Search results for: cell- material interaction
980 Safety Evaluation of Post-Consumer Recycled PET Materials in Chilean Industry by Overall Migration Tests
Authors: Evelyn Ilabaca, Ximena Valenzuela, Alejandra Torres, María José Galotto, Abel Guarda
Abstract:
One of the biggest problems in food packaging industry, especially with the plastic materials, is the fact that these materials are usually obtained from non-renewable resources and also remain as waste after its use, causing environmental issues. This is an international concern and particular attention is given to reduction, reuse and recycling strategies for decreasing the waste from plastic packaging industry. In general, polyethylenes represent most plastic waste and recycling process of post-consumer polyethylene terephthalate (PCR-PET) has been studied. US Food and Drug Administration (FDA), European Food Safety Authority (EFSA) and Southern Common Market (MERCOSUR) have generated different legislative documents to control the use of PCR-PET in the production of plastic packaging intended direct food contact in order to ensure the capacity of recycling process to remove possible contaminants that can migrate into food. Consequently, it is necessary to demonstrate by challenge test that the recycling process is able to remove specific contaminants, obtaining a safe recycled plastic to human health. These documents establish that the concentration limit for substitute contaminants in PET is 220 ppb (ug/kg) and the specific migration limit is 10 ppb (ug/kg) for each contaminant, in addition to assure the sensorial characteristics of food are not affected. Moreover, under the Commission Regulation (EU) N°10/2011 on plastic materials and articles intended to come into contact with food, it is established that overall migration limit is 10 mg of substances per 1 dm2 of surface area of the plastic material. Thus, the aim of this work is to determine the safety of PCR-PET-containing food packaging materials in Chile by measuring their overall migration, and their comparison with the established limits at international level. This information will serve as a basis to provide a regulation to control and regulate the use of recycled plastic materials in the manufacture of plastic packaging intended to be in direct contact with food. The methodology used involves a procedure according to EN-1186:2002 with some modifications. The food simulants used were ethanol 10 % (v/v) and acetic acid 3 % (v/v) as aqueous food simulants, and ethanol 95 % (v/v) and isooctane as substitutes of fatty food simulants. In this study, preliminary results showed that Chilean food packaging plastics with different PCR-PET percentages agree with the European Legislation for food aqueous character.Keywords: contaminants, polyethylene terephthalate, plastic food packaging, recycling
Procedia PDF Downloads 273979 Sustainable Valorization of Wine Production Waste: Unlocking the Potential of Grape Pomace and Lees in the Vinho Verde Region
Authors: Zlatina Genisheva, Pedro Ferreira-Santos, Margarida Soares, Cândida Vilarinho, Joana Carvalho
Abstract:
The wine industry produces significant quantities of waste, much of which remains underutilized as a potential raw material. Typically, this waste is either discarded in the fields or incinerated, leading to environmental concerns. By-products of wine production, like lees and grape pomace, are readily available at relatively low costs and hold promise as raw materials for biochemical conversion into valuable products. Reusing these waste materials is crucial, not only for reducing environmental impact but also for enhancing profitability. The Vinhos Verdes demarcated region, the largest wine-producing area in Portugal, has remained relatively stagnant over time. This project aims to offer an alternative income source for producers in the region while also expanding the limited existing research on this area. The main objective of this project is the study of the sustainable valorization of grape pomace and lees from the production of DOC Vinho Verde. Extraction tests were performed to obtain high-value compounds, targeting phenolic compounds from grape pomace and protein-rich extracts from lees. An environmentally friendly technique, microwave extraction, was used for this process. This method is not only efficient but also aligns with the principles of green chemistry, reducing the use of harmful solvents and minimizing energy consumption. The findings from this study have the potential to open new revenue streams for the region’s wine producers while promoting environmental sustainability. The optimal conditions for extracting proteins from lees involve the use of NaOH at 150ºC. Regardless of the solvent employed, the ideal temperature for obtaining extracts rich in polyphenol compounds and exhibiting strong antioxidant activity is also 150ºC. For grape pomace, extracts with a high concentration of polyphenols and significant antioxidant properties were obtained at 210ºC. However, the highest total tannin concentrations were achieved at 150ºC, while the maximum total flavonoid content was obtained at 170ºC.Keywords: antioxidants, circular economy, polyphenol compounds, waste valorization
Procedia PDF Downloads 17978 Screening of Freezing Tolerance in Eucalyptus Genotypes (Eucalyptus spp.) Using Chlorophyll Fluorescence, Ionic Leakage, Proline Accumulation and Stomatal Density
Authors: S. Lahijanian, M. Mobli, B. Baninasab, N. Etemadi
Abstract:
Low temperature extremes are amongst the major stresses that adversely affect the plant growth and productivity. Cold stress causes oxidative stress, physiological, morphological and biochemical changes in plant cells. Generally, low temperatures similar to salinity and drought exert their negative effects mainly by disrupting the ionic and osmotic equilibrium of the plant cells. Changes in climatic condition leading to more frequent extreme conditions will require adapted crop species on a larger scale in order to sustain agricultural production. Eucalyptus is a diverse genus of flowering trees (and a few shrubs) in the myrtle family, Myrtaceae. Members of this genus dominate the tree flora of Australia. The eucalyptus genus contains more than 580 species and large number of cultivars, which are native to Australia. Large distribution and diversity of compatible eucalyptus cultivars reflect the fact of ecological flexibility of eucalyptus. Some eucalyptus cultivars can sustain hard environmental conditions like high and low temperature, salinity, high level of PH, drought, chilling and freezing which are intensively effective on crops with tropical and subtropical origin. In this study, we tried to evaluate freezing tolerance of 12 eucalyptus genotypes by means of four different morphological and physiological methods: Chlorophyll fluorescence, electrolyte leakage, proline and stomatal density. The studied cultivars include Eucalyptus camaldulensis, E. coccifera, E. darlympleana, E. erythrocorys, E. glaucescens, E. globulus, E. gunnii, E. macrocorpa, E. microtheca, E. rubida, E. tereticornis, and E. urnigera. Except for stomatal density recording, in other methods, plants were exposed to five gradual temperature drops: zero, -5, -10, -15 and -20 degree of centigrade and they remained in these temperatures for at least one hour. Experiment for measuring chlorophyll fluorescence showed that genotypes E. erythrocorys and E. camaldulensis were the most resistant genotypes and E. gunnii and E.coccifera were more sensitive than other genotypes to freezing stress effects. In electrolyte leakage experiment with regard to significant interaction between cultivar and temperature, genotypes E. erythrocorys and E.macrocorpa were shown to be the most tolerant genotypes and E. gunnii, E. urnigera, E. microtheca and E. tereticornis with the more ionic leakage percentage showed to be more sensitive to low temperatures. Results of Proline experiment approved that the most resistant genotype to freezing stress is E. erythrocorys. In the stomatal density experiment, the numbers of stomata under microscopic field were totally counted and the results showed that the E. erythrocorys and E. macrocorpa genotypes had the maximum and E. coccifera and E. darlympleana genotypes had minimum number of stomata under microscopic field (0.0605 mm2). In conclusion, E. erythrocorys identified as the most tolerant genotype; meanwhile E. gunnii classified as the most freezing susceptible genotype in this investigation. Further, remarkable correlation was not obtained between the stomatal density and other cold stress measures.Keywords: chlorophyll fluorescence, cold stress, ionic leakage, proline, stomatal density
