Search results for: assessment for learning
10976 An Evaluation of the Trends in Land Values around Institutions of Higher Learning in North Central Nigeria
Authors: Ben Nwokenkwo, Michael M. Eze, Felix Ike
Abstract:
The need to study trends in land values around institutions of higher learning cannot be overemphasized. Numerous studies in Nigeria have investigated the economic, and social influence of the sitting of institutions of higher learning at the micro, meso and macro levels. However, very few studies have evaluated the temporal extent at which such institution influences local land values. Since institutions greatly influence both the physical and environmental aspects of their immediate vicinity, attention must be taken to understand the influence of such changes on land values. This study examines the trend in land values using the Mann-Kendall analysis in order to determine if, between its beginning and end, a monotonic increase, decrease or stability exist in the land values across six institutions of higher learning for the period between 2004 and 2014. Specifically, The analysis was applied to the time series of the price(or value) of the land .The results of this study revealed that land values has either been increasing or remained stabled across all the institution sampled. The study finally recommends measures that can be put in place as counter magnets for land values estimation across institutions of higher learning.Keywords: influence, land, trend, value
Procedia PDF Downloads 36410975 Effectiveness of Interactive Integrated Tutorial in Teaching Medical Subjects to Dental Students: A Pilot Study
Authors: Mohammad Saleem, Neeta Kumar, Anita Sharma, Sazina Muzammil
Abstract:
It is observed that some of the dental students in our setting take less interest in medical subjects. Various teaching methods are focus of research interest currently and being tried to generate interest among students. An approach of interactive integrated tutorial was used to assess its feasibility in teaching medical subjects to dental undergraduates. The aim was to generate interest and promote active self-learning among students. The objectives were to (1) introduce the integrated interactive learning method through two departments, (2) get feedback from the students and faculty on feasibility and effectiveness of this method. Second-year students in Bachelor of Dental Surgery course were divided into two groups. Each group was asked to study physiology and pathology of a common and important condition (anemia and hypertension) in a week’s time. During the tutorial, students asked questions on physiology and pathology of that condition from each other in the presence of teachers of both physiology and pathology departments. The teachers acted only as facilitators. After the session, the feedback from students and faculty on this alternative learning method was obtained. Results: Majority of the students felt that this method of learning is enjoyable, helped to develop reasoning skills and ability to correlate and integrate the knowledge from two related fields. Majority of the students felt that this kind of learning led to better understanding of the topic and motivated them towards deep learning. Teachers observed that the study promoted interdepartmental cross-discipline collaboration and better students’ linkages. Conclusion: Interactive integrated tutorial is effective in motivating dental students for better and deep learning of medical subjects.Keywords: active learning, education, integrated, interactive, self-learning, tutorials
Procedia PDF Downloads 31410974 A Survey of Sentiment Analysis Based on Deep Learning
Authors: Pingping Lin, Xudong Luo, Yifan Fan
Abstract:
Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.Keywords: document analysis, deep learning, multimodal sentiment analysis, natural language processing
Procedia PDF Downloads 16410973 The Use of the Mediated Learning Experience in Response of Special Needs Education
Authors: Maria Luisa Boninelli
Abstract:
This study wants to explore the effects of a mediated intervention program in a primary school. The participants where 120 students aged 8-9, half of them Italian and half immigrants of first or second generation. The activities consisted on the cognitive enhancement of the participants through Feuerstein’s Instrumental Enrichment, (IE) and on an activity centred on body awareness and mediated learning experience. Given that there are limited studied on learners in remedial schools, the current study intented to hypothesized that participants exposed to mediation would yiel a significant improvement in cognitive functioning. Hypothesis One proposed that, following the intervention, improved Q1vata scores of the participants would occur in each of the groups. Hypothesis two postulated that participants within the Mediated Learning Experience would perform significantly better than those group of control. For the intervention a group of 60 participants constituted a group of Mediation sample and were exposed to Mediated Learning Experience through Enrichment Programm. Similiary the other 60 were control group. Both the groups have students with special needs and were exposed to the same learning goals. A pre-experimental research design, in particular a one-group pretest-posttest approach was adopted. All the participants in this study underwent pretest and post test phases whereby they completed measures according to the standard instructions. During the pretest phase, all the participants were simultaneously exposed to Q1vata test for logical and linguistic evaluation skill. During the mediation intervention, significant improvement was demonstrated with the group of mediation. This supports Feuerstein's Theory that initial poor performance was a result of a lack of mediated learning experience rather than inherent difference or deficiencies. Furthermore the use of an appropriate mediated learning enabled the participants to function adequately.Keywords: cognitive structural modifiability, learning to learn, mediated learning experience, Reuven Feuerstein, special needs
