Search results for: PCP pressure rise
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5515

Search results for: PCP pressure rise

4285 Identifying Karst Pattern to Prevent Bell Spring from Being Submerged in Daryan Dam Reservoir

Authors: H. Shafaattalab Dehghani, H. R. Zarei

Abstract:

The large karstic Bell spring with a discharge ranging between 250 and 5300 lit/ sec is one of the most important springs of Kermanshah Province. This spring supplies drinking water of Nodsheh City and its surrounding villages. The spring is located in the reservoir of Daryan Dam and its mouth would be submerged after impounding under a water column of about 110 m height. This paper has aimed to render an account of the karstification pattern around the spring under consideration with the intention of preventing Bell Spring from being submerged in Daryan Dam Reservoir. The studies comprise engineering geology and hydrogeology investigations. Some geotechnical activities included in these studies include geophysical studies, drilling, excavation of exploratory gallery and shaft and diving. The results depict that Bell is a single-conduit siphon spring with 4 m diameter and 85 m height that 32 m of the conduit is located below the spring outlet. To survive the spring, it was decided to plug the outlet and convey the water to upper elevations under the natural pressure of the aquifer. After plugging, water was successfully conveyed to elevation 837 meter above sea level (about 120 m from the outlet) under the natural pressure of the aquifer. This signifies the accuracy of the studies done and proper recognition of the karstification pattern of Bell Spring. This is a unique experience in karst problems in Iran.

Keywords: bell spring, Karst, Daryan Dam, submerged

Procedia PDF Downloads 265
4284 Dust Particle Removal from Air in a Self-Priming Submerged Venturi Scrubber

Authors: Manisha Bal, Remya Chinnamma Jose, B.C. Meikap

Abstract:

Dust particles suspended in air are a major source of air pollution. A self-priming submerged venturi scrubber proven very effective in cases of handling nuclear power plant accidents is an efficient device to remove dust particles from the air and thus aids in pollution control. Venturi scrubbers are compact, have a simple mode of operation, no moving parts, easy to install and maintain when compared to other pollution control devices and can handle high temperatures and corrosive and flammable gases and dust particles. In the present paper, fly ash particles recognized as a high air pollutant substance emitted mostly from thermal power plants is considered as the dust particle. Its exposure through skin contact, inhalation and indigestion can lead to health risks and in severe cases can even root to lung cancer. The main focus of this study is on the removal of fly ash particles from polluted air using a self-priming venturi scrubber in submerged conditions using water as the scrubbing liquid. The venturi scrubber comprising of three sections: converging section, throat and diverging section is submerged inside a water tank. The liquid enters the throat due to the pressure difference composed of the hydrostatic pressure of the liquid and static pressure of the gas. The high velocity dust particles atomize the liquid droplets at the throat and this interaction leads to its absorption into water and thus removal of fly ash from the air. Detailed investigation on the scrubbing of fly ash has been done in this literature. Experiments were conducted at different throat gas velocities, water levels and fly ash inlet concentrations to study the fly ash removal efficiency. From the experimental results, the highest fly ash removal efficiency of 99.78% is achieved at the throat gas velocity of 58 m/s, water level of height 0.77m with fly ash inlet concentration of 0.3 x10⁻³ kg/Nm³ in the submerged condition. The effect of throat gas velocity, water level and fly ash inlet concentration on the removal efficiency has also been evaluated. Furthermore, experimental results of removal efficiency are validated with the developed empirical model.

Keywords: dust particles, fly ash, pollution control, self-priming venturi scrubber

Procedia PDF Downloads 154
4283 Illegal Migration and Refugee Crisis as a Threat to National Security, Economic and Social System: The Bulgarian Case

Authors: Jordan Deliversky

Abstract:

Unlike all conventional forms of migration, migration crisis and migratory processes provide pressure to governments and are being expressed as different phenomenon in relation to nature and forms. The objective of this paper is to present the migration and refugee crisis as revealing numerous challenges faced by authorities responsible for the social and economic stability in Bulgaria as well as those providing conditions for reinforcement of the high level of national security in Bulgaria. The analysis is focused on exploring the multiple origins of factors influencing migration processes in Europe, in the light of the measures provided by the Bulgarian state authorities. The main results show that the society itself is facing the challenge of integrating refugees and migrants, so to be able to comply with the principles and values associated with tolerance to social, religious and cultural differences, and not allowing migrants to become marginalized community. Migration pressure creates a number of risks and threats to the Bulgarian national security. Our country has the capacity and resources to meet these potential threats, as a main factor for minimizing the risks to national security is the improvement of coordination and coherence of actions between various actors serving to the security sector.

Keywords: legislation, migrants, refugees, security, terrorism

Procedia PDF Downloads 333
4282 Separation Performance of CO₂ by Mixed Matrix Membrane Comprising Carbide-Derived Carbon

Authors: Musa Najimu, Isam Aljundi

Abstract:

In this study, the development of mixed matrix membrane (MMM) containing carbide-derived carbon (CDC) for the separation of CO₂ was investigated. MMM with four different loadings (0.1 to 2 wt%) were prepared by the dry/wet phase inversion technique. Prior to this, the formula of the control polysulfone (PSF) membrane was optimized in terms of the PSF concentration in a mixture of NMP/THF solvents and ethanol. Prepared samples were characterized and tested for CO₂ and CH₄ gas permeation. The optimization of the control PSF membrane revealed that 30 wt% PSF is the critical polymer concentration in the formulation. Characterization results unveiled reinforcement of thermal stability and improved polarity imparted by CDC in the MMM, in addition to uniform dispersion of filler up to 1 wt% loading. Furthermore, the incorporation of CDC in PSF membrane formulation enhanced both the CO₂ permeance and ideal selectivity over the control membrane. A CDC loading of 0.5 wt% resulted in the highest CO₂ permeance of 5.5 GPU corresponding to 120% increase in permeance while a CDC loading of 1 wt% resulted in the highest selectivity (CO₂ /CH₄) of 27 corresponding to 29% increase in selectivity. Studies of operating temperature effect showed that an optimum operating temperature for M1.0 membrane is 20 ⁰C. In addition, the feed pressure studies showed that high pressure feeds will favor high performance of the membrane and a good CO₂ /CH₄ separation.