Procedia PDF Downloads 263977 Effect of Preoperative Single Dose Dexamethasone and Lignocaine on Post-Operative Quality of Recovery and Pain Relief after Laparoscopic Cholecystectomy
Authors: Gurjeet Khurana, Surender Singh, Poonam Arora, Praveendra K. Sachan
Abstract:
Introduction: Post-operative quality of recovery is the key outcome in the perspective of anesthesiologist. It is directly related to patient satisfaction. This is unsurprising, considering most aspects of a poor quality recovery after surgery will impair satisfaction with care. This study was thus undertaken to evaluate effects of Dexamethasone and Lignocaine on Quality of Recovery using QoR- 40 questionnaire and compare their effects. Material and methods: After obtaining the ethical committee approval and written informed consent, 67 patients of 18-60 years, ASA grade I and II scheduled for elective laparoscopic cholecystectomy were randomly allocated into two groups. Group I of 34 patients received 2mg/kg lignocaine diluted to 10ml with normal saline. Group 2 of 33 patients received 0.1 mg/kg I/V Dexamethasone diluted to 10ml with normal saline. QoR-40 was assessed on pre-operative day, and again QoR-40 was assessed at 24 hr post-operative day-1. Postoperative pain scores, nausea and vomiting and shoulder pain were secondary outcomes. Results: The Global QoR-40 was more than 180 at 24 hr in both the groups. The Dexamethasone group had higher Global QoR-40 than lignocaine group 187.94 v/s 182.85. Amongst dimensions of QoR-40 Dexamethasone had statistically better physical comfort, physical independence, and pain relief as compared to Lignocaine. Positive items had excellent responses in Dexamethasone group. Headache, backache and sore throat were also less severe in Dexamethasone group as compared to Lignocaine group. Dexamethasone group had lower VAS compared to lignocaine group. Similarly, there was less fentanyl consumption in dexamethasone group (364.08 ± 127.31) in postoperative period when compared to the lignocaine group (412.31 ± 147.8). Group receiving dexamethasone had 36% increase in appetite compared to lignocaine group (17.6%), which facilitated early oral feeding. Frequency of PONV was less in group-2 at different time interval as compared to group 1. Total episode of PONV were 18 in group 1 and 7 in group 2. Statistically significant difference was seen among two groups (p value= 0.007). Use of antiemetic was more in group 1 as compared to group 2 at all the times, though it was not statistically significant at different time intervals. Antiemetics were administered to 18 patients in group 1 as compared to 5 patients in group 2 postoperatively. Statistically significant difference (p value= 0.011) was seen in total antiemetic consumption. Conclusion: Our study demonstrated that pre-operative administration of a single dose of dexamethasone enhanced the quality of recovery after laparoscopic cholecystectomy as compared to Lignocaine bolus dose.Keywords: dexamethasone, lignocaine, QoR-40 questionnaire, quality of recovery
Procedia PDF Downloads 120976 Vortex Generation to Model the Airflow Downstream of a Piezoelectric Fan Array
Authors: Alastair Hales, Xi Jiang, Siming Zhang
Abstract:
Numerical methods are used to generate vortices in a domain. Through considered design, two counter-rotating vortices may interact and effectively drive one another downstream. This phenomenon is comparable to the vortex interaction that occurs in a region immediately downstream from two counter-oscillating piezoelectric (PE) fan blades. PE fans are small blades clamped at one end and driven to oscillate at their first natural frequency by an extremely low powered actuator. In operation, the high oscillation amplitude and frequency generate sufficient blade tip speed through the surrounding air to create downstream air flow. PE fans are considered an ideal solution for low power hot spot cooling in a range of small electronic devices, but a single blade does not typically induce enough air flow to be considered a direct alternative to conventional air movers, such as axial fans. The development of face-to-face PE fan arrays containing multiple blades oscillating in counter-phase to one another is essential for expanding the range of potential PE fan applications regarding the cooling of power electronics. Even in an unoptimised state, these arrays are capable of moving air volumes comparable to axial fans with less than 50% of the power demand. Replicating the airflow generated by face-to-face PE fan arrays without including the actual blades in the model reduces the process’s computational demands and enhances the rate of innovation and development in the field. Vortices are generated at a defined inlet using a time-dependent velocity profile function, which pulsates the inlet air velocity magnitude. This induces vortex generation in the considered domain, and these vortices are shown to separate and propagate downstream in a regular manner. The generation and propagation of a single vortex are compared to an equivalent vortex generated from a PE fan blade in a previous experimental investigation. Vortex separation is found to be accurately replicated in the present numerical model. Additionally, the downstream trajectory of the vortices’ centres vary by just 10.5%, and size and strength of the vortices differ by a maximum of 10.6%. Through non-dimensionalisation, the numerical method is shown to be valid for PE fan blades with differing parameters to the specific case investigated. The thorough validation methods presented verify that the numerical model may be used to replicate vortex formation from an oscillating PE fans blade. An investigation is carried out to evaluate the effects of varying the distance between two PE fan blade, pitch. At small pitch, the vorticity in the domain is maximised, along with turbulence in the near vicinity of the inlet zones. It is proposed that face-to-face PE fan arrays, oscillating in counter-phase, should have a minimal pitch to optimally cool nearby heat sources. On the other hand, downstream airflow is maximised at a larger pitch, where the vortices can fully form and effectively drive one another downstream. As such, this should be implemented when bulk airflow generation is the desired result.Keywords: piezoelectric fans, low energy cooling, vortex formation, computational fluid dynamics
Procedia PDF Downloads 181975 Immiscible Polymer Blends with Controlled Nanoparticle Location for Excellent Microwave Absorption: A Compartmentalized Approach
Authors: Sourav Biswas, Goutam Prasanna Kar, Suryasarathi Bose
Abstract:
In order to obtain better materials, control in the precise location of nanoparticles is indispensable. It was shown here that ordered arrangement of nanoparticles, possessing different characteristics (electrical/magnetic dipoles), in the blend structure can result in excellent microwave absorption. This is manifested from a high reflection loss of ca. -67 dB for the best blend structure designed here. To attenuate electromagnetic radiations, the key parameters i.e. high electrical conductivity and large dielectric/magnetic loss are targeted here using a conducting inclusion [multiwall carbon nanotubes, MWNTs]; ferroelectric nanostructured material with associated relaxations in the GHz frequency [barium titanate, BT]; and a loss ferromagnetic nanoparticles [nickel ferrite, NF]. In this study, bi-continuous structures were designed using 50/50 (by wt) blends of polycarbonate (PC) and polyvinylidene fluoride (PVDF). The MWNTs was modified using an electron acceptor molecule; a derivative of perylenediimide, which facilitates π-π stacking with the nanotubes and stimulates efficient charge transport in the blends. The nanoscopic materials have specific affinity towards the PVDF phase. Hence, by introducing surface-active groups, ordered arrangement can be tailored. To accomplish this, both BT and NF was first hydroxylated followed by introducing amine-terminal groups on the surface. The latter facilitated in nucleophilic substitution reaction with PC and resulted in their precise location. In this study, we have shown for the first time that by compartmentalized approach, superior EM attenuation can be achieved. For instance, when the nanoparticles were localized exclusively in the PVDF phase or in both the phases, the minimum reflection loss was ca. -18 dB (for MWNT/BT mixture) and -29 dB (for MWNT/NF mixture), and the shielding was primarily through reflection. Interestingly, by adopting the compartmentalized approach where in, the lossy materials were in the PC phase and the conducting inclusion (MWNT) in PVDF, an outstanding reflection loss of ca. -57 dB (for BT and MWNT combination) and -67 dB (for NF and MWNT combination) was noted and the shielding was primarily through absorption. Thus, the approach demonstrates that nanoscopic structuring in the blends can be achieved under macroscopic processing conditions and this strategy can further be explored to design microwave absorbers.Keywords: barium titanate, EMI shielding, MWNTs, nickel ferrite
Procedia PDF Downloads 446974 The Impact of Total Dust (LGS) and Mineral Dust (PM 10) in Cardio Vascular and Respiratory System, in Albania: A Longitudinal Study
Authors: Canga Mimoza, Irene Malagnino, Giulia Malagnino, Vito Malagnino
Abstract:
Aim: This study aims at evaluating the impact of total dust (LGS) and mineral dust (PM10), in the cardio vascular and respiratory systems. Also proving that these air polluters are the cause of several diseases, such as bronchopneumonia, pneumonia, bronchitis, angina pectoris and cardiac insufficiency. Material and Method: The study is concentrated in the cities of Fier and Vlora. This is a clinic-epidemiological study conducted during the time period 2014-2019. Some of the data of LGS and PM10 were obtained from the database of the Institute of Public Health. The formula to measure the mean value of LGS and PM10 is ∆X=X (mean)-Xᵢ. Results: Based on the calculations made, we noticed that: The mean value of LGS in the city of Fieri was 227,33, while the mean value of LGS in the city of Vlora was 177,4. Whereas, the mean value of PM10 in the city of Fieri was 105.5 and the mean value of PM10 in the city of Vlore was 77.5. According to, our statistics the values of LGS were 1.2 times higher in Fier than in Vlora and the PM10 values were 1.36 times higher in Fier than in Vlora. Based on the data, in the city of Fier, the incidence of the bronchopneumonia was 56.53 sick patients/1000 inhabitants, but in Vlora, it was 22 sick patients/1000 inhabitants, so the number of the sick patients was 2.5 times higher in the city of Fieri compared with Vlora city, (P=0.001). The number of the patients with bronchitis, in the city of Fier, was 18 patients/1000 inhabitants, whereas, in Vlora, it was 9 patients/1000 inhabitants, (P=0.005). Based on the data, 8 patients/1000 inhabitants in the city of Fier, suffered from the pneumonia disease, while in Vlora city, were 4 patients/1000 inhabitants, (P=0.005). Another disease taken in consideration was angina pectoris. This study can claim that in the city of Fier, 9.5 patients/1000 inhabitants suffered from this disease, while in Vlora city, were only 4 patients /1000 inhabitants, (P=0.001). Findings of the present study proved that 3.7 patients/1000 inhabitants in the city of Fieri, had cardiac insufficiency, whereas in the city of Vlora, were 1.8 patients/1000 inhabitants, (P=0.05). Conclusions: LGS and PM10 have an influential impact on the cardio vascular and respiratory system; that’s why their levels should be kept under control. The pollution levels are 1.2 and 1.4 times higher in Fier than in Vlora; also the incidences of the diseases are 2 times higher in Fier than in Vlora. Recommendations: In order to prevent the cardio vascular and respiratory diseases, we should avoid places where pollution is higher than the norm. This can be achieved by frequenting places where the air pollution is lower, such as parks, gardens, top floors, etc.Keywords: impact of total dust, LGS, mineral dust, PM 10, cardio vascular pathologies, respiratory disease
Procedia PDF Downloads 127973 Furnishing Ancillary Alternatives for High Speed Corridors and Pedestrian Crossing: Elevated Cycle Track, an Expedient to Urban Space Prototype in New Delhi
Authors: Suneet Jagdev, Hrishabh Amrodia, Siddharth Menon, Abhishek Singh, Mansi Shivhare
Abstract:
Delhi, the National Capital, has undergone a surge in development rate, consequently engendering an unprecedented increase in population. Over the years the city has transformed into a car-centric infrastructure with high-speed corridors, flyovers and fast lanes. A considerable section of the population is hankering to rehabilitate to the good old cycling days, in order to contribute towards a green environment as well as to maintain their physical well-being. Furthermore, an extant section of Delhi’s population relies on cycles as their primary means of commuting in the city. Delhi has the highest number of cyclists and second highest number of pedestrians in the country. However, the tumultuous problems of unregulated traffic, inadequate space on roads, adverse weather conditions stifle them to opt for cycling. Lately, the city has been facing a conglomeration of problems such as haphazard traffic movement, clogged roads, congestion, pollution, accidents, safety issues, etc. In 1957, Delhi’s cyclists accounted for 36 per cent of trips which dropped down to a mere 4 per cent in 2008. The declining rate is due to unsafe roads and lack of proper cycle lanes. Now as the 10 percent of the city has cycle tracks. There is also a lack of public recreational activities in the city. These conundrums incite the need of a covered elevated cycling bridge track to facilitate the safe and smooth cycle commutation in the city which would also serve the purpose of an alternate urban public space over the cycle bridge reducing the cost as well as the space requirement for the same, developing a user–friendly transportation and public interaction system for urban areas in the city. Based on the archival research methodologies, the following research draws information and extracts records from the data accounts of the Delhi Metro Rail Corporation Ltd. as well as the Centre for Science and Environment, India. This research will predominantly focus on developing a prototype design for high speed elevated bicycle lanes based on different road typologies, which can be replicated with minor variations in similar situations, all across the major cities of our country including the proposed smart cities. Furthermore, how these cycling lanes could be utilized for the place making process accommodating cycle parking and renting spaces, public recreational spaces, food courts as well as convenient shopping facilities with appropriate optimization. How to preserve and increase the share of smooth and safe cycling commute cycling for the routine transportation of the urban community of the polluted capital which has been on a steady decline over the past few decades.Keywords: bicycle track, prototype, road safety, urban spaces