Procedia PDF Downloads 37810972 Systematic Review of Functional Analysis in Brazil
Authors: Felipe Magalhaes Lemos
Abstract:
Functional behavior analysis is a procedure that has been studied for several decades by behavior analysts. In Brazil, we still have few studies in the area, so it was decided to carry out a systematic review of the articles published in the area by Brazilians. A search was done on the following scientific article registration sites: PsycINFO, ERIC, ISI Web of Science, Virtual Health Library. The research includes (a) peer-reviewed studies that (b) have been carried out in Brazil containing (c) functional assessment as a pre-treatment through (d) experimental procedures, direct or indirect observation and measurement of behavior problems (e) demonstrating a relationship between environmental events and behavior. During the review, 234 papers were found; however, only 9 were included in the final analysis. Of the 9 articles extracted, only 2 presented functional analysis procedures with manipulation of environmental variables, while the other 7 presented different procedures for a descriptive behavior assessment. Only the two studies using "functional analysis" used graphs to demonstrate the prevalent function of the behavior. Other studies described procedures and did not make clear the causal relationship between environment and behavior. There is still confusion in Brazil regarding the terms "functional analysis", "descriptive assessment" and "contingency analysis," which are generally treated in the same way. This study shows that few articles are published with a focus on functional analysis in Brazil.Keywords: behavior, contingency, descriptive assessment, functional analysis
Procedia PDF Downloads 14410971 Exploring Moroccan Teachers Beliefs About Multilingualism
Authors: Belkhadir Radouane
Abstract:
In this study, author tried to explore the beliefs of some Moroccan teachers working in the delegations of Safi and Youcefia about the usefulness of first and second languages in learning the third language. More specifically, author attempted to see the extent to which these teachers believe that a first and second language can serve students in learning a third one. The first language in this context is Arabic, the second is French, and the third is English. The teachers’ beliefs were gathered through a questionnaire that was addressed via Google Forms. Then, the results were analyzed using the same application. It was found that teachers are positive about the usefulness of the first and second language in learning the third one, but most of them rarely use in a conscious way activities that serve this purpose.Keywords: Bilinguilism, teachers beliefs, English as ESL, Morocco
Procedia PDF Downloads 5510970 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach
Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy
Abstract:
In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.Keywords: interaction, machine learning, predictive modeling, virtual reality
Procedia PDF Downloads 14310969 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification
Authors: Megha Gupta, Nupur Prakash
Abstract:
Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification
Procedia PDF Downloads 19910968 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata
Procedia PDF Downloads 38810967 Learners' Attitudes and Expectations towards Digital Learning Paths
Authors: Eirini Busack
Abstract:
Since the outbreak of the Covid-19 pandemic and the sudden transfer to online teaching, teachers have struggled to reconstruct their teaching and learning materials to adapt them to the new reality of online teaching and learning. Consequently, the pupils’ learning was disrupted during this orientation phase. Due to the above situation, teachers from all fields concluded that it is vital that their pupils should be able to continue their learning even without the teacher being physically present. Various websites and applications have been in use since then in hope that pupils will still enjoy a qualitative education; unfortunately, this was often not the case. To address this issue, it was therefore decided to focus the research on the development of digital learning paths. The fundamentals of these learning paths include the implementation of scenario-based learning (digital storytelling), the integration of media-didactic theory to make it pedagogically appropriate for learners, alongside instructional design knowledge and the drive to promote autonomous learners. This particular research is being conducted within the frame of the research project “Sustainable integration of subject didactic digital teaching-learning concepts” (InDiKo, 2020-2023), which is currently conducted at the University of Education Karlsruhe and investigates how pre-service teachers can acquire the necessary interdisciplinary and subject-specific media-didactic competencies to provide their future learners with digitally enhanced learning opportunities, and how these competencies can be developed continuously and sustainably. As English is one of the subjects involved in