Keywords: carbide derived carbon, mixed matrix membrane, CO₂ separation, polysulfone

Procedia PDF Downloads 199
4281 Gene Expression Analysis for Corals / Zooxanthellae under High Seawater Temperature Stress

Authors: Haruka Ito, Toru Maruyama, Michihiro Ito, Chuya Shinzato, Hiroyuki Fujimura, Yoshikatsu Nakano, Shoichiro Suda, Sachiyo Aburatani, Haruko Takeyama

Abstract:

Clarifying symbiotic relationships is one of the most important theme for understanding the marine eco-system. Coral reef has been regarded as an important environmental resource. Coral holobiont composed by coral, symbiotic microalgae zooxanthellae, and bacteria have complexed relationship. Zooxanthellae mainly supply organic matter to the host corals through their photosynthetic activity. The symbiotic relationship is indispensable for corals but may easily collapses due to the rise of seawater temperature. However, the molecular mechanism how seawater temperature influences their relationships still remain unclear. In this study, the transcriptomic analysis has applied to elucidate the coral-zooxanthellae relationships under high seawater temperature stress. To observe reactions of corals and zooxanthellae against the rise of seawater temperature, meta-gene expression in coral have been analyzed. The branches from six different colonies of a stony coral, Acropora tenuis, were sampled at nine times by 2016 at two locations, Ishikawabaru and South of Sesoko Island, Okinawa, Japan. The mRNAs extracted from the branches including zooxanthellae were sequenced by illumina HiSeq. Gene Set Enrichment Analysis (GSEA) based on hyper geometric distribution was performed. The seawater temperature at 2016 summer was unusually high, which was caused by El Niño event, and the number of zooxanthellae in coral was decreased in August. GSEA derived the several specific genes expressed in A. tenuis under heat stress conditions. The upregulated genes under heat stress highly related with infection immunity. The downregulated genes significantly contained cell cycle related genes. Thu, it is considered that heat stress cause disorder in cell metabolism of A. tenuis, resulting in serious influence to coral holobiont.

Keywords: coral, symbiosis, thermal stress response, transcriptome analysis

Procedia PDF Downloads 263
4280 Determinants of Market Entry Modes Used by Universities to Expand Internationally

Authors: Ali Bhayani

Abstract:

The article analyses determinants of the market entry modes used by corporate firms to expand internationally and explore whether higher education institutions uses the same determinants to decide on mode adopted to enter the market. Determinants like transaction costs, location advantage, idiosyncratic capabilities, isomorphic pressure to mimic, psychic distance, uncertainty, risks, the control over academic process, previous internationalisation experience and entry to homogenous markets are considered with regards to universities. A sample consisting of 40+ branch campuses from United Arab Emirates (UAE), host to highest number of branch campuses, is selected to study the determinants of the entry modes adopted. The aim of this article is not to prescribe or offer a solution for the best-available model of market entry that can be adopted by universities but rather to act as a trigger for a critical check up on universities planning to internationalize their offering. Determinants like idiosyncratic capabilities, isomorphic pressure and control over the academic process were found to be most prevalent. However, determinants like transaction cost efficiency, internationalisation experience, psychic distance, uncertainty and risks are not significant factors.

Keywords: higher education, UAE, internationalisation, market entry, international branch campuses

Procedia PDF Downloads 336
4279 Impact of Yogic Exercise on Cardiovascular Function on Selected College Students of High Altitude

Authors: Benu Gupta

Abstract:

The purpose of the study was to assess the impact of yogic exercise on cardiovascular exercises on selected college students of high altitude. The research was conducted on college students of high altitude in Shimla for their cardiovascular function [Blood Pressure (BP), VO2 Max (TLC) and Pulse Rate (PR)] in respect to yogic exercise. Total 139 students were randomly selected from Himachal University colleges in Shimla. The study was conducted in three phases. The subjects were identified in the first phase of research program then further in next phase they were physiologically tested, and yogic exercise battery was operated in different time frame. The entire subjects were treated with three months yogic exercise. The entire lot of students were again evaluated physiologically [(Cardiovascular measurement: Blood Pressure (BP), VO2 Max (TLC) and Pulse Rate (PR)] with standard equipments. The statistical analyses of the variance (PR, BP (SBP & DBP) and TLC) were done. The result reveals that there was a significant difference in TLC; whereas there was no significant difference in PR. For BP statistical analysis suggests no significant difference were formed. Result showed that the BP of the participants were more inclined towards normal standard BP i.e. 120-80 mmHg.

Keywords: cardiovascular function, college students, high altitude, yogic exercise

Procedia PDF Downloads 221
4278 Real Time Monitoring and Control of Proton Exchange Membrane Fuel Cell in Cognitive Radio Environment

Authors: Prakash Thapa, Gye Choon Park, Sung Gi Kwon, Jin Lee

Abstract:

The generation of electric power from a proton exchange membrane (PEM) fuel cell is influenced by temperature, pressure, humidity, flow rate of reactant gaseous and partial flooding of membrane electrode assembly (MEA). Among these factors, temperature and cathode flooding are the most affecting parameters on the performance of fuel cell. This paper describes the detail design and effect of these parameters on PEM fuel cell. Performance of all parameters was monitored, analyzed and controlled by using 5KWatt PEM fuel cell. In the real-time data communication for remote monitoring and control of PEM fuel cell, a normalized least mean square algorithm in cognitive radio environment is used. By the use of this method, probability of energy signal detection will be maximum which solved the frequency shortage problem. So the monitoring system hanging out and slow speed problem will be solved. Also from the control unit, all parameters are controlled as per the system requirement. As a result, PEM fuel cell generates maximum electricity with better performance.