Procedia PDF Downloads 159972 Monitoring and Evaluation of Master Science Trainee Educational Students to their Practicum in Teaching Physics for Improving and Creating Attitude Skills for Sustainable Developing Upper Secondary Students in Thailand
Authors: T. Santiboon, S. Tongbu, P. S. Saihong
Abstract:
This study focuses on investigating students' perceptions of their physics classroom learning environments of their individualizations and their interactions with the instructional practicum in teaching physics of the master science trainee educational students for improving and creating attitude skills’ sustainable development toward physics for upper secondary educational students in Thailand. Associations between these perceptions and students' attitudes toward physics were also determined. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI) modified from the original Science Laboratory Environment Inventory. The 25-item Individualized Classroom Environment Questionnaire (ICEQ) was assessed those dimensions which distinguish individualized physics classrooms from convention on individualized open and inquiry-based education Teacher-student interactions were assessed with the 48-item Questionnaires on Teacher Interaction (QTI). Both these questionnaires have an Actual Form (assesses the class as it actually is) and a Preferred Form (asks the students what they would prefer their class to be like - the ideal situation). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) modified from the original Test Of Science-Related Attitude (TOSRA) The questionnaires were administered in three phases with the Custer Random Sampling technique to a sample consisted of 989 students in 28 physics classes from 10 schools at the grade 10, 11, and 12 levels in the Secondary Educational Service Area 26 (Maha Sarakham Province) and Area 27 (Roi-Et). Statistically significant differences were found between the students' perceptions of actual-1, actual-2 and preferred environments of their physics laboratory and distinguish individualized classrooms, and teacher interpersonal behaviors with their improving and creating attitudes skills’ sustainable development to their physics classes also were found. Predictions of the monitoring and evaluation of master science trainee educational students of their practicum in teaching physics; students’ skills developments of their physics achievements’ sustainable for the set of actual and preferred environments as a whole and physics related attitudes also were correlated. The R2 values indicate that 58%, 67%, and 84% of the variances in students’ attitudes to their actuale-1, actual-2 and preferred for the PLEI; 42%,science trainee educational students of their practicum in teaching physics; students’ skill developments of their physics achievements’ sustainable for the set of actual and preferred environments as a whole and physics related attitudes also were correlated. The R2 values indicate that 58%, 67%, and 84% of the variances in students’ attitudes to their actuale-1, actual-2 and preferred for the PLEI; 42%, 63%, and 72% for the ICEQ, and 38%, 59%, and 68% for the QTI in physics environment classes were attributable to their perceptions of their actual and preferred physics environments and their developing creative science skills’ sustainable toward physics, consequently. Based on all the findings, suggestions for improving the physics laboratory and individualized classes and teacher interpersonal behaviors with students' perceptions are provided of their improving and creating attitude skills’ sustainable development by the master science trainee educational students ’ instructional administrations.Keywords: promotion, instructional model, qualitative method, reflective thinking, trainee teacher student
Procedia PDF Downloads 267971 Relationship of Entrepreneurial Ecosystem Factors and Entrepreneurial Cognition: An Exploratory Study Applied to Regional and Metropolitan Ecosystems in New South Wales, Australia
Authors: Sumedha Weerasekara, Morgan Miles, Mark Morrison, Branka Krivokapic-Skoko
Abstract:
This paper is aimed at exploring the interrelationships among entrepreneurial ecosystem factors and entrepreneurial cognition in regional and metropolitan ecosystems. Entrepreneurial ecosystem factors examined include: culture, infrastructure, access to finance, informal networks, support services, access to universities, and the depth and breadth of the talent pool. Using a multivariate approach we explore the impact of these ecosystem factors or elements on entrepreneurial cognition. In doing so, the existing body of knowledge from the literature on entrepreneurial ecosystem and cognition have been blended to explore the relationship between entrepreneurial ecosystem factors and cognition in a way not hitherto investigated. The concept of the entrepreneurial ecosystem has received increased attention as governments, universities and communities have started to recognize the potential of integrated policies, structures, programs and processes that foster entrepreneurship activities by supporting innovation, productivity and employment growth. The notion of entrepreneurial ecosystems has evolved and grown with the advancement of theoretical research and empirical studies. Importance of incorporating external factors like culture, political environment, and the economic environment within a single framework will enhance the capacity of examining the whole systems functionality to better understand the interaction of the entrepreneurial actors and factors within a single framework. The literature on clusters underplays the role of entrepreneurs and entrepreneurial management in creating and co-creating organizations, markets, and supporting ecosystems. Entrepreneurs are only one actor following a limited set of roles and dependent upon many other factors to thrive. As a consequence, entrepreneurs and relevant authorities should be aware of the other actors and factors with which they engage and rely, and make strategic choices to achieve both self and also collective objectives. The study uses stratified random sampling method to collect survey data from 12 different regions in regional and metropolitan regions of NSW, Australia. A questionnaire was administered online among 512 Small and medium enterprise owners operating their business in selected 12 regions in NSW, Australia. Data were analyzed using descriptive analyzing techniques and partial least squares - structural equation modeling. The findings show that even though there is a significant relationship between each and every entrepreneurial ecosystem factors, there is a weak relationship between most entrepreneurial ecosystem factors and entrepreneurial cognition. In the metropolitan context, the availability of finance and informal networks have the largest impact on entrepreneurial cognition while culture, infrastructure, and support services having the smallest impact and the talent pool and universities having a moderate impact on entrepreneurial cognition. Interestingly, in a regional context, culture, availability of finance, and the talent pool have the highest impact on entrepreneurial cognition, while informal networks having the smallest impact and the remaining factors – infrastructure, universities, and support services have a moderate impact on entrepreneurial cognition. These findings suggest the need for a location-specific strategy for supporting the development of entrepreneurial cognition.Keywords: academic achievement, colour response card, feedback
Procedia PDF Downloads 143970 ¹⁸F-FDG PET/CT Impact on Staging of Pancreatic Cancer
Authors: Jiri Kysucan, Dusan Klos, Katherine Vomackova, Pavel Koranda, Martin Lovecek, Cestmir Neoral, Roman Havlik
Abstract:
Aim: The prognosis of patients with pancreatic cancer is poor. The median of survival after establishing diagnosis is 3-11 months without surgical treatment, 13-20 months with surgical treatment depending on the disease stage, 5-year survival is less than 5%. Radical surgical resection remains the only hope of curing the disease. Early diagnosis with valid establishment of tumor resectability is, therefore, the most important aim for patients with pancreatic cancer. The aim of the work is to evaluate the contribution and define the role of 18F-FDG PET/CT in preoperative staging. Material and Methods: In 195 patients (103 males, 92 females, median age 66,7 years, 32-88 years) with a suspect pancreatic lesion, as part of the standard preoperative staging, in addition to standard examination methods (ultrasonography, contrast spiral CT, endoscopic ultrasonography, endoscopic ultrasonographic biopsy), a hybrid 18F-FDG PET/CT was performed. All PET/CT findings were subsequently compared with standard staging (CT, EUS, EUS FNA), with peroperative findings and definitive histology in the operated patients as reference standards. Interpretation defined the extent of the tumor according to TNM classification. Limitations of resectability were local advancement (T4) and presence of distant metastases (M1). Results: PET/CT was performed in a total of 195 patients with a suspect pancreatic lesion. In 153 patients, pancreatic carcinoma was confirmed and of these patients, 72 were not indicated for radical surgical procedure due to local inoperability or generalization of the disease. The sensitivity of PET/CT in detecting the primary lesion was 92.2%, specificity was 90.5%. A false negative finding in 12 patients, a false positive finding was seen in 4 cases, positive predictive value (PPV) 97.2%, negative predictive value (NPV) 76,0%. In evaluating regional lymph nodes, sensitivity was 51.9%, specificity 58.3%, PPV 58,3%, NPV 51.9%. In detecting distant metastases, PET/CT reached a sensitivity of 82.8%, specificity was 97.8%, PPV 96.9%, NPV 87.0%. PET/CT found distant metastases in 12 patients, which were not detected by standard methods. In 15 patients (15.6%) with potentially radically resectable findings, the procedure was contraindicated based on PET/CT findings and the treatment strategy was changed. Conclusion: PET/CT is a highly sensitive and specific method useful in preoperative staging of pancreatic cancer. It improves the selection of patients for radical surgical procedures, who can benefit from it and decreases the number of incorrectly indicated operations.Keywords: cancer, PET/CT, staging, surgery
Procedia PDF Downloads 246969 Generating 3D Battery Cathode Microstructures using Gaussian Mixture Models and Pix2Pix
Authors: Wesley Teskey, Vedran Glavas, Julian Wegener
Abstract:
Generating battery cathode microstructures is an important area of research, given the proliferation of the use of automotive batteries. Currently, finite element analysis (FEA) is often used for simulations of battery cathode microstructures before physical batteries can be manufactured and tested to verify the simulation results. Unfortunately, a key drawback of using FEA is that this method of simulation is very slow in terms of computational runtime. Generative AI offers the key advantage of speed when compared to FEA, and because of this, generative AI is capable of evaluating very large numbers of candidate microstructures. Given AI generated candidate microstructures, a subset of the promising microstructures can be selected for further validation using FEA. Leveraging the speed advantage of AI allows for a better final microstructural selection because high speed allows for the evaluation of many more candidate microstructures. For the approach presented, battery cathode 3D candidate microstructures are generated using Gaussian Mixture Models (GMMs) and pix2pix. This approach first uses GMMs to generate a population of spheres (representing the “active material” of the cathode). Once spheres have been sampled from the GMM, they are placed within a microstructure. Subsequently, the pix2pix sweeps over the 3D microstructure (iteratively) slice by slice and adds details to the microstructure to determine what portions of the microstructure will become electrolyte and what part of the microstructure will become binder. In this manner, each subsequent slice of the microstructure is evaluated using pix2pix, where the inputs into pix2pix are the previously processed layers of the microstructure. By feeding into pix2pix previously fully processed layers of the microstructure, pix2pix can be used to ensure candidate microstructures represent a realistic physical reality. More specifically, in order for the microstructure to represent a realistic physical reality, the locations of electrolyte and binder in each layer of the microstructure must reasonably match the locations of electrolyte and binder in previous layers to ensure geometric continuity. Using the above outlined approach, a 10x to 100x speed increase was possible when generating candidate microstructures using AI when compared to using a FEA only approach for this task. A key metric for evaluating microstructures was the battery specific power value that the microstructures would be able to produce. The best generative AI result obtained was a 12% increase in specific power for a candidate microstructure when compared to what a FEA only approach was capable of producing. This 12% increase in specific power was verified by FEA simulation.Keywords: finite element analysis, gaussian mixture models, generative design, Pix2Pix, structural design
Procedia PDF Downloads 105968 Effect of Salinity and Heavy Metal Toxicity on Gene Expression, and Morphological Characteristics in Stevia rebaudiana Plants
Authors: Umara Nissar Rafiqi, Irum Gul, Nazima Nasrullah, Monica Saifi, Malik Z. Abdin
Abstract:
Background: Stevia rebaudiana, a member of Asteraceae family is an important medicinal plant and produces a commercially used non-caloric natural sweetener, which is also an alternate herbal cure for diabetes. Steviol glycosides are the main sweetening compounds present in these plants. Secondary metabolites are crucial to the adaption of plants to the environment and its overcoming stress conditions. In agricultural procedures, the abiotic stresses like salinity, high metal toxicity and drought, in particular, are responsible for the majority of the reduction that differentiates yield potential from harvestable yield. Salt stress and heavy metal toxicity lead to increased production of reactive oxygen species (ROS). To avoid oxidative damage due to ROS and osmotic stress, plants have a system of anti-oxidant enzymes along with several stress induced enzymes. This helps in scavenging the ROS and relieve the osmotic stress in different cell compartments. However, whether stress induced toxicity modulates the activity of these enzymes in Stevia rebaudiana is poorly understood. Aim: The present study focussed on the effect of salinity, heavy metal toxicity (lead and mercury) on physiological traits and transcriptional profiling of Stevia rebaudiana. Method: Stevia rebaudiana plants were collected from the Central Institute of Medicinal and Aromatic plants (CIMAP), Patnagar, India and maintained under controlled conditions in a greenhouse at Hamdard University, Delhi, India. The plants were subjected to different concentrations of salt (0, 25, 50 and 75 mM respectively) and heavy metals, lead and mercury (0, 100, 200 and 300 µM respectively). The physiological traits such as shoot length, root numbers, leaf growth were evaluated. The samples were collected at different developmental stages and analysed for transcription profiling by RT-PCR. Transcriptional studies in stevia rebaudiana involves important antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), cytochrome P450 monooxygenase (CYP) and stress induced aquaporin (AQU), auxin repressed protein (ARP-1), Ndhc gene. The data was analysed using GraphPad Prism and expressed as mean ± SD. Result: Low salinity and lower metal toxicity did not affect the fresh weight of the plant. However, this was substantially decreased by 55% at high salinity and heavy metal treatment. With increasing salinity and heavy metal toxicity, the values of all studied physiological traits were significantly decreased. Chlorosis in treated plants was also observed which could be due to changes in Fe:Zn ratio. At low concentrations (upto 25 mM) of NaCl and heavy metals, we did not observe any significant difference in the gene expressions of treated plants compared to control plants. Interestingly, at high salt concentration and high metal toxicity, a significant increase in the expression profile of stress induced genes was observed in treated plants compared to control (p < 0.005). Conclusion: Stevia rebaudiana is tolerant to lower salt and heavy metal concentration. This study also suggests that with the increase in concentrations of salt and heavy metals, harvest yield of S. rebaudiana was hampered.Keywords: Stevia rebaudiana, natural sweetener, salinity, heavy metal toxicity