this project, the English Department prepared a seminar for the pre-service secondary teachers: “Media-didactic competence development: Developing learning paths & Digital Storytelling for English grammar teaching.” During this seminar, the pre-service teachers plan and design a Moodle-based differentiated lesson sequence on an English grammar topic that is to be tested by secondary school pupils. The focus of the present research is to assess the secondary school pupils’ expectations from an English grammar-focused digital learning path created by pre-service English teachers. The nine digital learning paths that are to be distributed to 25 pupils were produced over the winter and the current summer semester as the artifact of the seminar. Finally, the data to be quantitatively analysed and interpreted derive from the online questionnaires that the secondary school pupils fill in so as to reveal their expectations on what they perceive as a stimulating and thus effective grammar-focused digital learning path.Keywords: digital storytelling, learning paths, media-didactics, autonomous learning
Procedia PDF Downloads 8110966 Constructivist Grounded Theory of Intercultural Learning
Authors: Vaida Jurgile
Abstract:
Intercultural learning is one of the approaches taken to understand the cultural diversity of the modern world and to accept changes in cultural identity and otherness and the expression of tolerance. During intercultural learning, students develop their abilities to interact and communicate with their group members. These abilities help to understand social and cultural differences, to form one’s identity, and to give meaning to intercultural learning. Intercultural education recognizes that a true understanding of differences and similarities of another culture is necessary in order to lay the foundations for working together with others, which contributes to the promotion of intercultural dialogue, appreciation of diversity, and cultural exchange. Therefore, it is important to examine the concept of intercultural learning, revealed through students’ learning experiences and understanding of how this learning takes place and what significance this phenomenon has in higher education. At a scientific level, intercultural learning should be explored in order to uncover the influence of cultural identity, i.e., intercultural learning should be seen in a local context. This experience would provide an opportunity to learn from various everyday intercultural learning situations. Intercultural learning can be not only a form of learning but also a tool for building understanding between people of different cultures. The research object of the study is the process of intercultural learning. The aim of the dissertation is to develop a grounded theory of the process of learning in an intercultural study environment, revealing students’ learning experiences. The research strategy chosen in this study is a constructivist grounded theory (GT). GT is an inductive method that seeks to form a theory by applying the systematic collection, synthesis, analysis, and conceptualization of data. The targeted data collection was based on the analysis of data provided by previous research participants, which revealed the need for further research participants. During the research, only students with at least half a year of study experience, i.e., who have completed at least one semester of intercultural studies, were purposefully selected for the research. To select students, snowballing sampling was used. 18 interviews were conducted with students representing 3 different fields of sciences (social sciences, humanities, and technology sciences). In the process of intercultural learning, language expresses and embodies cultural reality and a person’s cultural identity. It is through language that individual experiences are expressed, and the world in which Others exist is perceived. The increased emphasis is placed on the fact that language conveys certain “signs’ of communication and perception with cultural value, enabling the students to identify the Self and the Other. Language becomes an important tool in the process of intercultural communication because it is only through language that learners can communicate, exchange information, and understand each other. Thus, in the process of intercultural learning, language either promotes interpersonal relationships with foreign students or leads to mutual rejection.Keywords: intercultural learning, grounded theory, students, other
Procedia PDF Downloads 6510965 CO₂ Storage Capacity Assessment of Deep Saline Aquifers in Malaysia
Authors: Radzuan Junin, Dayang Zulaika A. Hasbollah
Abstract:
The increasing amount of greenhouse gasses in the atmosphere recently has become one of the discussed topics in relation with world’s concern on climate change. Developing countries’ emissions (such as Malaysia) are now seen to surpass developed country’s emissions due to rapid economic development growth in recent decades. This paper presents the potential storage sites suitability and storage capacity assessment for CO2 sequestration in sedimentary basins of Malaysia. This study is the first of its kind that made an identification of potential storage sites and assessment of CO2 storage capacity within the deep saline aquifers in the country. The CO2 storage capacity in saline formation assessment was conducted based on the method for quick assessment of CO2 storage capacity in closed, and semi-closed saline formations modified to suit the geology setting of Malaysia. Then, an integrated approach that involved geographic information systems (GIS) analysis and field data assessment was adopted to provide the potential storage sites and its capacity for CO2 sequestration. This study concentrated on the assessment of major sedimentary basins in Malaysia both onshore and offshore where potential geological formations which CO2 could be stored exist below 800 meters and where suitable sealing formations are present. Based on regional study and amount of data available, there are 14 sedimentary basins all around Malaysia that has been identified as potential CO2 storage. Meanwhile, from the screening and ranking exercises, it is obvious that Malay Basin, Central Luconia Province, West Baram Delta and Balingian Province are respectively ranked as the top four in the ranking system for CO2 storage. 