Keywords: proton exchange membrane (PEM) fuel cell, pressure, temperature and humidity sensor (PTH), efficiency curve, cognitive radio network (CRN)

Procedia PDF Downloads 448
4277 Effect of Injection Pressure and Fuel Injection Timing on Emission and Performance Characteristics of Karanja Biodiesel and its Blends in CI Engine

Authors: Mohan H., C. Elajchet Senni

Abstract:

In the present of high energy consumption in every sphere of life, renewable energy sources are emerging as alternative to conventional fuels for energy security, mitigating green house gas emission and climate change. There has been a world wide interest in searching for alternatives to petroleum derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar, injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But, high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar ,Injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Various performance, combustion and emission characteristics such as thermal efficiency, and brake specific fuel consumption, maximum cylinder pressure, instantaneous heat release, cumulative heat release with respect to crank angle, ignition lag, combustion duration, HC, NOx, CO, exhaust temperature and smoke intensity were measured.

Keywords: karanja oil, injection pressure, injection timing, karanja oil methyl ester

Procedia PDF Downloads 275
4276 Determination of Inflow Performance Relationship for Naturally Fractured Reservoirs: Numerical Simulation Study

Authors: Melissa Ramirez, Mohammad Awal

Abstract:

The Inflow Performance Relationship (IPR) of a well is a relation between the oil production rate and flowing bottom-hole pressure. This relationship is an important tool for petroleum engineers to understand and predict the well performance. In the petroleum industry, IPR correlations are used to design and evaluate well completion, optimizing well production, and designing artificial lift. The most commonly used IPR correlations models are Vogel and Wiggins, these models are applicable to homogeneous and isotropic reservoir data. In this work, a new IPR model is developed to determine inflow performance relationship of oil wells in a naturally fracture reservoir. A 3D black-oil reservoir simulator is used to develop the oil mobility function for the studied reservoir. Based on simulation runs, four flow rates are run to record the oil saturation and calculate the relative permeability for a naturally fractured reservoir. The new method uses the result of a well test analysis along with permeability and pressure-volume-temperature data in the fluid flow equations to obtain the oil mobility function. Comparisons between the new method and two popular correlations for non-fractured reservoirs indicate the necessity for developing and using an IPR correlation specifically developed for a fractured reservoir.

Keywords: inflow performance relationship, mobility function, naturally fractured reservoir, well test analysis

Procedia PDF Downloads 257
4275 Computational Analysis of Variation in Thrust of Oblique Detonation Ramjet Engine With Adaptive Inlet

Authors: Aditya, Ganapati Joshi, Vinod Kumar

Abstract:

IN THE MODERN-WARFARE ERA, THE PRIME REQUIREMENT IS A HIGH SPEED AND MACH NUMBER. WHEN THE MISSILES STRIKE IN THE HYPERSONIC REGIME THE OPPONENT CAN DETECT IT WITH THE ANTI-DEFENSE SYSTEM BUT CAN NOT STOP IT FROM CAUSING DAMAGE. SO, TO ACHIEVE THE SPEEDS OF THIS LEVEL THERE ARE TWO ENGINES THAT ARE AVAILABLE WHICH CAN WORK IN THIS REGION ARE RAMJET AND SCRAMJET. THE PROBLEM WITH RAMJET STARTS TO OCCUR WHEN MACH NUMBER EXCEEDS 4 AS THE STATIC PRESSURE AT THE INLET BECOMES EQUAL TO THE EXIT PRESSURE. SO, SCRAMJET ENGINE DEALS WITH THIS PROBLEM AS IT NEARLY HAS THE SAME WORKING BUT HERE THE FLOW IS NOT MUCH SLOWED DOWN AS COMPARED TO RAMJET IN THE DIFFUSER BUT IT SUFFERS FROM THE PROBLEMS SUCH AS INLET BUZZ, THERMAL CHOCKING, MIXING OF FUEL AND OXIDIZER, THERMAL HEATING, AND MANY MORE. HERE THE NEW ENGINE IS DEVELOPED ON THE SAME PRINCIPLE AS THE SCRAMJET ENGINE BUT BURNING HAPPENS DUE TO DETONATION INSTEAD OF DEFLAGRATION. THE PROBLEM WITH THE ENGINE STARTS WHEN THE MACH NUMBER BECOMES VARIABLE AND THE INLET GEOMETRY IS FIXED AND THIS LEADS TO INLET SPILLAGE WHICH WILL AFFECT THE THRUST ADVERSELY. SO, HERE ADAPTIVE INLET IS MADE OF SHAPE MEMORY ALLOYS WHICH WILL ENHANCE THE INLET MASS FLOW RATE AS WELL AS THRUST.

Keywords: detonation, ramjet engine, shape memory alloy, ignition delay, shock-boundary layer interaction, eddy dissipation, asymmetric nozzle

Procedia PDF Downloads 93
4274 Gender Difference in the Association between Different Components of the Metabolic Syndrome and Vitamin D Levels in Saudi Patients

Authors: Amal Baalash, Shazia Mukaddam, M. Adel El-Sayed

Abstract:

Background: Several studies have suggested non-skeletal effects of vitamin D and linked its deficiency with features of many chronic conditions. In this study, We aimed to investigate the relationship between vitamin D levels and different components of the metabolic syndrome in male and female Saudi patients. Methods: the study population consisted of 111 patients with metabolic syndrome (71 females and 40 males) aged 37-63 years enrolled from patients attending the internal medicine outpatient clinics of King Fahad Medical City. The parameters for diagnosis of the metabolic syndrome according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) were measured, which included waist circumference, TG, HDL-C, Blood pressure and fasting blood glucose (FBS). The association between each parameter and serum 25-hydroxyvitamin D (25(OH) D) was studied in both male and female patients separately. Results: in male patients, 25(OH) D levels were inversely associated with FBS and TG and positively associated with HDL-C and diastolic blood pressure, With highest association with the HDL-C levels. On the other hand 25(OH) D, Showed no significant association with any of the measured metabolic syndrome parameters in female patients. Conclusion: in Saudi patients with metabolic syndrome, the association between the parameters of metabolic syndrome and the levels of 25 (OH) D is more pronounced in males rather than females.