Procedia PDF Downloads 194967 The Role of Time-Dependent Treatment of Exogenous Salicylic Acid on Endogenous Phytohormone Levels under Salinity Stress
Authors: Hülya Torun, Ondřej Novák, Jaromír Mikulík, Miroslav Strnad, Faik A. Ayaz
Abstract:
World climate is changing. Millions of people in the world still face chronic undernourishment for conducting a healthy life and the world’s population is growing steadily. To meet this growing demand, agriculture and food systems must adapt to the adverse effects of climate change and become more resilient, productive and sustainable. From this perspective, to determine tolerant cultivars for undesirable environmental conditions will be necessary food production for sustainable development. Among abiotic stresses, soil salinity is one of the most detrimental global fact restricting plant sources. Development of salt-tolerant lines is required in order to increase the crop productivity and quality in salt-treated lands. Therefore, the objective of this study was to investigate the morphological and physiological responses of barley cultivars accessions to salinity stress by NaCl. For this purpose, it was aimed to determine the crosstalk between some endogenous phytohormones and exogenous salicylic acid (SA) in two different vegetative parts (leaves and roots) of barley (Hordeum vulgare L.; Poaceae; 2n=14; Ince-04) which is detected salt-tolerant. The effects of SA on growth parameters, leaf relative water content (RWC), endogenous phytohormones; including indole-3-acetic acid (IAA), cytokinins (CKs), abscisic acid (ABA), jasmonic acid (JA) and ethylene were investigated in barley cultivars under salinity stress. SA was applied to 17-day-old seedlings of barley in two different ways including before (pre-treated for 24 h) and simultaneously with NaCl stress treatment. NaCl (0, 150, 300 mM) exposure in the hydrophonic system was associated with a rapid decrease in growth parameters and RWC, which is an indicator of plant water status, resulted in a strong up-regulation of ABA as a stress indicator. Roots were more dramatically affected than leaves. Water conservation in 150 mM NaCl treated-barley plants did not change, but decreased in 300 mM NaCl treated plants. Pre- and simultaneously treatment of SA did not significantly alter growth parameters and RWC. ABA, JA and ethylene are known to be related with stress. In the present work, ethylene also increased, similarly to ABA, but not with the same intensity. While ABA and ethylene increased by the increment of salt concentrations, JA levels rapidly decreased especially in roots. Both pre- and simultaneously SA applications alleviated salt-induced decreases in 300 mM NaCl resulted in the increment of ABA levels. CKs and IAA are related to cell growth and development. At high salinity (300 mM NaCl), CKs (cZ+cZR) contents increased in both vegetative organs while IAA levels stayed at the same level with control groups. However, IAA increased and cZ+cZR rapidly decreased in leaves of barley plants with SA treatments before salt applications (in pre- SA treated groups). Simultaneously application of SA decreased CKs levels in both leaves and roots of the cultivar. Due to increasing concentrations of NaCl in association with decreasing ABA, JA and ethylene content and increments in CKs and IAA were recorded with SA treatments. As results of the study, in view of all the phytohormones that we tested, exogenous SA induced greater tolerance to salinity particularly when applied before salinity stress.Keywords: Barley, Hordeum vulgare, phytohormones, salicylic acid, salinity
Procedia PDF Downloads 225966 Evaluation of Potential of Crop Residues for Energy Generation in Nepal
Authors: Narayan Prasad Adhikari
Abstract:
In Nepal, the crop residues have often been considered as one of the potential sources of energy to cope with prevailing energy crisis. However, the lack of systematic studies about production and various other competent uses of crop production is the main obstacle to evaluate net potential of the residues for energy production. Under this background, this study aims to assess the net annual availability of crop residues for energy production by undertaking three different districts with the representation of country’s three major regions of lowland, hill, and mountain. The five major cereal crops of paddy, wheat, maize, millet, and barley are considered for the analysis. The analysis is based upon two modes of household surveys. The first mode of survey is conducted to total of 240 households to obtain key information about crop harvesting and livestock management throughout a year. Similarly, the quantification of main crops along with the respective residues on fixed land is carried out to 45 households during second mode. The range of area of such fixed land is varied from 50 to 100 m2. The measurements have been done in air dry basis. The quantity for competitive uses of respective crop residues is measured on the basis of respondents’ feedback. There are four major competitive uses of crop residues at household which are building material, burning, selling, and livestock fodder. The results reveal that the net annual available crop residues per household are 4663 kg, 2513 kg, and 1731 kg in lowland, hill, and mountain respectively. Of total production of crop residues, the shares of dedicated fodder crop residues (except maize stalk and maize cob) are 94 %, 62 %, and 89 % in lowland, hill, and mountain respectively and of which the corresponding shares of fodder are 87 %, 91 %, and 82 %. The annual percapita energy equivalent from net available crop residues in lowland, hill, and mountain are 2.49 GJ, 3.42 GJ, and 0.44 GJ which represent 30 %, 33 %, and 3 % of total annual energy consumption respectively whereas the corresponding current shares of crop residues are only 23 %, 8 %, and 1 %. Hence, even utmost exploitation of available crop residues can hardly contribute to one third of energy consumption at household level in lowland, and hill whereas this is limited to particularly negligible in mountain. Moreover, further analysis has also been done to evaluate district wise supply-demand context of dedicated fodder crop residues on the basis of presence of livestock. The high deficit of fodder crop residues in hill and mountain is observed where the issue of energy generation from these residues will be ludicrous. As a contrary, the annual production of such residues for livestock fodder in lowland meets annual demand with modest surplus even if entire fodder to be derived from the residues throughout a year and thus there seems to be further potential to utilize the surplus residues for energy generation.Keywords: crop residues, hill, lowland, mountain
Procedia PDF Downloads 470965 Mesenchymal Stem Cells (MSC)-Derived Exosomes Could Alleviate Neuronal Damage and Neuroinflammation in Alzheimer’s Disease (AD) as Potential Therapy-Carrier Dual Roles