27% of sedimentary basins in Malaysia were evaluated as high potential area for CO2 storage. This study should provide a basis for further work to reduce the uncertainty in these estimates and also provide support to policy makers on future planning of carbon capture and sequestration (CCS) projects in Malaysia.Keywords: CO₂ storage, deep saline aquifer, GIS, sedimentary basin
Procedia PDF Downloads 36010964 ADHD: Assessment of Pragmatic Skills in Adults
Authors: Elena Even-Simkin
Abstract:
Attention Deficit Hyperactivity Disorder (ADHD) is one of the most frequently diagnosed disorders in children, but in many cases, the diagnosis is not provided until adulthood. Diagnosing adults with ADHD faces different obstacles due to numerous factors, such as educational or under-resourced familial environment, high intelligence compensating for stress-inducing difficulties, and additional comorbidities. Undiagnosed children and adolescents with ADHD may become undiagnosed adults with ADHD, who miss out on the early treatment and may experience significant social and pragmatic difficulties, leading to functional problems that subsequently affect their lifestyle, education, and occupational functioning. The proposed study presents a cost-effective and unique consideration of the pragmatic aspect among adults with ADHD. It provides a systematic and standardized evaluation of the pragmatic level in adults with ADHD, based on a comprehensive approach introduced by Arcara & Bambini (2016) for the assessment of pragmatic abilities in neuro-typical individuals. This assessment tool can promote the inclusion of pragmatic skills in the cognitive profile in the diagnostic practice of ADHD, and, thus, the proposed instrument can help not only identify the pragmatic difficulties in the ADHD population but also advance effective intervention programs that specifically focus on pragmatic skills in the targeted population.Keywords: ADHD, adults, assessment, pragmatics
Procedia PDF Downloads 7610963 Are Some Languages Harder to Learn and Teach Than Others?
Authors: David S. Rosenstein
Abstract:
The author believes that modern spoken languages should be equally difficult (or easy) to learn, since all normal children learning their native languages do so at approximately the same rate and with the same competence, progressing from easy to more complex grammar and syntax in the same way. Why then, do some languages seem more difficult than others? Perhaps people are referring to the written language, where it may be true that mastering Chinese requires more time than French, which in turn requires more time than Spanish. But this may be marginal, since Chinese and French children quickly catch up to their Spanish peers in reading comprehension. Rather, the real differences in difficulty derive from two sources: hardened L1 language habits trying to cope with contrasting L2 habits; and unfamiliarity with unique L2 characteristics causing faulty expectations. It would seem that effective L2 teaching and learning must take these two sources of difficulty into consideration. The author feels that the latter (faulty expectations) causes the greatest difficulty, making effective teaching and learning somewhat different for each given foreign language. Examples from Chinese and other languages are presented.Keywords: learning different languages, language learning difficulties, faulty language expectations
Procedia PDF Downloads 53310962 Literature Review: Adversarial Machine Learning Defense in Malware Detection
Authors: Leidy M. Aldana, Jorge E. Camargo
Abstract:
Adversarial Machine Learning has gained importance in recent years as Cybersecurity has gained too, especially malware, it has affected different entities and people in recent years. This paper shows a literature review about defense methods created to prevent adversarial machine learning attacks, firstable it shows an introduction about the context and the description of some terms, in the results section some of the attacks are described, focusing on detecting adversarial examples before coming to the machine learning algorithm and showing other categories that exist in defense. A method with five steps is proposed in the method section in order to define a way to make the literature review; in addition, this paper summarizes the contributions in this research field in the last seven years to identify research directions in this area. About the findings, the category with least quantity of challenges in defense is the Detection of adversarial examples being this one a viable research route with the adaptive approach in attack and defense.Keywords: Malware, adversarial, machine learning, defense, attack
Procedia PDF Downloads 6310961 E-Learning Platform for School Kids
Authors: Gihan Thilakarathna, Fernando Ishara, Rathnayake Yasith, Bandara A. M. R. Y.
