and young adults during hypo/manic, depressive episodes and in remission compared to healthy control group. In our study, we involved 80 patients aged 12-24 years in 2-year follow-up study with a primary diagnosis of mood disorder spectrum, and 35 healthy volunteers matched by age and gender. Diagnoses were established according to DSM-IV-TR criteria using structured clinical interviews: K-SADS for child and adolescents, and SCID for young adults. Clinical and biological evaluations were made at baseline and euthymic mood (at 3th or 6th month of treatment and after 1 and 2 years). The Young Mania Rating Scale and Hamilton Rating Scale for Depression were used for assessment. The study protocols were approved by the relevant ethics committee. Serum protein concentration was determined by Enzyme-Linked Immunosorbent Assays (ELISA) method. Human EGF (cat. no DY 236) DuoSet ELISA kit was used (R&D Systems). Serum EGF levels were analysed with following variables: age, age under 18 and above 18 years old, sex, family history of affective disorders, drug-free vs. medicated. Shapiro-Wilk test was used to test the normality of the data. The homogeneity of variance was calculated with Levene’s test. EGF levels showed non-normal distribution and the homogeneity of variance was violated. Non-parametric tests: Mann-Whitney U test, Kruskall-Wallis ANOVA, Friedman’s ANOVA, Wilcoxon signed rank test, Spearman correlation coefficient was applied in the analyses The statistical significance level was set at p<0.05. Elevated EGF level at baseline (p=0.001) and at month 24 (p=0.02) was detected in study subjects compared with controls. Increased EGF level in women at month 12 (p=0.02) compared to men in study group have been observed. Using Wilcoxon signed rank test differences in EGF levels were detected: decrease from baseline to month 3 (p=0.014) and increase comparing: month 3 vs. 24 (p=0.013); month 6 vs. 12 (p=0.021) and vs. 24 (p=0.008). EGF level at baseline was negatively correlated with depression and mania occurrence at 24 months. EGF level at 24 months was positively correlated with depression and mania occurrence at 12 months. No other correlations of EGF levels with clinical and demographical variables have been detected. The findings of the present study indicate that EGF serum level is significantly elevated in the study group of patients compared to the controls. We also observed fluctuations in EGF levels during two years of disease observation. EGF seems to be useful as an early marker for prediction of diagnosis, course of illness and treatment response in young patients during first episode od mood disorders, which requires further investigation. Grant was founded by National Science Center in Poland no 2011/03/D/NZ5/06146.Keywords: biological marker, epidermal growth factor, mood disorders, prediction
Procedia PDF Downloads 19026180 COVID-19 Detection from Computed Tomography Images Using UNet Segmentation, Region Extraction, and Classification Pipeline
Authors: Kenan Morani, Esra Kaya Ayana
Abstract:
This study aimed to develop a novel pipeline for COVID-19 detection using a large and rigorously annotated database of computed tomography (CT) images. The pipeline consists of UNet-based segmentation, lung extraction, and a classification part, with the addition of optional slice removal techniques following the segmentation part. In this work, a batch normalization was added to the original UNet model to produce lighter and better localization, which is then utilized to build a full pipeline for COVID-19 diagnosis. To evaluate the effectiveness of the proposed pipeline, various segmentation methods were compared in terms of their performance and complexity. The proposed segmentation method with batch normalization outperformed traditional methods and other alternatives, resulting in a higher dice score on a publicly available dataset. Moreover, at the slice level, the proposed pipeline demonstrated high validation accuracy, indicating the efficiency of predicting 2D slices. At the patient level, the full approach exhibited higher validation accuracy and macro F1 score compared to other alternatives, surpassing the baseline. The classification component of the proposed pipeline utilizes a convolutional neural network (CNN) to make final diagnosis decisions. The COV19-CT-DB dataset, which contains a large number of CT scans with various types of slices and rigorously annotated for COVID-19 detection, was utilized for classification. The proposed pipeline outperformed many other alternatives on the dataset.Keywords: classification, computed tomography, lung extraction, macro F1 score, UNet segmentation
Procedia PDF Downloads 13226179 Mindfulness, Acceptance and Meaning in Life for Adults with Cancer
Authors: Fernanda F. Zimmermann, Beverley Burrell, Jennifer Jordan
Abstract:
Introduction: Supportive care for people affected by cancer is recognised as a priority for research but yet there is little solid evidence of the effectiveness of psychological treatments for those with advanced cancer. The literature suggests that mindfulness-based interventions may be acceptable and beneficial for this population. This study aims to develop a mindfulness intervention to provide emotional support for advanced cancer population. The treatment package includes mindfulness meditation, developing an acceptance attitude and reflections on meaning in life. Methods: This study design is a one-group pre-post test with a mixed methods approach. Participants are recruited through public and private hospitals in Christchurch, NZ. Quantitative measures are the Acceptance and Action Questionnaire-II, Mindful Coping Scale and, the Meaning in Life Questionnaire. Qualitative semi-structured interviews enquire about emotional support before and after the diagnosis, participants’ thoughts about meaning in life, expectations and reflections on the mindfulness training. Qualitative data will be analysed using thematic analysis. Treatment consists of one to one 30 minutes session weekly for 4 weeks using a pre-recorded CD/podcast of the mindfulness training. This research is part of the presenter’s PhD study. Findings: This project is currently underway. The presenter will provide preliminary data on the acceptability of the mindfulness training package being delivered to participants along with the recruitment strategies. We anticipate that this novel treatment used as a self-management tool will reduce psychological distress and enable better coping for patients with advanced cancer.Keywords: acceptance, cancer, meaning in life, mindfulness
Procedia PDF Downloads 35426178 Incidence of Idiopathic Inflammatory Myopathies and Their Risk of Cancer in Leeds, UK: An 11-year Epidemiological Study
Authors: Benoit Jauniaux, Azzam Ismail
Abstract:
Objectives: The aims were to identify all incident adult cases of idiopathic inflammatory myopathies (IIMs) in the City of Leeds, UK, and to estimate the risk of cancer in IIMs as compared with the general population. Methods: Cases of IIMs were ascertained by review of all muscle biopsy reports from the Neuropathology Laboratory. A review of medical records was undertaken for each case to review the clinical diagnosis and collect epidemiological data such as age, ethnicity, sex, and comorbidities, including cancer. Leeds denominator population numbers were publicly obtainable. Results: Two hundred and six biopsy reports were identified, and after review, 50 incident cases were included in the study between June 2010 and January 2021. Out of the 50 cases, 27 were male, and 23 were female. The mean incidence rate of IIMs in Leeds throughout the study period was 7.42/1 000 000 person years. The proportion of IIMs cases with a confirmed malignancy was 22%. Compared to the general population, the relative risk of cancer was significantly greater in the IIMs population(31.56, P < 0.01). Conclusions: The incidence rate of IIMs in Leeds was consistent with data from previous literature, however, disagreement exists between different methods of IIMs case inclusion due to varying clinical criteria and definitions. IIMs are associated with increased risk of cancer however, the pathogenesis of this relationship still requires investigating. This study supports the practice of malignancy screening and long-term surveillance in patients with IIMs.Keywords: idiopathic inflammatory myopathies, myositis, polymyositis, dermatomyositis, malignancy, epidemiology, incidence rate, relative risk
Procedia PDF Downloads 17426177 Photomicrograph-Based Neuropathology Consultation in Tanzania; The Utility of Static-Image Neurotelepathology in Low- And Middle-Income Countries
Authors: Francis Zerd, Brian E. Moore, Atuganile E. Malango, Patrick W. Hosokawa, Kevin O. Lillehei, Laurence Lemery Mchome, D. Ryan Ormond
Abstract:
Introduction: Since neuropathologic diagnosis in the developing world is hampered by limitations in technical infrastructure, trained laboratory personnel, and subspecialty-trained pathologists, the use of telepathology for diagnostic support, second-opinion consultations, and ongoing training holds promise as a means of addressing these challenges. This research aims to assess the utility of static teleneuropathology in improving neuropathologic diagnoses in low- and middle-income countries. Methods: Consecutive neurosurgical biopsy and resection specimens obtained at Muhimbili National Hospital in Tanzania between July 1, 2018, and June 30, 2019, were selected for retrospective, blinded static-image neuropathologic review followed by on-site review by an expert neuropathologist. Results: A total of 75 neuropathologic cases were reviewed. The agreement of static images and on-site glass diagnosis was 71% with strict criteria and 88% with less stringent criteria. This represents an overall improvement in diagnostic accuracy from 36% by general pathologists to 71% by a neuropathologist using static telepathology (or 76% to 88% with less stringent criteria). Conclusions: Telepathology offers a suitable means of providing diagnostic support, second-opinion consultations, and ongoing training to pathologists practicing in resource-limited countries. Moreover, static digital teleneuropathology is an uncomplicated, cost-effective, and reliable way to achieve these goals.Keywords: neuropathology, resource-limited settings, static image, Tanzania, teleneuropathology
Procedia PDF Downloads 10226176 Knowledge State of Medical Students in Morocco Regarding Metabolic Dysfunction Associated with Non-alcoholic Fatty Liver Disease (MASLD)
Authors: Elidrissi Laila, El Rhaoussi Fatima-Zahra, Haddad Fouad, Tahiri Mohamed, Hliwa Wafaa, Bellabah Ahmed, Badre Wafaa
Abstract:
Introduction: Metabolic Dysfunction Associated with Non-Alcoholic Fatty Liver Disease (MASLD), formerly known as Non-Alcoholic Fatty Liver Disease (NAFLD), is the leading cause of chronic liver disease. The cardiometabolic risk factors associated with MASLD represent common health issues and significant public health challenges. Medical students, being active participants in the healthcare system and a young demographic, are particularly relevant for understanding this entity to prevent its occurrence on a personal and collective level. The objective of our study is to assess the level of knowledge among medical students regarding MASLD, its risk factors, and its long-term consequences. Materials and Methods: We conducted a descriptive cross-sectional study using an anonymous questionnaire distributed through social media over a period of 2 weeks. Medical students from various faculties in Morocco answered 22 questions about MASLD, its etiological factors, diagnosis, complications, and principles of treatment. All responses were analyzed using the Jamovi software. Results: A total of 124 students voluntarily provided complete responses. 59% of our participants were in their 3rd year, with a median age of 21 years. Among the respondents, 27% were overweight, obese, or diabetic. 83% correctly answered more than half of the questions, and 77% believed they knew about MASLD. However, 84% of students were unaware that MASLD is the leading cause of chronic liver disease, and 12% even considered it a rare condition. Regarding etiological factors, overweight and obesity were mentioned in 93% of responses, and type 2 diabetes in 84%. 62% of participants believed that type 1 diabetes could not be implicated in MASLD. For 83 students, MASLD was considered a diagnosis of exclusion, while 41 students believed that a biopsy was mandatory for diagnosis. 12% believed that MASLD did not lead to long-term complications, and 44% were unaware that MASLD could progress to hepatocellular carcinoma. Regarding treatment, 85% included weight loss, and 19% did not consider diabetes management as a therapeutic approach for MASLD. At the end of the questionnaire, 89% of the students expressed a desire to learn more about MASLD and were invited to access an informative sheet through a hyperlink. Conclusion: MASLD represents a significant public health concern due to the prevalence of its risk factors, notably the obesity pandemic, which is widespread among the young population. There is a need for awareness about the seriousness of this emerging and long-underestimated condition among young future physicians.Keywords: MASLD, medical students, obesity, diabetes
Procedia PDF Downloads 7426175 Opening up Government Datasets for Big Data Analysis to Support Policy Decisions
Authors: K. Hardy, A. Maurushat
Abstract:
Policy makers are increasingly looking to make evidence-based decisions. Evidence-based decisions have historically used rigorous methodologies of empirical studies by research institutes, as well as less reliable immediate survey/polls often with limited sample sizes. As we move into the era of Big Data analytics, policy makers are looking to different methodologies to deliver reliable empirics in real-time. The question is not why did these people do this for the last 10 years, but why are these people doing this now, and if the this is undesirable, and how can we have an impact to promote change immediately. Big data analytics rely heavily on government data that has been released in to the public domain. The open data movement promises greater productivity and more efficient delivery of services; however, Australian government agencies remain reluctant to release their data to the general public. This paper considers the barriers to releasing government data as open data, and how these barriers might be overcome.Keywords: big data, open data, productivity, data governance
Procedia PDF Downloads 37126174 A Review on Existing Challenges of Data Mining and Future Research Perspectives
Authors: Hema Bhardwaj, D. Srinivasa Rao
Abstract:
Technology for analysing, processing, and extracting meaningful data from enormous and complicated datasets can be termed as "big data." The technique of big data mining and big data analysis is extremely helpful for business movements such as making decisions, building organisational plans, researching the market efficiently, improving sales, etc., because typical management tools cannot handle such complicated datasets. Special computational and statistical issues, such as measurement errors, noise accumulation, spurious correlation, and storage and scalability limitations, are brought on by big data. These unique problems call for new computational and statistical paradigms. This research paper offers an overview of the literature on big data mining, its process, along with problems and difficulties, with a focus on the unique characteristics of big data. Organizations have several difficulties when undertaking data mining, which has an impact on their decision-making. Every day, terabytes of data are produced, yet only around 1% of that data is really analyzed. The idea of the mining and analysis of data and knowledge discovery techniques that have recently been created with practical application systems is presented in this study. This article's conclusion also includes a list of issues and difficulties for further research in the area. The report discusses the management's main big data and data mining challenges.Keywords: big data, data mining, data analysis, knowledge discovery techniques, data mining challenges
Procedia PDF Downloads 11026173 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs
Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare
Abstract:
The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio
Procedia PDF Downloads 9826172 Monitoring Prolong Use of Intravenous Antibiotics: Antimicrobial Stewardship
Authors: Komal Fizza
Abstract:
Irrational and non-judicious use of antibiotics pave the way for an upsurge in antibiotic resistance, diminished effectiveness of different therapeutic regimens and as well as impounding effect on disease management leading to further morbidities. In the backdrop of this the current research is aimed to assess whether antimicrobial prescribing is in accordance with the Infectious Disease Society of America Guidelines in hospitalized patients at Shifa International Hospital, Islamabad, Pakistan. Shifa International Hospital, Islamabad is a 500 bed hospital. With the help of MIS team a form wad developed that gave the information about medical records number, name of the patient, day of start of antibiotic, the day antibiotic is supposed to be stopped and as well as the diagnosis of the patient. A ward pharmacist was employed to generate this report on a daily basis. The therapeutic regiment was reviewed by the pharmacist by monitoring the clinical progress, laboratory report and diagnosis. On the basis of this information, pharmacist made suggestions and forwarded to the hospital doctors responsible for prescribing antibiotics. If desired, changes were made regularly. In the current research our main focus was to implement this action and therefore, started monitoring patients who were on antibiotic regimens for more than 10-15 days. We took this initiative since November, 2013. At the start of the program a maximum 19 patients/day were reported to be on antibiotic regimen for more than 10-15 days. After the implementation of the initiative, the number of patients was decreased to fifteen patients per day in December, further decreased to 7 in the month of January and 9 and 6 in February and March respectively. The average patient census was 350. The current pilot study highlighted the role of pharmacist in initiating antibiotic stewardship programs in hospital settings.Keywords: stewardship, antibiotics, resistance, clinical process
Procedia PDF Downloads 35326171 The Role Support Groups Play in Decreasing Depression and PTSD in Cancer Survivors: A Literature Review
Authors: Julianne Macmullen
Abstract:
Due to advances in technology and early detection and treatment of cancer, many cancer patients are surviving longer than five years post-diagnosis. Most cancer patients suffer from depression, anxiety, and post-traumatic stress disorder (PTSD) at some point during diagnosis, treatment, and survivorship. A subgroup of patients will continue to suffer from depression and PTSD and require early intervention. Support groups provide patients with the emotional and informational support they require while also giving survivors a sense of community, friendship, and purpose. This type of support is recognized by researchers to improve the quality of life while also decreasing depression and PTSD symptoms. The gaps in the literature include cultural diversity, minorities, and support groups involving cancer types other than breast cancer. Another gap in the literature includes the perceptions of cancer patients as well as longitudinal studies to determine the relationships between support groups and decreased depression and PTSD rates over time. Future research is required to fill the gaps in the literature mentioned previously. Future research is also needed to analyze the difference in age groups and different types of support groups such as professionally-led, peer-led, and online. Implications for practice involve providers assessing for the symptoms of depression and PTSD in order to offer prompt treatment and support services to those patients. In conclusion, social support by way of support groups improves the quality of life, gives survivors a sense of purpose to help others while also gaining the support they need, and reduces the rate of depressive episodes related to PTSD.Keywords: cancer survivor, survivorship, post-traumatic stress disorder (PTSD), depression, support groups
Procedia PDF Downloads 17626170 The Analyzer: Clustering Based System for Improving Business Productivity by Analyzing User Profiles to Enhance Human Computer Interaction
Authors: Dona Shaini Abhilasha Nanayakkara, Kurugamage Jude Pravinda Gregory Perera
Abstract:
E-commerce platforms have revolutionized the shopping experience, offering convenient ways for consumers to make purchases. To improve interactions with customers and optimize marketing strategies, it is essential for businesses to understand user behavior, preferences, and needs on these platforms. This paper focuses on recommending businesses to customize interactions with users based on their behavioral patterns, leveraging data-driven analysis and machine learning techniques. Businesses can improve engagement and boost the adoption of e-commerce platforms by aligning behavioral patterns with user goals of usability and satisfaction. We propose TheAnalyzer, a clustering-based system designed to enhance business productivity by analyzing user-profiles and improving human-computer interaction. The Analyzer seamlessly integrates with business applications, collecting relevant data points based on users' natural interactions without additional burdens such as questionnaires or surveys. It defines five key user analytics as features for its dataset, which are easily captured through users' interactions with e-commerce platforms. This research presents a study demonstrating the successful distinction of users into specific groups based on the five key analytics considered by TheAnalyzer. With the assistance of domain experts, customized business rules can be attached to each group, enabling The Analyzer to influence business applications and provide an enhanced personalized user experience. The outcomes are evaluated quantitatively and qualitatively, demonstrating that utilizing TheAnalyzer’s capabilities can optimize business outcomes, enhance customer satisfaction, and drive sustainable growth. The findings of this research contribute to the advancement of personalized interactions in e-commerce platforms. By leveraging user behavioral patterns and analyzing both new and existing users, businesses can effectively tailor their interactions to improve customer satisfaction, loyalty and ultimately drive sales.Keywords: data clustering, data standardization, dimensionality reduction, human computer interaction, user profiling