Keywords: gender, metabolic syndrome, Saudi patients, vitamin D

Procedia PDF Downloads 365
4273 Study on the Effect of Bolt Locking Method on the Deformation of Bipolar Plate in PEMFC

Authors: Tao Chen, ShiHua Liu, JiWei Zhang

Abstract:

Assembly of the proton exchange membrane fuel cells (PEMFC) has a very important influence on its performance and efficiency. The various components of PEMFC stack are usually locked and fixed by bolts. Locking bolt will cause the deformation of the bipolar plate and the other components, which will affect directly the deformation degree of the integral parts of the PEMFC as well as the performance of PEMFC. This paper focuses on the object of three-cell stack of PEMFC. Finite element simulation is used to investigate the deformation of bipolar plate caused by quantity and layout of bolts, bolt locking pressure, and bolt locking sequence, etc. Finally, we made a conclusion that the optimal combination packaging scheme was adopted to assemble the fuel cell stack. The scheme was in use of 3.8 MPa locking pressure imposed on the fuel cell stack, type Ⅱ of four locking bolts and longitudinal locking method. The scheme was obtained by comparatively analyzing the overall displacement contour of PEMFC stack, absolute displacement curve of bipolar plate along the given three paths in the Z direction and the polarization curve of fuel cell. The research results are helpful for the fuel cell stack assembly.

Keywords: bipolar plate, deformation, finite element simulation, fuel cell, locking bolt

Procedia PDF Downloads 405
4272 Opto-Thermal Frequency Modulation of Phase Change Micro-Electro-Mechanical Systems

Authors: Syed A. Bukhari, Ankur Goswmai, Dale Hume, Thomas Thundat

Abstract:

Here we demonstrate mechanical detection of photo-induced Insulator to metal transition (MIT) in ultra-thin vanadium dioxide (VO₂) micro strings by using < 100 µW of optical power. Highly focused laser beam heated the string locally resulting in through plane and along axial heat diffusion. Localized temperature increase can cause temperature rise > 60 ºC. The heated region of VO₂ can transform from insulating (monoclinic) to conducting (rutile) phase leading to lattice compressions and stiffness increase in the resonator. The mechanical frequency of the resonator can be tuned by changing optical power and wavelength. The first mode resonance frequency was tuned in three different ways. A decrease in frequency below a critical optical power, a large increase between 50-120 µW followed by a large decrease in frequency for optical powers greater than 120 µW. The dynamic mechanical response was studied as a function of incident optical power and gas pressure. The resonance frequency and amplitude of vibration were found to be decreased with increasing laser power from 25-38 µW and increased by1-2 % when the laser power was further increased to 52 µW. The transition in films was induced and detected by a single pump and probe source and by employing external optical sources of different wavelengths. This trend in dynamic parameters of the strings can be co-related with reversible Insulator to metal transition in VO₂ films which creates change in density of the material and hence the overall stiffness of the strings leading to changes in string dynamics. The increase in frequency at a particular optical power manifests a transition to a more ordered metallic phase which tensile stress onto the string. The decrease in frequency at higher optical powers can be correlated with poor phonon thermal conductivity of VO₂ in conducting phase. Poor thermal conductivity of VO₂ can force in-plane penetration of heat causing the underneath SiN supporting VO₂ which can result as a decrease in resonance frequency. This noninvasive, non-contact laser-based excitation and detection of Insulator to metal transition using micro strings resonators at room temperature and with laser power in few µWs is important for low power electronics, and optical switching applications.

Keywords: thermal conductivity, vanadium dioxide, MEMS, frequency tuning

Procedia PDF Downloads 108
4271 Investigating the Influence of Roof Fairing on Aerodynamic Drag of a Bluff Body

Authors: Kushal Kumar Chode

Abstract:

Increase in demand for fuel saving and demand for faster vehicles with decent fuel economy, researchers around the world started investigating in various passive flow control devices to improve the fuel efficiency of vehicles. In this paper, A roof fairing was investigated for reducing the aerodynamic drag of a bluff body. The bluff body considered for this work is Ahmed model with a rake angle of 25deg was and subjected to flow with a velocity of 40m/s having Reynolds number of 2.68million was analysed using a commercial Computational Fluid Dynamic (CFD) code Star CCM+. It was evident that pressure drag is the main source of drag on an Ahmed body from the initial study. Adding a roof fairing has delayed the flow separation and resulted in delaying wake formation, thus improving the pressure in near weak and reducing the wake region. Adding a roof fairing of height and length equal to 1/7H and 1/3L respectively has shown a drag reduction by 9%. However, an optimised fairing, which was obtained by changing height, length and width by 5% increase, recorded a drag reduction close 12%.

Keywords: Ahmed model, aerodynamic drag, passive flow control, roof fairing, wake formation

Procedia PDF Downloads 423
4270 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System

Authors: Shane D. Inder, Mehrdad Khamooshi

Abstract:

Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.

Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic

Procedia PDF Downloads 301
4269 Relationship between Left Ventricle Position and Hemodynamic Parameters during Cardiopulmonary Resuscitation in a Pig Model

Authors: Hyun Chang Kim, Yong Hun Jung, Kyung Woon Jeung

Abstract:

Background: From the viewpoint of cardiac pump theory, the area of the left ventricle (LV) subjected to compression increases as the LV lies closer to the sternum, possibly resulting in higher blood flow in patients with LV closer to the sternum. However, no study has evaluated LV position during cardiac arrest or its relationship with hemodynamic parameters during cardiopulmonary resuscitation (CPR). The objectives of this study were to determine whether the position of the LV relative to the anterior-posterior axis representing the direction of chest compression shifts during cardiac arrest and to examine the relationship between LV position and hemodynamic parameters during CPR. Methods: Subcostal view echocardiograms were obtained from 15 pigs with the transducer parallel to the long axis of the sternum before inducing ventricular fibrillation (VF) and during cardiac arrest. Computed tomography was performed in three pigs to objectively observe LV position during cardiac arrest. LV position parameters including the shortest distance between the anterior-posterior axis and the mid-point of the LV chamber (DAP-MidLV), the shortest distance between the anterior-posterior axis and the LV apex (DAP-Apex), and the area fraction of the LV located on the right side of the anterior-posterior axis (LVARight/LVATotal) were measured. Results: DAP-MidLV, DAP-Apex, and LVARight/LVATotal decreased progressively during untreated VF and basic life support (BLS), and then increased during advanced cardiovascular life support (ACLS). A repeated measures analysis of variance revealed significant time effects for these parameters. During BLS, the end-tidal carbon dioxide and systolic right atrial pressure were significantly correlated with the LV position parameters. During ACLS, systolic arterial pressure and systolic right atrial pressure were significantly correlated with DAP-MidLV and DAP-Apex. Conclusions: LV position changed significantly during cardiac arrest compared to the pre-arrest baseline. LV position during CPR had significant correlations with hemodynamic parameters.

Keywords: heart arrest, cardiopulmonary resuscitation, heart ventricle, hemodynamics

Procedia PDF Downloads 180
4268 Perception of Predictive Confounders for the Prevalence of Hypertension among Iraqi Population: A Pilot Study

Authors: Zahraa Albasry, Hadeel D. Najim, Anmar Al-Taie

Abstract:

Background: Hypertension is considered as one of the most important causes of cardiovascular complications and one of the leading causes of worldwide mortality. Identifying the potential risk factors associated with this medical health problem plays an important role in minimizing its incidence and related complications. The objective of this study is to explore the prevalence of receptor sensitivity regarding assess and understand the perception of specific predictive confounding factors on the prevalence of hypertension (HT) among a sample of Iraqi population in Baghdad, Iraq. Materials and Methods: A randomized cross sectional study was carried out on 100 adult subjects during their visit to the outpatient clinic at a certain sector of Baghdad Province, Iraq. Demographic, clinical and health records alongside specific screening and laboratory tests of the participants were collected and analyzed to detect the potential of confounding factors on the prevalence of HT. Results: 63% of the study participants suffered from HT, most of them were female patients (P < 0.005). Patients aged between 41-50 years old significantly suffered from HT than other age groups (63.5%, P < 0.001). 88.9% of the participants were obese (P < 0.001) and 47.6% had diabetes with HT. Positive family history and sedentary lifestyle were significantly higher among all hypertensive groups (P < 0.05). High salt and fatty food intake was significantly found among patients suffered from isolated systolic hypertension (ISHT) (P < 0.05). A significant positive correlation between packed cell volume (PCV) and systolic blood pressure (SBP) (r = 0.353, P = 0.048) found among normotensive participants. Among hypertensive patients, a positive significant correlation found between triglycerides (TG) and both SBP (r = 0.484, P = 0.031) and diastolic blood pressure (DBP) (r = 0.463, P = 0.040), while low density lipoprotein-cholesterol (LDL-c) showed a positive significant correlation with DBP (r = 0.443, P = 0.021). Conclusion: The prevalence of HT among Iraqi populations is of major concern. Further consideration is required to detect the impact of potential risk factors and to minimize blood pressure (BP) elevation and reduce the risk of other cardiovascular complications later in life.

Keywords: Correlation, Hypertension, Iraq, Risk factors

Procedia PDF Downloads 124
4267 Numerical Study of Flow Characteristics and Performance of 14-X B Inlet with Blunted Cowl-Lip

Authors: Sergio N. P. Laitón, Paulo G. P. Toro, João F. Martos

Abstract:

A numerical study has been carried out to investigate the flow characteristics and performance of the 14-X B inlet with blunted cowl-lip. The Brazilian aerospace hypersonic vehicle 14-X B is a technology demonstrator of a hypersonic air-breathing propulsion system, based on supersonic combustion ramjet (scramjet). It is designed for Earth's atmospheric flight at Mach number of 6 and an altitude of 30 km. Currently, it is under development in the aerothermodynamics and hypersonic Professor Henry T. Nagamatsu laboratory at Advanced Studies Institute (IEAv). Numerical simulations were conducted at nominal freestream Mach number and altitude for two cowl-lip blunting radius and several angles of attack close to horizontal flight. The results show that the shock interference behavior on the blunted cowl-lip change with the angle of attack and blunted radius. The type VI or V together with III shock interferences are more likely to occur simultaneously at small negative angles of attack. When the inlet operates in positive angles of attack higher to 1, no shock interference occurs, only the bow shock conditions. The results indicate a high air pressure at beginning of the combustor and higher pressure recovery with 2 mm radius and positives angles of attack.

Keywords: blunted cowl-lip, hypersonic inlet, inlet unstart, shock interference

Procedia PDF Downloads 311
4266 Blood Flow Estimator of the Left Ventricular Assist Device Based in Look-Up-Table: In vitro Tests

Authors: Tarcisio F. Leao, Bruno Utiyama, Jeison Fonseca, Eduardo Bock, Aron Andrade

Abstract:

This work presents a blood flow estimator based in Look-Up-Table (LUT) for control of Left Ventricular Assist Device (LVAD). This device has been used as bridge to transplantation or as destination therapy to treat patients with heart failure (HF). Destination Therapy application requires a high performance LVAD; thus, a stable control is important to keep adequate interaction between heart and device. LVAD control provides an adequate cardiac output while sustaining an appropriate flow and pressure blood perfusion, also described as physiologic control. Because thrombus formation and system reliability reduction, sensors are not desirable to measure these variables (flow and pressure blood). To achieve this, control systems have been researched to estimate blood flow. LVAD used in the study is composed by blood centrifugal pump, control, and power supply. This technique used pump and actuator (motor) parameters of LVAD, such as speed and electric current. Estimator relates electromechanical torque (motor or actuator) and hydraulic power (blood pump) via LUT. An in vitro Mock Loop was used to evaluate deviations between blood flow estimated and actual. A solution with glycerin (50%) and water was used to simulate the blood viscosity with hematocrit 45%. Tests were carried out with variation hematocrit: 25%, 45% and 58% of hematocrit, or 40%, 50% and 60% of glycerin in water solution, respectively. Test with bovine blood was carried out (42% hematocrit). Mock Loop is composed: reservoir, tubes, pressure and flow sensors, and fluid (or blood), beyond LVAD. Estimator based in LUT is patented, number BR1020160068363, in Brazil. Mean deviation is 0.23 ± 0.07 L/min for mean flow estimated. Larger mean deviation was 0.5 L/min considering hematocrit variation. This estimator achieved deviation adequate for physiologic control implementation. Future works will evaluate flow estimation performance in control system of LVAD.