Abstract:
E-learning is a crucial component of intelligent education. Even in the midst of a pandemic, E-learning is becoming increasingly important in the educational system. Several e-learning programs are accessible for students. Here, we decided to create an e-learning framework for children. We've found a few issues that teachers are having with their online classes. When there are numerous students in an online classroom, how does a teacher recognize a student's focus on academics and below-the-surface behaviors? Some kids are not paying attention in class, and others are napping. The teacher is unable to keep track of each and every student. Key challenge in e-learning is online exams. Because students can cheat easily during online exams. Hence there is need of exam proctoring is occurred. In here we propose an automated online exam cheating detection method using a web camera. The purpose of this project is to present an E-learning platform for math education and include games for kids as an alternative teaching method for math students. The game will be accessible via a web browser. The imagery in the game is drawn in a cartoonish style. This will help students learn math through games. Everything in this day and age is moving towards automation. However, automatic answer evaluation is only available for MCQ-based questions. As a result, the checker has a difficult time evaluating the theory solution. The current system requires more manpower and takes a long time to evaluate responses. It's also possible to mark two identical responses differently and receive two different grades. As a result, this application employs machine learning techniques to provide an automatic evaluation of subjective responses based on the keyword provided to the computer as student input, resulting in a fair distribution of marks. In addition, it will save time and manpower. We used deep learning, machine learning, image processing and natural language technologies to develop these research components.Keywords: math, education games, e-learning platform, artificial intelligence
Procedia PDF Downloads 15610960 The Effects of Self-Graphing on the Reading Fluency of an Elementary Student with Learning Disabilities
Authors: Matthias Grünke
Abstract:
In this single-case study, we evaluated the effects of a self-graphing intervention to help students improve their reading fluency. Our participant was a 10-year-old girl with a suspected learning disability in reading. We applied an ABAB reversal design to test the efficacy of our approach. The dependent measure was the number of correctly read words from a children’s book within five minutes. Our participant recorded her daily performance using a simple line diagram. Results indicate that her reading rate improved simultaneously with the intervention and dropped as soon as the treatment was suspended. The findings give reasons for optimism that our simple strategy can be a very effective tool in supporting students with learning disabilities to boost their reading fluency.Keywords: single-case study, learning disabilities, elementary education, reading problems, reading fluency
Procedia PDF Downloads 11110959 Virtual Science Hub: An Open Source Platform to Enrich Science Teaching
Authors: Enrique Barra, Aldo Gordillo, Juan Quemada
Abstract:
This paper presents the Virtual Science Hub platform. It is an open source platform that combines a social network, an e-learning authoring tool, a video conference service and a learning object repository for science teaching enrichment. These four main functionalities fit very well together. The platform was released in April 2012 and since then it has not stopped growing. Finally we present the results of the surveys conducted and the statistics gathered to validate this approach.Keywords: e-learning, platform, authoring tool, science teaching, educational sciences
Procedia PDF Downloads 39710958 Exploring Students’ Self-Evaluation on Their Learning Outcomes through an Integrated Cumulative Grade Point Average Reporting Mechanism
Authors: Suriyani Ariffin, Nor Aziah Alias, Khairil Iskandar Othman, Haslinda Yusoff
Abstract:
An Integrated Cumulative Grade Point Average (iCGPA) is a mechanism and strategy to ensure the curriculum of an academic programme is constructively aligned to the expected learning outcomes and student performance based on the attainment of those learning outcomes that is reported objectively in a spider web. Much effort and time has been spent to develop a viable mechanism and trains academics to utilize the platform for reporting. The question is: How well do learners conceive the idea of their achievement via iCGPA and whether quality learner attributes have been nurtured through the iCGPA mechanism? This paper presents the architecture of an integrated CGPA mechanism purported to address a holistic evaluation from the evaluation of courses learning outcomes to aligned programme learning outcomes attainment. The paper then discusses the students’ understanding of the mechanism and evaluation of their achievement from the generated spider web. A set of questionnaires were distributed to a group of students with iCGPA reporting and frequency analysis was used to compare the perspectives of students on their performance. In addition, the questionnaire also explored how they conceive the idea of an integrated, holistic reporting and how it generates their motivation to improve. The iCGPA group was found to be receptive to what they have achieved throughout their study period. They agreed that the achievement level generated from their spider web allows them to develop intervention and enhance the programme learning outcomes before they graduate.Keywords: learning outcomes attainment, iCGPA, programme learning outcomes, spider web, iCGPA reporting skills
Procedia PDF Downloads 20810957 Assessment of Students Skills in Error Detection in SQL Classes using Rubric Framework - An Empirical Study
Authors: Dirson Santos De Campos, Deller James Ferreira, Anderson Cavalcante Gonçalves, Uyara Ferreira Silva
Abstract:
Rubrics to learning research provide many evaluation criteria and expected performance standards linked to defined student activity for learning and pedagogical objectives. Despite the rubric being used in education at all levels, academic literature on rubrics as a tool to support research in SQL Education is quite rare. There is a large class of SQL queries is syntactically correct, but certainly, not all are semantically correct. Detecting and correcting errors is a recurring problem in SQL education. In this paper, we usthe Rubric Abstract Framework (RAF), which consists of steps, that allows us to map the information to measure student performance guided by didactic objectives defined by the teacher as long as it is contextualized domain modeling by rubric. An empirical study was done that demonstrates how rubrics can mitigate student difficulties in finding logical errors and easing teacher workload in SQL education. Detecting and correcting logical errors is an important skill for students. Researchers have proposed several ways to improve SQL education because understanding this paradigm skills are crucial in software engineering and computer science. The RAF instantiation was using in an empirical study developed during the COVID-19 pandemic in database course. The pandemic transformed face-to-face and remote education, without presential classes. The lab activities were conducted remotely, which hinders the teaching-learning process, in particular for this research, in verifying the evidence or statements of knowledge, skills, and abilities (KSAs) of students. Various research in academia and industry involved databases. The innovation proposed in this paper is the approach used where the results obtained when using rubrics to map logical errors in query formulation have been analyzed with gains obtained by students empirically verified. The research approach can be used in the post-pandemic period in both classroom and distance learning.Keywords: rubric, logical error, structured query language (SQL), empirical study, SQL education
Procedia PDF Downloads 19010956 Unsupervised Images Generation Based on Sloan Digital Sky Survey with Deep Convolutional Generative Neural Networks
Authors: Guanghua Zhang, Fubao Wang, Weijun Duan
Abstract:
Convolution neural network (CNN) has attracted more and more attention on recent years. Especially in the field of computer vision and image classification. However, unsupervised learning with CNN has received less attention than supervised learning. In this work, we use a new powerful tool which is deep convolutional generative adversarial networks (DCGANs) to generate images from Sloan Digital Sky Survey. Training by various star and galaxy images, it shows that both the generator and the discriminator are good for unsupervised learning. In this paper, we also took several experiments to choose the best value for hyper-parameters and which could help to stabilize the training process and promise a good quality of the output.Keywords: convolution neural network, discriminator, generator, unsupervised learning
Procedia PDF Downloads 26810955 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets
Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson
Abstract:
Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime
Procedia PDF Downloads 9510954 Effectiveness of Active Learning in Social Science Courses at Japanese Universities
Authors: Kumiko Inagaki
Abstract:
In recent, years, Japanese universities have begun to face a dilemma: more than half of all high school graduates go on to attend an institution of higher learning, overwhelming Japanese universities accustomed to small student bodies. These universities have been forced to embrace qualitative changes to accommodate the increased number and diversity of students who enter their establishments, students who differ in their motivations for learning, their levels of eagerness to learn, and their perspectives on the future. One of these changes is an increase in awareness among Japanese educators of the importance of active learning, which deepens students’ understanding of course material through a range of activities, including writing, speaking, thinking, and presenting, in addition to conventional “passive learning” methods such as listening to a one-way lecture. The purpose of this study is to examine the effectiveness of the teaching method adapted to improve active learning. A teaching method designed to promote active learning was implemented in a social science course at one of the most popular universities in Japan. A questionnaire using a five-point response format was given to students in 2,305 courses throughout the university to evaluate the effectiveness of the method based on the following measures: ① the ratio of students who were motivated to attend the classes, ② the rate at which students learned new information, and ③ the teaching method adopted in the classes. The results of this study show that the percentage of students who attended the active learning course eagerly, and the rate of new knowledge acquired through the course, both exceeded the average for the university, the department, and the subject area of social science. In addition, there are strong correlations between teaching method and student motivation and between teaching method and knowledge acquisition rate. These results indicate that the active learning teaching method was effectively implemented and that it may improve student eagerness to attend class and motivation to learn.Keywords: active learning, Japanese university, teaching method, university education
Procedia PDF Downloads 19510953 Stress Corrosion Crack Identification with Direct Assessment Method in Pipeline Downstream from a Compressor Station
Authors: H. Gholami, M. Jalali Azizpour
Abstract:
Stress Corrosion Crack (SCC) in pipeline is a type of environmentally assisted cracking (EAC), since its discovery in 1965 as a possible cause of failure in pipeline, SCC has caused, on average, one of two failures per year in the U.S, According to the NACE SCC DA a pipe line segment is considered susceptible to SCC if all of the following factors are met: The operating stress exceeds 60% of specified minimum yield strength (SMYS), the operating temperature exceeds 38°C, the segment is less than 32 km downstream from a compressor station, the age of the pipeline is greater than 10 years and the coating type is other than Fusion Bonded Epoxy(FBE). In this paper as a practical experience in NISOC, Direct Assessment (DA) Method is used for identification SCC defect in unpiggable pipeline located downstream of compressor station.Keywords: stress corrosion crack, direct assessment, disbondment, transgranular SCC, compressor station