Procedia PDF Downloads 7426169 Portable Palpation Probe for Diabetic Foot Ulceration Monitoring
Authors: Bummo Ahn
Abstract:
Palpation is widely used to measure soft tissue firmness or stiffness in the living condition in order to apply detection, diagnosis, and treatment of tumors, scar tissue, abnormal muscle tone, or muscle spasticity. Since these methods are subjective and depend on the proficiency level, it is concluded that there are other diagnoses depending on the condition of the experts and the results are not objective. The mechanical property obtained by using the elasticity of the tissue is important to calculate a predictive variable for monitoring abnormal tissues. If the mechanical load such as reaction force on the foot increases in the same region under the same conditions, the mechanical property of the tissue is changed. Therefore, objective diagnosis is possible not only for experts but also for patients using this quantitative information. Furthermore, the portable system also allows non-experts to easily diagnose at home, not in hospitals or institutions. In this paper, we introduce a portable palpation system that can be used to measure the mechanical properties of human tissue, which can be applied to monitor diabetic foot ulceration patients with measuring the mechanical property change of foot tissue. The system was designed to be smaller and portable in comparison with the conventional palpation systems. It is consists of the probe, the force sensor, linear actuator, micro control unit, the display module, battery, and housing. Using this system, we performed validation experiments by applying different palpations (3 and 5 mm) to soft tissue (silicone rubber) and measured reaction forces. In addition, we estimated the elastic moduli of the soft tissue against different palpations and compare the estimated elastic moduli that show similar value even if the palpation depths are different.Keywords: palpation probe, portable, diabetic foot ulceration, monitoring, mechanical property
Procedia PDF Downloads 12026168 Novel Liposomal Nanocarriers For Long-term Tumor Imaging
Authors: Mohamad Ahrari, Kayvan Sadri, Mahmoud Reza Jafari
Abstract:
PEGylated liposomes have a smaller volume of distribution and decreased clearance, consequently, due to their more prolonged presence in bloodstream and maintaining their stability during this period, these liposomes can be applied for imaging tumoral sites. The purpose of this study is to develop an appropriate radiopharmaceutical agent in long-term imaging for improved diagnosis and evaluation of tumors. In this study, liposomal formulations encapsulating albumin is synthesized by solvent evaporation method along with homogenization, and their characteristics were assessed. Then these liposomes labeled by Philips method and the rate of stability of labeled liposomes in serum, and ultimately the rate of biodistribution and gamma scintigraphy in C26-colon carcinoma tumor-bearing mice, were studied. The result of the study of liposomal characteristics displayed that capable of accumulating in tumor sites based of EPR phenomenon. these liposomes also have high stability for maintaining encapsulated albumin in a long time. In the study of biodistribution of these liposomes in mice, they accumulated more in the kidney, liver, spleen, and tumor sites, which, even after clearing formulations in the bloodstream, they existed in high levels in these organs up to 96 hours. In gamma scintigraphy also, organs with high activity accumulation from early hours up to 96 hours were visible in the form of hot spots. concluded that PEGylated liposomal formulation encapsulating albumin can be labeled with In-Oxine, and obtained stabilized formulation for long-term imaging, that have more favorable conditions for the evaluation of tumors and it will cause early diagnosis of tumors.Keywords: nano liposome, 111In-oxine, imaging, biodistribution, tumor
Procedia PDF Downloads 11326167 In-situ Acoustic Emission Analysis of a Polymer Electrolyte Membrane Water Electrolyser
Authors: M. Maier, I. Dedigama, J. Majasan, Y. Wu, Q. Meyer, L. Castanheira, G. Hinds, P. R. Shearing, D. J. L. Brett
Abstract:
Increasing the efficiency of electrolyser technology is commonly seen as one of the main challenges on the way to the Hydrogen Economy. There is a significant lack of understanding of the different states of operation of polymer electrolyte membrane water electrolysers (PEMWE) and how these influence the overall efficiency. This in particular means the two-phase flow through the membrane, gas diffusion layers (GDL) and flow channels. In order to increase the efficiency of PEMWE and facilitate their spread as commercial hydrogen production technology, new analytic approaches have to be found. Acoustic emission (AE) offers the possibility to analyse the processes within a PEMWE in a non-destructive, fast and cheap in-situ way. This work describes the generation and analysis of AE data coming from a PEM water electrolyser, for, to the best of our knowledge, the first time in literature. Different experiments are