Keywords: blood pump, flow estimator, left ventricular assist device, look-up-table

Procedia PDF Downloads 172
4265 Honey Intoxication: A Unique Cause of Sudden Cardiac Collapse

Authors: Bharat Rawat, Shekhar Rajbhandari, Yadav Bhatta, Jay Prakash Jaiswal, Shivaji Bikram Silwal, Rajiv Shrestha, Shova Sunuwar

Abstract:

Introduction: The honey produced by the bees fed on Rhobdodendron species containing grayanotoxin is known as mad honey. Grayanotoxin is found in honey obtained from the nectar of Rhododendron species growing on the mountains of the Black Sea region of Turkey and also in Japan, Nepal, Brazil, parts of North America, and Europe. Although the incidence of grayanotoxin poisoning is rare, there is concern that the number of cases per year will rise with the increasing demand for organic products. Mad honey intoxication might present with mild symptoms of cardiovascular, gastrointestinal and neurological systems or might also present with a life-threatening form with AV block and cardiovascular collapse. In this article, we describe the summary of five cases, which came to our hospital with mad honey related cardiac complications. Findings: In last one year, five cases presented in the emergency department with sudden onset of Loss of consciousness, dizziness, shortness of breath. They felt difficulty after the consumption of 1-3 teaspoonful of wild honey. The honey was brought from most of the rural parts of Nepal like khotang. Some of them also came with vomiting, dizziness, and loose stool. On examination, most of them had severe bradycardia and low blood pressure. No abnormalities were detected on systemic examinations. In one patient, ECG and cardiac enzymes showed features of the acute coronary syndrome, but his treadmill test done few days later was normal. All patients were managed with inj. Atropine, I/V normal saline, and other supportive measures and discharged in a stable condition within one or two days. Conclusions: Rhododendrons is the national flower of Nepal. The specific species of rhododendron found in Nepal which contains the toxin is not known. Bees feeding on these rhododendrons are known to transfer the grayanotoxin to the honey they produce. Most symptoms are mild and resolve themselves without medical intervention. Signs and symptoms of grayanotoxin poisoning rarely last more than 24 hours and are usually not fatal. Some signs of mad honey poisoning include Bradycardia, Cardiac arrhythmia, Hypotension, Nausea and Vomiting. They respond to close monitoring and appropriate supportive treatment. Normally, patients recover completely with no residual damage to the heart or its conduction system.

Keywords: rhobdodendron, honey, grayanotoxin, bradycardia

Procedia PDF Downloads 338
4264 Improving the Efficiency of a High Pressure Turbine by Using Non-Axisymmetric Endwall: A Comparison of Two Optimization Algorithms

Authors: Abdul Rehman, Bo Liu

Abstract:

Axial flow turbines are commonly designed with high loads that generate strong secondary flows and result in high secondary losses. These losses contribute to almost 30% to 50% of the total losses. Non-axisymmetric endwall profiling is one of the passive control technique to reduce the secondary flow loss. In this paper, the non-axisymmetric endwall profile construction and optimization for the stator endwalls are presented to improve the efficiency of a high pressure turbine. The commercial code NUMECA Fine/ Design3D coupled with Fine/Turbo was used for the numerical investigation, design of experiments and the optimization. All the flow simulations were conducted by using steady RANS and Spalart-Allmaras as a turbulence model. The non-axisymmetric endwalls of stator hub and shroud were created by using the perturbation law based on Bezier Curves. Each cut having multiple control points was supposed to be created along the virtual streamlines in the blade channel. For the design of experiments, each sample was arbitrarily generated based on values automatically chosen for the control points defined during parameterization. The Optimization was achieved by using two algorithms i.e. the stochastic algorithm and gradient-based algorithm. For the stochastic algorithm, a genetic algorithm based on the artificial neural network was used as an optimization method in order to achieve the global optimum. The evaluation of the successive design iterations was performed using artificial neural network prior to the flow solver. For the second case, the conjugate gradient algorithm with a three dimensional CFD flow solver was used to systematically vary a free-form parameterization of the endwall. This method is efficient and less time to consume as it requires derivative information of the objective function. The objective function was to maximize the isentropic efficiency of the turbine by keeping the mass flow rate as constant. The performance was quantified by using a multi-objective function. Other than these two classifications of the optimization methods, there were four optimizations cases i.e. the hub only, the shroud only, and the combination of hub and shroud. For the fourth case, the shroud endwall was optimized by using the optimized hub endwall geometry. The hub optimization resulted in an increase in the efficiency due to more homogenous inlet conditions for the rotor. The adverse pressure gradient was reduced but the total pressure loss in the vicinity of the hub was increased. The shroud optimization resulted in an increase in efficiency, total pressure loss and entropy were reduced. The combination of hub and shroud did not show overwhelming results which were achieved for the individual cases of the hub and the shroud. This may be caused by fact that there were too many control variables. The fourth case of optimization showed the best result because optimized hub was used as an initial geometry to optimize the shroud. The efficiency was increased more than the individual cases of optimization with a mass flow rate equal to the baseline design of the turbine. The results of artificial neural network and conjugate gradient method were compared.