Procedia PDF Downloads 38610952 Thermodynamic Analysis of Surface Seawater under Ocean Warming: An Integrated Approach Combining Experimental Measurements, Theoretical Modeling, Machine Learning Techniques, and Molecular Dynamics Simulation for Climate Change Assessment
Authors: Nishaben Desai Dholakiya, Anirban Roy, Ranjan Dey
Abstract:
Understanding ocean thermodynamics has become increasingly critical as Earth's oceans serve as the primary planetary heat regulator, absorbing approximately 93% of excess heat energy from anthropogenic greenhouse gas emissions. This investigation presents a comprehensive analysis of Arabian Sea surface seawater thermodynamics, focusing specifically on heat capacity (Cp) and thermal expansion coefficient (α) - parameters fundamental to global heat distribution patterns. Through high-precision experimental measurements of ultrasonic velocity and density across varying temperature (293.15-318.15K) and salinity (0.5-35 ppt) conditions, it characterize critical thermophysical parameters including specific heat capacity, thermal expansion, and isobaric and isothermal compressibility coefficients in natural seawater systems. The study employs advanced machine learning frameworks - Random Forest, Gradient Booster, Stacked Ensemble Machine Learning (SEML), and AdaBoost - with SEML achieving exceptional accuracy (R² > 0.99) in heat capacity predictions. the findings reveal significant temperature-dependent molecular restructuring: enhanced thermal energy disrupts hydrogen-bonded networks and ion-water interactions, manifesting as decreased heat capacity with increasing temperature (negative ∂Cp/∂T). This mechanism creates a positive feedback loop where reduced heat absorption capacity potentially accelerates oceanic warming cycles. These quantitative insights into seawater thermodynamics provide crucial parametric inputs for climate models and evidence-based environmental policy formulation, particularly addressing the critical knowledge gap in thermal expansion behavior of seawater under varying temperature-salinity conditions.Keywords: climate change, arabian sea, thermodynamics, machine learning
Procedia PDF Downloads 710951 Mentor and Mentee Based Learning
Authors: Erhan Eroğlu
Abstract:
This paper presents a new method called Mentor and Mentee Based Learning. This new method is becoming more and more common especially at workplaces. This study is significant as it clearly underlines how it works well. Education has always aimed at equipping people with the necessary knowledge and information. For many decades it went on teachers’ talk and chalk methods. In the second half of the nineteenth century educators felt the need for some changes in delivery systems. Some new terms like self- discovery, learner engagement, student centered learning, hands on learning have become more and more popular for such a long time. However, some educators believe that there is much room for better learning methods in many fields as they think the learners still cannot fulfill their potential capacities. Thus, new systems and methods are still being developed and applied at education centers and work places. One of the latest methods is assigning some mentors for the newly recruited employees and training them within a mentor and mentee program which allows both parties to see their strengths and weaknesses and the areas which can be improved. This paper aims at finding out the perceptions of the mentors and mentees on the programs they are offered at their workplaces and suggests some betterment alternatives. The study has been conducted via a qualitative method whereby some interviews have been done with both mentors and mentees separately and together. Results show that it is a great way to train inexperienced one and also to refresh the older ones. Some points to be improved have also been underlined. The paper shows that education is not a one way path to follow.Keywords: learning, mentor, mentee, training
Procedia PDF Downloads 22810950 Importance of Assessing Racial Trauma after George Floyd in Children of Color in Schools
Authors: Gabriela Macera DiFilippo
Abstract:
The world watched in disbelief as George Floyd was killed by a policeman. The images from the scene were made more memorable by Mr. Floyd’s pleas and cries for his mother. In the aftermath of this tragedy, the Black Lives Matter movement gained momentum. Weeks and months after the protests, global interest in learning about tackling systemic racism erupted. One must wonder how school children of color viewed and processed this trauma. This study will examine the kinds of trauma experienced by children of color and the opportunity for school mental health providers to support these children. This study used literature searches that were previously conducted for proven and practical assessment methods that can help deal with racial trauma for children. As part of the assessment, trauma symptoms experienced by children of color were summarized and characterized in a non-imperial manner. The research was also will be done in practical ways to make adequate and effective mental health services available in schools and lessen the stigma. This research study found that there is a need to provide an analysis of the ongoing racial trauma of children of color after the death of George Floyd. Impactful and appropriate assessment methods, such as surveys, were presented to all school professionals. Lastly, this paper attempted to provide mental health professionals with the tools to screen and provide guidance based on unequivocal, unbiased methods for helping these children. There is a need for both schools and community leaders to ensure that every child has access to mental health care and is being assessed for their overall well-being. There is a need to educate the communities about racial trauma and its impact on individuals, especially children. School mental health professionals are encouraged to offer and educate schools and communities about racial trauma awareness, its importance, and ways to cope with it in different settings. The delivery of these informed services should focus on behavioral health and must be sensitive to children of color and different ways of self-care.Keywords: trauma, children, black psychology, students