carried out. Each experiment is designed so that only specific physical processes occur and AE solely related to one process can be measured. Therefore, a range of experimental conditions is used to induce different flow regimes within flow channels and GDL. The resulting AE data is first separated into different events, which are defined by exceeding the noise threshold. Each acoustic event consists of a number of consequent peaks and ends when the wave diminishes under the noise threshold. For all these acoustic events the following key attributes are extracted: maximum peak amplitude, duration, number of peaks, peaks before the maximum, average intensity of a peak and time till the maximum is reached. Each event is then expressed as a vector containing the normalized values for all criteria. Principal Component Analysis is performed on the resulting data, which orders the criteria by the eigenvalues of their covariance matrix. This can be used as an easy way of determining which criteria convey the most information on the acoustic data. In the following, the data is ordered in the two- or three-dimensional space formed by the most relevant criteria axes. By finding spaces in the two- or three-dimensional space only occupied by acoustic events originating from one of the three experiments it is possible to relate physical processes to certain acoustic patterns. Due to the complex nature of the AE data modern machine learning techniques are needed to recognize these patterns in-situ. Using the AE data produced before allows to train a self-learning algorithm and develop an analytical tool to diagnose different operational states in a PEMWE. Combining this technique with the measurement of polarization curves and electrochemical impedance spectroscopy allows for in-situ optimization and recognition of suboptimal states of operation.Keywords: acoustic emission, gas diffusion layers, in-situ diagnosis, PEM water electrolyser
Procedia PDF Downloads 15626166 A Systematic Review on Challenges in Big Data Environment
Authors: Rimmy Yadav, Anmol Preet Kaur
Abstract:
Big Data has demonstrated the vast potential in streamlining, deciding, spotting business drifts in different fields, for example, producing, fund, Information Technology. This paper gives a multi-disciplinary diagram of the research issues in enormous information and its procedures, instruments, and system identified with the privacy, data storage management, network and energy utilization, adaptation to non-critical failure and information representations. Other than this, result difficulties and openings accessible in this Big Data platform have made.Keywords: big data, privacy, data management, network and energy consumption
Procedia PDF Downloads 31226165 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease
Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani
Abstract:
Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence
Procedia PDF Downloads 2026164 Biophysical Features of Glioma-Derived Extracellular Vesicles as Potential Diagnostic Markers
Authors: Abhimanyu Thakur, Youngjin Lee
Abstract:
Glioma is a lethal brain cancer whose early diagnosis and prognosis are limited due to the dearth of a suitable technique for its early detection. Current approaches, including magnetic resonance imaging (MRI), computed tomography (CT), and invasive biopsy for the diagnosis of this lethal disease, hold several limitations, demanding an alternative method. Recently, extracellular vesicles (EVs) have been used in numerous biomarker studies, majorly exosomes and microvesicles (MVs), which are found in most of the cells and biofluids, including blood, cerebrospinal fluid (CSF), and urine. Remarkably, glioma cells (GMs) release a high number of EVs, which are found to cross the blood-brain-barrier (BBB) and impersonate the constituents of parent GMs including protein, and lncRNA; however, biophysical properties of EVs have not been explored yet as a biomarker for glioma. We isolated EVs from cell culture conditioned medium of GMs and regular primary culture, blood, and urine of wild-type (WT)- and glioma mouse models, and characterized by nano tracking analyzer, transmission electron microscopy, immunogold-EM, and differential light scanning. Next, we measured the biophysical parameters of GMs-EVs by using atomic force microscopy. Further, the functional constituents of EVs were examined by FTIR and Raman spectroscopy. Exosomes and MVs-derived from GMs, blood, and urine showed distinction biophysical parameters (roughness, adhesion force, and stiffness) and different from that of regular primary glial cells, WT-blood, and -urine, which can be attributed to the characteristic functional constituents. Therefore, biophysical features can be potential diagnostic biomarkers for glioma.Keywords: glioma, extracellular vesicles, exosomes, microvesicles, biophysical properties
Procedia PDF Downloads 14226163 Acute Severe Hyponatremia in Patient with Psychogenic Polydipsia, Learning Disability and Epilepsy
Authors: Anisa Suraya Ab Razak, Izza Hayat
Abstract:
Introduction: The diagnosis and management of severe hyponatremia in neuropsychiatric patients present a significant challenge to physicians. Several factors contribute, including diagnostic shadowing and attributing abnormal behavior to intellectual disability or psychiatric conditions. Hyponatraemia is the commonest electrolyte abnormality in the inpatient population, ranging from mild/asymptomatic, moderate to severe levels with life-threatening symptoms such as seizures, coma and death. There are several documented fatal case reports in the literature of severe hyponatremia secondary to psychogenic polydipsia, often diagnosed only in autopsy. This paper presents a case study of acute severe hyponatremia in a neuropsychiatric patient with early diagnosis and admission to intensive care. Case study: A 21-year old Caucasian male with known epilepsy and learning disability was admitted from residential living with generalized tonic-clonic self-terminating seizures after refusing medications for several weeks. Evidence of superficial head injury was detected on physical examination. His laboratory data demonstrated mild hyponatremia (125 mmol/L). Computed tomography imaging of his brain demonstrated no acute bleed or space-occupying lesion. He exhibited abnormal behavior - restlessness, drinking water from bathroom taps, inability to engage, paranoia, and hypersexuality. No collateral history was available to establish his baseline behavior. He was loaded with intravenous sodium valproate and leveritircaetam. Three hours later, he developed vomiting and a generalized tonic-clonic seizure lasting forty seconds. He remained drowsy for several hours and regained minimal recovery of consciousness. A repeat set of blood tests demonstrated profound hyponatremia (117 mmol/L). Outcomes: He was referred to intensive care for peripheral intravenous infusion of 2.7% sodium chloride solution with two-hourly laboratory monitoring of sodium concentration. Laboratory monitoring identified dangerously rapid correction of serum sodium concentration, and hypertonic saline was switched to a 5% dextrose solution to reduce the risk of acute large-volume fluid shifts from the cerebral intracellular compartment to the extracellular compartment. He underwent urethral catheterization and produced 8 liters of urine over 24 hours. Serum sodium concentration remained stable after 24 hours of correction fluids. His GCS recovered to baseline after 48 hours with improvement in behavior -he engaged with healthcare professionals, understood the importance of taking medications, admitted to illicit drug use and drinking massive amounts of water. He was transferred from high-dependency care to ward level and was initiated on multiple trials of anti-epileptics before achieving seizure-free days two weeks after resolution of acute hyponatremia. Conclusion: Psychogenic polydipsia is often found in young patients with intellectual disability or psychiatric disorders. Patients drink large volumes of water daily ranging from ten to forty liters, resulting in acute severe hyponatremia with mortality rates as high as 20%. Poor outcomes are due to challenges faced by physicians in making an early diagnosis and treating acute hyponatremia safely. A low index of suspicion of water intoxication is required in this population, including patients with known epilepsy. Monitoring urine output proved to be clinically effective in aiding diagnosis. Early referral and admission to intensive care should be considered for safe correction of sodium concentration while minimizing risk of fatal complications e.g. central pontine myelinolysis.Keywords: epilepsy, psychogenic polydipsia, seizure, severe hyponatremia
Procedia PDF Downloads 12226162 Survey on Big Data Stream Classification by Decision Tree
Authors: Mansoureh Ghiasabadi Farahani, Samira Kalantary, Sara Taghi-Pour, Mahboubeh Shamsi
Abstract:
Nowadays, the development of computers technology and its recent applications provide access to new types of data, which have not been considered by the traditional data analysts. Two particularly interesting characteristics of such data sets include their huge size and streaming nature .Incremental learning techniques have been used extensively to address the data stream classification problem. This paper presents a concise survey on the obstacles and the requirements issues classifying data streams with using decision tree. The most important issue is to maintain a balance between accuracy and efficiency, the algorithm should provide good classification performance with a reasonable time response.Keywords: big data, data streams, classification, decision tree
Procedia PDF Downloads 52126161 Robust and Dedicated Hybrid Cloud Approach for Secure Authorized Deduplication
Authors: Aishwarya Shekhar, Himanshu Sharma
Abstract:
Data deduplication is one of important data compression techniques for eliminating duplicate copies of repeating data, and has been widely used in cloud storage to reduce the amount of storage space and save bandwidth. In this process, duplicate data is expunged, leaving only one copy means single instance of the data to be accumulated. Though, indexing of each and every data is still maintained. Data deduplication is an approach for minimizing the part of storage space an organization required to retain its data. In most of the company, the storage systems carry identical copies of numerous pieces of data. Deduplication terminates these additional copies by saving just one copy of the data and exchanging the other copies with pointers that assist back to the primary copy. To ignore this duplication of the data and to preserve the confidentiality in the cloud here we are applying the concept of hybrid nature of cloud. A hybrid cloud is a fusion of minimally one public and private cloud. As a proof of concept, we implement a java code which provides security as well as removes all types of duplicated data from the cloud.Keywords: confidentiality, deduplication, data compression, hybridity of cloud
Procedia PDF Downloads 38326160 A Review of Machine Learning for Big Data
Authors: Devatha Kalyan Kumar, Aravindraj D., Sadathulla A.