Keywords: artificial neural network, axial turbine, conjugate gradient method, non-axisymmetric endwall, optimization

Procedia PDF Downloads 219
4263 Simple and Effective Method of Lubrication and Wear Protection

Authors: Buddha Ratna Shrestha, Jimmy Faivre, Xavier Banquy

Abstract:

By precisely controlling the molecular interactions between anti-wear macromolecules and bottle-brush lubricating molecules in the solution state, we obtained a fluid with excellent lubricating and wear protection capabilities. The reason for this synergistic behavior relies on the subtle interaction forces between the fluid components which allow the confined macromolecules to sustain high loads under shear without rupture. Our results provide rational guides to design such fluids for virtually any type of surfaces. The lowest friction coefficient and the maximum pressure that it can sustain is 5*10-3 and 2.5 MPa which is close to the physiological pressure. Lubricating and protecting surfaces against wear using liquid lubricants is a great technological challenge. Until now, wear protection was usually imparted by surface coatings involving complex chemical modifications of the surface while lubrication was provided by a lubricating fluid. Hence, we here research for a simple, effective and applicable solution to the above problem using surface force apparatus (SFA). SFA is a powerful technique with sub-angstrom resolution in distance and 10 nN/m resolution in interaction force while performing friction experiment. Thus, SFA is used to have the direct insight into interaction force, material and friction at interface. Also, we always know the exact contact area. From our experiments, we found that by precisely controlling the molecular interactions between anti-wear macromolecules and lubricating molecules, we obtained a fluid with excellent lubricating and wear protection capabilities. The reason for this synergistic behavior relies on the subtle interaction forces between the fluid components which allow the confined macromolecules to sustain high loads under shear without rupture. The lowest friction coefficient and the maximum pressure that it can sustain in our system is 5*10-3 and 2.5 GPA which is well above the physiological pressure. Our results provide rational guides to design such fluids for virtually any type of surfaces. Most importantly this process is simple, effective and applicable method of lubrication and protection as until now wear protection was usually imparted by surface coatings involving complex chemical modifications of the surface. Currently, the frictional data that are obtained while sliding the flat mica surfaces are compared and confirmed that a particular mixture of solution was found to surpass all other combination. So, further we would like to confirm that the lubricating and antiwear protection remains the same by performing the friction experiments in synthetic cartilages.

Keywords: bottle brush polymer, hyaluronic acid, lubrication, tribology

Procedia PDF Downloads 256
4262 Acoustics Barrier Design to Reduce Railway Noise by Using Maekawa's Method

Authors: Malinda Sabrina, Khoerul Anwar

Abstract:

Railway noise generated by pass-by train has been described as a form of environmental pollutants especially for the residential area near the railway. Many studies have shown, that environmental noise particularly transportation noise has negative effects on people which resulting in annoyance and specific health problems such as cardiovascular disease, cognitive impairment and sleep disturbance. Therefore, various attempts are made to reduce the noise. One method of reducing such noise to acceptable noise levels is to build acoustically barrier walls. The objective of this study was to review the method of reducing railway noise and obtain the preliminary design of the acoustics barrier on the edge of railway tracks close to the residential area. The design of this barrier is using the Maekawa's method. Measurements have been performed in residential areas around the railroads in the Karawang - Indonesia with the absence of an acoustical barrier. From the observation, it was found that the railway was passed by five trains within thirty minutes. With the limited distance between the railway tracks and the location of the residential area as well as the street of residents, then it was obtained that a reduction in sound pressure level is 25 dBA. Maximum sound pressure level obtained is 86.9 dBA then by setting the barrier as high as 4 m at a distance, 2.5 m from the railway, the noise level received by residents in the settlement around the railway line becomes 61.9 dBA.

Keywords: acoustics barrier, Maekawa's method, noise attenuation, railway noise

Procedia PDF Downloads 186
4261 Optimization of a Four-Lobed Swirl Pipe for Clean-In-Place Procedures

Authors: Guozhen Li, Philip Hall, Nick Miles, Tao Wu

Abstract:

This paper presents a numerical investigation of two horizontally mounted four-lobed swirl pipes in terms of swirl induction effectiveness into flows passing through them. The swirl flows induced by the two swirl pipes have the potential to improve the efficiency of Clean-In-Place procedures in a closed processing system by local intensification of hydrodynamic impact on the internal pipe surface. Pressure losses, swirl development within the two swirl pipe, swirl induction effectiveness, swirl decay and wall shear stress variation downstream of two swirl pipes are analyzed and compared. It was found that a shorter length of swirl inducing pipe used in joint with transition pipes is more effective in swirl induction than when a longer one is used, in that it has a less constraint to the induced swirl and results in slightly higher swirl intensity just downstream of it with the expense of a smaller pressure loss. The wall shear stress downstream of the shorter swirl pipe is also slightly larger than that downstream of the longer swirl pipe due to the slightly higher swirl intensity induced by the shorter swirl pipe. The advantage of the shorter swirl pipe in terms of swirl induction is more significant in flows with a larger Reynolds Number.

Keywords: swirl pipe, swirl effectiveness, CFD, wall shear stress, swirl intensity

Procedia PDF Downloads 598
4260 Design and Experimental Studies of a Centrifugal SWIRL Atomizer

Authors: Hemabushan K., Manikandan

Abstract:

In a swirl atomizer, fluid undergoes a swirling motion as a result of centrifugal force created by opposed tangential inlets in the swirl chamber. The angular momentum of fluid continually increases as it reaches the exit orifice and forms a hollow sheet. Which disintegrates to form ligaments and droplets respectively as it flows downstream. This type of atomizers used in rocket injectors and oil burner furnaces. In this present investigation a swirl atomizer with two opposed tangential inlets has been designed. Water as working fluid, experiments had been conducted for the fluid injection pressures in regime of 0.033 bar to 0.519 bar. The fluid has been pressured by a 0.5hp pump and regulated by a pressure regulator valve. Injection pressure of fluid has been measured by a U-tube mercury manometer. The spray pattern and the droplets has been captured with a high resolution camera in black background with a high intensity flash highlighting the fluid. The unprocessed images were processed in ImageJ processing software for measuring the droplet diameters and its shape characteristics along the downstream. The parameters such as mean droplet diameter and distribution, wave pattern, rupture distance and spray angle were studied for this atomizer. The above results were compared with theoretical results and also analysed for deviation with design parameters.