Procedia PDF Downloads 5810949 A Case Study of Deep Learning for Disease Detection in Crops
Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell
Abstract:
In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture
Procedia PDF Downloads 25910948 Hacking the Spatial Limitations in Bridging Virtual and Traditional Teaching Methodologies in Sri Lanka
Authors: Manuela Nayantara Jeyaraj
Abstract:
Having moved into the 21st century, it is way past being arguable that innovative technology needs to be incorporated into conventional classroom teaching. Though the Western world has found presumable success in achieving this, it is still a concept under battle in developing countries such as Sri Lanka. Reaching the acme of implementing interactive virtual learning within classrooms is a struggling idealistic fascination within the island. In order to overcome this problem, this study is set to reveal facts that limit the implementation of virtual, interactive learning within the school classrooms and provide hacks that could prove the augmented use of the Virtual World to enhance teaching and learning experiences. As each classroom moves along with the usage of technology to fulfill its functionalities, a few intense hacks provided will build the administrative onuses on a virtual system. These hacks may divulge barriers based on social conventions, financial boundaries, digital literacy, intellectual capacity of the staff, and highlight the impediments in introducing students to an interactive virtual learning environment and thereby provide the necessary actions or changes to be made to succeed and march along in creating an intellectual society built on virtual learning and lifestyle. This digital learning environment will be composed of multimedia presentations, trivia and pop quizzes conducted on a GUI, assessments conducted via a virtual system, records maintained on a database, etc. The ultimate objective of this study could enhance every child's basic learning environment; hence, diminishing the digital divide that exists in certain communities.Keywords: digital divide, digital learning, digitization, Sri Lanka, teaching methodologies
Procedia PDF Downloads 35410947 Introducing Transport Engineering through Blended Learning Initiatives
Authors: Kasun P. Wijayaratna, Lauren Gardner, Taha Hossein Rashidi
Abstract:
Undergraduate students entering university across the last 2 to 3 years tend to be born during the middle years of the 1990s. This generation of students has been exposed to the internet and the desire and dependency on technology since childhood. Brains develop based on environmental influences and technology has wired this generation of student to be attuned to sophisticated complex visual imagery, indicating visual forms of learning may be more effective than the traditional lecture or discussion formats. Furthermore, post-millennials perspectives on career are not focused solely on stability and income but are strongly driven by interest, entrepreneurship and innovation. Accordingly, it is important for educators to acknowledge the generational shift and tailor the delivery of learning material to meet the expectations of the students and the needs of industry. In the context of transport engineering, effectively teaching undergraduate students the basic principles of transport planning, traffic engineering and highway design is fundamental to the progression of the profession from a practice and research perspective. Recent developments in technology have transformed the discipline as practitioners and researchers move away from the traditional “pen and paper” approach to methods involving the use of computer programs and simulation. Further, enhanced accessibility of technology for students has changed the way they understand and learn material being delivered at tertiary education institutions. As a consequence, blended learning approaches, which aim to integrate face to face teaching with flexible self-paced learning resources, have become prevalent to provide scalable education that satisfies the expectations of students. This research study involved the development of a series of ‘Blended Learning’ initiatives implemented within an introductory transport planning and geometric design course, CVEN2401: Sustainable Transport and Highway Engineering, taught at the University of New South Wales, Australia. CVEN2401 was modified by conducting interactive polling exercises during lectures, including weekly online quizzes, offering a series of supplementary learning videos, and implementing a realistic design project that students needed to complete using modelling software that is widely used in practice. These activities and resources were aimed to improve the learning environment for a large class size in excess of 450 students and to ensure that practical industry valued skills were introduced. The case study compared the 2016 and 2017 student cohorts based on their performance across assessment tasks as well as their reception to the material revealed through student feedback surveys. The initiatives were well received with a number of students commenting on the ability to complete self-paced learning and an appreciation of the exposure to a realistic design project. From an educator’s perspective, blending the course made it feasible to interact and engage with students. Personalised learning opportunities were made available whilst delivering a considerable volume of complex content essential for all undergraduate Civil and Environmental Engineering students. Overall, this case study highlights the value of blended learning initiatives, especially in the context of large class size university courses.Keywords: blended learning, highway design, teaching, transport planning
Procedia PDF Downloads 149