Abstract:
Big data are now rapidly expanding in all engineering and science and many other domains. The potential of large or massive data is undoubtedly significant, make sense to require new ways of thinking and learning techniques to address the various big data challenges. Machine learning is continuously unleashing its power in a wide range of applications. In this paper, the latest advances and advancements in the researches on machine learning for big data processing. First, the machine learning techniques methods in recent studies, such as deep learning, representation learning, transfer learning, active learning and distributed and parallel learning. Then focus on the challenges and possible solutions of machine learning for big data.Keywords: active learning, big data, deep learning, machine learning
Procedia PDF Downloads 44626159 Communication Layer Security in Smart Farming: A Survey on Wireless Technologies
Authors: Hossein Mohammadi Rouzbahani, Hadis Karimipour, Evan Fraser, Ali Dehghantanha, Emily Duncan, Arthur Green, Conchobhair Russell
Abstract:
Human population growth has driven rising demand for food that has, in turn, imposed huge impacts on the environment. In an effort to reconcile our need to produce more sustenance while also protecting the world’s ecosystems, farming is becoming more reliant on smart tools and communication technologies. Developing a smart farming framework allows farmers to make more efficient use of inputs, thus protecting water quality and biodiversity habitat. Internet of Things (IoT), which has revolutionized every sphere of the economy, is being applied to agriculture by connecting on-farm devices and providing real-time monitoring of everything from environmental conditions to market signals through to animal health data. However, utilizing IoT means farming networks are now vulnerable to malicious activities, mostly when wireless communications are highly employed. With that in mind, this research aims to review different utilized communication technologies in smart farming. Moreover, possible cyber-attacks are investigated to discover the vulnerabilities of communication technologies considering the most frequent cyber-attacks that have been happened.Keywords: smart farming, Internet of Things, communication layer, cyber-attack
Procedia PDF Downloads 24226158 Strengthening Legal Protection of Personal Data through Technical Protection Regulation in Line with Human Rights
Authors: Tomy Prihananto, Damar Apri Sudarmadi
Abstract:
Indonesia recognizes the right to privacy as a human right. Indonesia provides legal protection against data management activities because the protection of personal data is a part of human rights. This paper aims to describe the arrangement of data management and data management in Indonesia. This paper is a descriptive research with qualitative approach and collecting data from literature study. Results of this paper are comprehensive arrangement of data that have been set up as a technical requirement of data protection by encryption methods. Arrangements on encryption and protection of personal data are mutually reinforcing arrangements in the protection of personal data. Indonesia has two important and immediately enacted laws that provide protection for the privacy of information that is part of human rights.Keywords: Indonesia, protection, personal data, privacy, human rights, encryption
Procedia PDF Downloads 18326157 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization
Authors: R. O. Osaseri, A. R. Usiobaifo
Abstract:
The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault
Procedia PDF Downloads 32426156 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix
Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung
Abstract:
Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.Keywords: medical technology, artificial intelligence, radiology, lung cancer
Procedia PDF Downloads 6926155 Impact of Modern Beehive on Income of Rural Households: Evidence from Bugina District of Northern Ethiopia
Authors: Wondmnew Derebe Yohannis
Abstract:
The enhanced utilization of modern beehives holds significant potential to enhance the livelihoods of smallholder farmers who heavily rely on mixed crop-livestock farming for their income. Recognizing this, the distribution of improved beehives has been implemented across various regions in Ethiopia, including the Bugina district. However, the precise impact of these improved beehives on farmers' income has received limited attention. To address this gap, this study aims to assess the influence of adopting upgraded beehives on rural households' income and asset accumulation. To conduct this research, survey data was gathered from a sample of 350 households selected through random sampling. The collected data was then analyzed using an econometric stochastic frontier model (ESRM) approach. The findings reveal that the adoption of improved beehives has resulted in higher annual income and asset growth for beekeepers. On average, those who adopted the improved beehives earned approximately 6,077 Ethiopian Birr (ETB) more than their counterparts who did not adopt these beehives. However, it is worth noting that the impact of adoption would have been even greater for non-adopters, as evidenced by the negative transitional heterogeneity effect of 1792 ETB. Furthermore, the analysis indicates that the decision to adopt or not adopt improved beehives was driven by individual self-selection. The adoption of improved beehives also led to an increase in fixed assets for households, establishing it as a viable strategy for poverty reduction. Overall, this study underscores the positive effect of adopting improved beehives on rural households' income and asset holdings, showcasing its potential to uplift smallholder farmers and serve as an alternative mechanism for reducing poverty.Keywords: impact, adoption, endogenous switching regression, income, improved beehives
Procedia PDF Downloads 5426154 The Impact of Covid-19 Pandemic on Acute Urology Admissions in a Busy District General Hospital in the UK
Authors: D. Bheenick, M. Young, M.Elmussareh, A.Ali
Abstract:
Objective: Coronavirus disease 2019 (COVID-19) has had unprecedented effects on the healthcare system in the UK. The pandemic has impacted every service within secondary care, including urology. Our objective is to determine how COVID-19 has influenced acute urology admissions in a busy district general hospital in the UK. Patient and methods: Retrospective data of patients presenting acutely to the urology department was collected between 13th January to 22nd March 2020 (pre-lockdown period) and 23rd March to 31st May 2020 (lockdown period). The nature of referrals, types of admission encountered, and management required in accordance with the new set of protocols established during the lockdown period were analysed and compared to the same data prior to UK lockdown. Results: 1092 patients were included in the study. An overall reduction of 32.5% was seen in the total number of admissions. A marked decrease was seen in non-urological pathology as compared to other categories. Urolithiasis showed the highest proportional increase. Treatment varied proportionately to the diagnosis, with conservative management accounting for the most likely treatment during lockdown. However, the proportion of patients requiring interventions during the lockdown period increased overall. No comparative differences were observed during the two periods in terms of source of referral, length of stay and patient age. Conclusion: The admission rate showed a decrease, with no significant difference in the nature and timing of presentation. Our department was able to continue providing effective management to patients presenting acutely during the COVID-19 outbreak.Keywords: COVID-19, lockdown, admissions, urology
Procedia PDF Downloads 172