Keywords: swirl atomizer, injector, spray, SWIRL

Procedia PDF Downloads 478
4259 Classification of Traffic Complex Acoustic Space

Authors: Bin Wang, Jian Kang

Abstract:

After years of development, the study of soundscape has been refined to the types of urban space and building. Traffic complex takes traffic function as the core, with obvious design features of architectural space combination and traffic streamline. The acoustic environment is strongly characterized by function, space, material, user and other factors. Traffic complex integrates various functions of business, accommodation, entertainment and so on. It has various forms, complex and varied experiences, and its acoustic environment is turned rich and interesting with distribution and coordination of various functions, division and unification of the mass, separation and organization of different space and the cross and the integration of multiple traffic flow. In this study, it made field recordings of each space of various traffic complex, and extracted and analyzed different acoustic elements, including changes in sound pressure, frequency distribution, steady sound source, sound source information and other aspects, to make cluster analysis of each independent traffic complex buildings. It divided complicated traffic complex building space into several typical sound space from acoustic environment perspective, mainly including stable sound space, high-pressure sound space, rhythm sound space and upheaval sound space. This classification can further deepen the study of subjective evaluation and control of the acoustic environment of traffic complex.

Keywords: soundscape, traffic complex, cluster analysis, classification

Procedia PDF Downloads 242
4258 Generation and Diagnostics of Atmospheric Pressure Dielectric Barrier Discharge in Argon/Air

Authors: R. Shrestha, D. P. Subedi, R. B. Tyata, C. S. Wong,

Abstract:

In this paper, a technique for the determination of electron temperatures and electron densities in atmospheric pressure Argon/air discharge by the analysis of optical emission spectra (OES) is reported. The discharge was produced using a high voltage (0-20) kV power supply operating at a frequency of 27 kHz in parallel electrode system, with glass as dielectric. The dielectric layers covering the electrodes act as current limiters and prevent the transition to an arc discharge. Optical emission spectra in the range of (300nm-850nm) were recorded for the discharge with different inter electrode gap keeping electric field constant. Electron temperature (Te) and electron density (ne) are estimated from electrical and optical methods. Electron density was calculated using power balance method. The optical methods are related with line intensity ratio from the relative intensities of Ar-I and Ar-II lines in Argon plasma. The electron density calculated by using line intensity ratio method was compared with the electron density calculated by stark broadening method. The effect of dielectric thickness on plasma parameters (Te and ne) have also been studied and found that Te and ne increases as thickness of dielectric decrease for same inter electrode distance and applied voltage.

Keywords: electron density, electron temperature, optical emission spectra,

Procedia PDF Downloads 485
4257 Effects of Supplementary Cementitious Materials on Early Age Thermal Properties of Cement Paste

Authors: Maryam Ghareh Chaei, Masuzyo Chilwesa, Ali Akbarnezhad, Arnaud Castel, Redmond Lloyd, Stephen Foster

Abstract:

Cement hydration is an exothermic chemical reaction generally leading to a rise in concrete’s temperature. This internal heating of concrete may, in turn, lead to a temperature difference between the hotter interior and the cooler exterior of concrete and thus differential thermal stresses in early ages which could be particularly significant in mass concrete. Such differential thermal stresses result in early age thermal cracking of concrete when exceeding the concrete’s tensile strength. The extent of temperature rise and thus early age differential thermal stresses is generally a function of hydration heat intensity, thermal properties of concrete and size of the concrete element. Both hydration heat intensity and thermal properties of concrete may vary considerably with variations in the type cementitious materials and other constituents. With this in mind, partial replacement of cement with supplementary cementitious materials including fly ash and ground granulated blast furnace slag has been investigated widely as an effective strategy to moderate the heat generation rate and thus reduce the risk of early age thermal cracking of concrete. However, there is currently a lack of adequate literature on effect of partial replacement of cement with fly ash and/or ground granulated blast furnace slag on the thermal properties of concrete. This paper presents the results of an experimental conducted to evaluate the effect of addition of varying percentages of fly ash (up to 60%) and ground granulated blast furnace slag (up to 50%) on the heat capacity and thermal conductivity of early age cement paste. The water to cementitious materials ratio is kept 0.45 for all the paste samples. The results of the experimental studies were used in a numerical analysis performed using Comsol Multiphysics to highlight the effects of variations in the thermal properties of concrete, due to variations in the type of aggregate and content of supplemenraty cementitious materials, on the risk of early age cracking of a concrete raft.

Keywords: thermal diffusivity, early age thermal cracking, concrete, supplementary cementitious materials

Procedia PDF Downloads 243
4256 A Study on Shock Formation over a Transonic Aerofoil

Authors: M. Fowsia, Dominic Xavier Fernando, Vinojitha, Rahamath Juliyana

Abstract:

Aerofoil is a primary element to be designed during the initial phase of creating any new aircraft. It is the component that forms the cross-section of the wing. The wing is used to produce lift force that balances the weight which is acting downwards. The lift force is created due to pressure difference over the top and bottom surface which is caused due to velocity variation. At sub-sonic velocities, for a real fluid, we obtain a smooth flow of air over both the surfaces. In this era of high speed travel, commercial aircraft that can travel faster than speed of sound barrier is required. However transonic velocities cause the formation of shock waves which can cause flow separation over the top and bottom surfaces. In the transonic range, shock waves move across the top and bottom surfaces of the aerofoil, until both the shock waves merge into a single shock wave that is formed near the leading edge of theaerofoil. In this paper, a transonic aerofoil is designed and its aerodynamic properties at different velocities in the Transonic range (M = 0.8; 0.9; 1; 1.1; 1.2) are studied with the help of CFD. The Pressure and Velocity distributions over the top and bottom surfaces of aerofoil are studied and the variations of shock patterns, at different velocities, are analyzed. The analysis can be used to determine the effect of drag divergence on the lift created by the aerofoil.

Keywords: transonic aerofoil, cfd, drag divergence, shock formation, viscous flow

Procedia PDF Downloads 515