Authors: Huan Peng, Chenye Zeng, Zhao Wang
Abstract:
Alzheimer’s disease (AD) is an age-related neurodegenerative disease that is a leading cause of dementia syndromes and has become a huge burden on society and families. The main pathological features of AD involve excessive deposition of β-amyloid (Aβ) and Tau proteins in the brain, resulting in loss of neurons, expansion of neuroinflammation, and cognitive dysfunction in patients. Researchers have found effective drugs to clear the brain of error-accumulating proteins or to slow the loss of neurons, but their direct administration has key bottlenecks such as single-drug limitation, rapid blood clearance rate, impenetrable blood-brain barrier (BBB), and poor ability to target tissues and cells. Therefore, we are committed to seeking a suitable and efficient delivery system. Inspired by the possibility that exosomes may be involved in the secretion and transport mechanism of many signaling molecules or proteins in the brain, exosomes have attracted extensive attention as natural nanoscale drug carriers. We selected exosomes derived from bone marrow mesenchymal stem cells (MSC-EXO) with low immunogenicity and exosomes derived from hippocampal neurons (HT22-EXO) that may have excellent homing ability to overcome the deficiencies of oral or injectable pathways and bypass the BBB through nasal administration and evaluated their delivery ability and effect on AD. First, MSC-EXO and HT22 cells were isolated and cultured, and MSCs were identified by microimaging and flow cytometry. Then MSC-EXO and HT22-EXO were obtained by gradient centrifugation and qEV SEC separation column, and a series of physicochemical characterization were performed by transmission electron microscope, western blot, nanoparticle tracking analysis and dynamic light scattering. Next, exosomes labeled with lipophilic fluorescent dye were administered to WT mice and APP/PS1 mice to obtain fluorescence images of various organs at different times. Finally, APP/PS1 mice were administered intranasally with two exosomes 20 times over 40 days and 20 μL each time. Behavioral analysis and pathological section analysis of the hippocampus were performed after the experiment. The results showed that MSC-EXO and HT22-EXO were successfully isolated and characterized, and they had good biocompatibility. MSC-EXO showed excellent brain enrichment in APP/PS1 mice after intranasal administration, could improve the neuronal damage and reduce inflammation levels in the hippocampus of APP/PS1 mice, and the improvement effect was significantly better than HT22-EXO. However, intranasal administration of the two exosomes did not cause depression and anxious-like phenotypes in APP/PS1 mice, nor significantly improved the short-term or spatial learning and memory ability of APP/PS1 mice, and had no significant effect on the content of Aβ plaques in the hippocampus, which also meant that MSC-EXO could use their own advantages in combination with other drugs to clear Aβ plaques. The possibility of realizing highly effective non-invasive synergistic treatment for AD provides new strategies and ideas for clinical research.Keywords: Alzheimer’s disease, exosomes derived from mesenchymal stem cell, intranasal administration, therapy-carrier dual roles
Procedia PDF Downloads 58964 Cyber-Victimization among Higher Education Students as Related to Academic and Personal Factors
Authors: T. Heiman, D. Olenik-Shemesh
Abstract:
Over the past decade, with the rapid growth of electronic communication, the internet and, in particular, social networking has become an inseparable part of people's daily lives. Along with its benefits, a new type of online aggression has emerged, defined as cyber bullying, a form of interpersonal aggressive behavior that takes place through electronic means. Cyber-bullying is characterized by repetitive behavior over time of maladaptive authority and power usage using computers and cell phones via sending insulting messages and hurtful pictures. Preliminary findings suggest that the prevalence of involvement in cyber-bullying among higher education students varies between 10 and 35%. As to date, universities are facing an uphill effort in trying to restrain online misbehavior. As no studies examined the relationships between cyber-bullying involvement with personal aspects, and its impacts on academic achievement and work functioning, this present study examined the nature of cyber-bullying involvement among 1,052 undergraduate students (mean age = 27.25, S.D = 4.81; 66.2% female), coping with, as well as the effects of social support, perceived self-efficacy, well-being, and body-perception, in relation to cyber-victimization. We assume that students in higher education are a vulnerable population and at high risk of being cyber-victims. We hypothesize that social support might serve as a protective factor and will moderate the relationships between the socio-emotional variables and the occurrence of cyber- victimization. The findings of this study will present the relationships between cyber-victimization and the social-emotional aspects, which constitute risk and protective factors. After receiving approval from the Ethics Committee of the University, a Google Drive questionnaire was sent to a random sample of students, studying in the various University study centers. Students' participation was voluntary, and they completed the five questionnaires anonymously: Cyber-bullying, perceived self-efficacy, subjective well-being, social support and body perception. Results revealed that 11.6% of the students reported being cyber-victims during last year. Examining the emotional and behavioral reactions to cyber-victimization revealed that female emotional and behavioral reactions were significantly greater than the male reactions (p < .001). Moreover, females reported on a significant higher social support compared to men; male reported significantly on a lower social capability than female; and men's body perception was significantly more positive than women's scores. No gender differences were observed for subjective well-being scale. Significant positive correlations were found between cyber-victimization and fewer friends, lower grades, and work ineffectiveness (r = 0.37- .40, p < 0 .001). The results of the Hierarchical regression indicated significantly that cyber-victimization can be predicted by lower social support, lower body perception, and gender (female), that explained 5.6% of the variance (R2 = 0.056, F(5,1047) = 12.47, p < 0.001). The findings deepen our understanding of the students' involvement in cyber-bullying, and present the relationships of the social-emotional and academic aspects on cyber-victim students. In view of our findings, higher education policy could help facilitate coping with cyber-bullying incidents, and student support units could develop intervention programs aimed at reducing cyber-bullying and its impacts.Keywords: academic and personal factors, cyber-victimization, social support, higher education
Procedia PDF Downloads 288963 Assesment of Genetic Fidelity of Micro-Clones of an Aromatic Medicinal Plant Murraya koenigii (L.) Spreng
Authors: Ramesh Joshi, Nisha Khatik
Abstract:
Murraya koenigii (L.) Spreng locally known as “Curry patta” or “Meetha neem” belonging to the family Rutaceae that grows wildly in Southern Asia. Its aromatic leaves are commonly used as the raw material for traditional medicinal formulations in India. The leaves contain essential oil and also used as a condiment. Several monomeric and binary carbazol alkaloids present in the various plant parts. These alkaloids have been reported to possess anti-microbial, mosquitocidal, topo-isomerase inhibition and antioxidant properties. Some of the alkaloids reported in this plant have showed anti carcinogenic and anti-diabetic properties. The conventional method of propagation of this tree is limited to seeds only, which retain their viability for only a short period. Hence, a biotechnological approach might have an advantage edging over traditional breeding as well as the genetic improvement of M. koenigii within a short period. The development of a reproducible regeneration protocol is the prerequisite for ex situ conservation and micropropagation. An efficient protocol for high frequency regeneration of in vitro plants of Murraya koenigii via different explants such as- nodal segments, intermodal segments, leaf, root segments, hypocotyle, cotyledons and cotyledonary node explants is described. In the present investigation, assessment of clonal fidelity in the micropropagated plantlets of Murraya koenigii was attempted using RAPD and ISSR markers at different pathways of plant tissue culture technique. About 20 ISSR and 40 RAPD primers were used for all the samples. Genomic DNA was extracted by CTAB method. ISSR primer were found to be more suitable as compared to RAPD for the analysis of clonal fidelity of M. koenigii. The amplifications however, were finally performed using RAPD, ISSR markers owing to their better performance in terms of generation of amplification products. In RAPD primer maximum 75% polymorphism was recorded in OPU-2 series which exhibited out of 04 scorable bands, three bands were polymorphic with a band range of size 600-1500 bp. In ISSR primers the UBC 857 showed 50% polymorphism with 02 band were polymorphic of band range size between 400-1000 bp.Keywords: genetic fidelity, Murraya koenigii, aromatic plants, ISSR primers
Procedia PDF Downloads 500962 Estimation of the Exergy-Aggregated Value Generated by a Manufacturing Process Using the Theory of the Exergetic Cost
Authors: German Osma, Gabriel Ordonez
Abstract:
The production of metal-rubber spares for vehicles is a sequential process that consists in the transformation of raw material through cutting activities and chemical and thermal treatments, which demand electricity and fossil fuels. The energy efficiency analysis for these cases is mostly focused on studying of each machine or production step, but is not common to study of the quality of the production process achieves from aggregated value viewpoint, which can be used as a quality measurement for determining of impact on the environment. In this paper, the theory of exergetic cost is used for determining of aggregated exergy to three metal-rubber spares, from an exergy analysis and thermoeconomic analysis. The manufacturing processing of these spares is based into batch production technique, and therefore is proposed the use of this theory for discontinuous flows from of single models of workstations; subsequently, the complete exergy model of each product is built using flowcharts. These models are a representation of exergy flows between components into the machines according to electrical, mechanical and/or thermal expressions; they determine the demanded exergy to produce the effective transformation in raw materials (aggregated exergy value), the exergy losses caused by equipment and irreversibilities. The energy resources of manufacturing process are electricity and natural gas. The workstations considered are lathes, punching presses, cutters, zinc machine, chemical treatment tanks, hydraulic vulcanizing presses and rubber mixer. The thermoeconomic analysis was done by workstation and by spare; first of them describes the operation of the components of each machine and where the exergy losses are; while the second of them estimates the exergy-aggregated value for finished product and wasted feedstock. Results indicate that exergy efficiency of a mechanical workstation is between 10% and 60% while this value in the thermal workstations is less than 5%; also that each effective exergy-aggregated value is one-thirtieth of total exergy required for operation of manufacturing process, which amounts approximately to 2 MJ. These troubles are caused mainly by technical limitations of machines, oversizing of metal feedstock that demands more mechanical transformation work, and low thermal insulation of chemical treatment tanks and hydraulic vulcanizing presses. From established information, in this case, it is possible to appreciate the usefulness of theory of exergetic cost for analyzing of aggregated value in manufacturing processes.Keywords: exergy-aggregated value, exergy efficiency, thermoeconomics, exergy modeling
Procedia PDF Downloads 169961 Molecular Dynamics Simulation of Irradiation-Induced Damage Cascades in Graphite
Authors: Rong Li, Brian D. Wirth, Bing Liu
Abstract:
Graphite is the matrix, and structural material in the high temperature gas-cooled reactor exhibits an irradiation response. It is of significant importance to analyze the defect production and evaluate the role of graphite under irradiation. A vast experimental literature exists for graphite on the dimensional change, mechanical properties, and thermal behavior. However, simulations have not been applied to the atomistic perspective. Remarkably few molecular dynamics simulations have been performed to study the irradiation response in graphite. In this paper, irradiation-induced damage cascades in graphite were investigated with molecular dynamics simulation. Statistical results of the graphite defects were obtained by sampling a wide energy range (1–30 KeV) and 10 different runs for every cascade simulation with different random number generator seeds to the velocity scaling thermostat function. The chemical bonding in carbon was described using the adaptive intermolecular reactive empirical bond-order potential (AIREBO) potential coupled with the standard Ziegler–Biersack–Littmack (ZBL) potential to describe close-range pair interactions. This study focused on analyzing the number of defects, the final cascade morphology and the distribution of defect clusters in space, the length-scale cascade properties such as the cascade length and the range of primary knock-on atom (PKA), and graphite mechanical properties’ variation. It can be concluded that the number of surviving Frenkel pairs increased remarkably with the increasing initial PKA energy but did not exhibit a thermal spike at slightly lower energies in this paper. The PKA range and cascade length approximately linearly with energy which indicated that increasing the PKA initial energy will come at expensive computation cost such as 30KeV in this study. The cascade morphology and the distribution of defect clusters in space mainly related to the PKA energy meanwhile the temperature effect was relatively negligible. The simulations are in agreement with known experimental results and the Kinchin-Pease model, which can help to understand the graphite damage cascades and lifetime span under irradiation and provide a direction to the designs of these kinds of structural materials in the future reactors.Keywords: graphite damage cascade, molecular dynamics, cascade morphology, cascade distribution
Procedia PDF Downloads 153960 Men Act, Women Are Acted Upon: Morphosyntactic Framing of the Sexual Intercourse in Online Pornography Titles
Authors: Aleksandra Tomic
Abstract:
According to reliable sources, 4% of all websites is devoted to pornographic material, yet these estimates are often reported to be much higher. The largest internet pornography streaming website reports 21.2 billion visits in 2015 only. Considering the ubiquity of online pornography and the frequency of use, it is necessary to examine its potential influence on the construal of the sexual act and the roles of participants. Apart from the verbal and physical interactions in the pornographic movies themselves, the language in the titles of movies has the power to frame the sexual intercourse. In this study, Critical Discourse Analysis and corpus linguistics approaches will be used to examine the way the sexual intercourse and the roles of the participants are ideologically construed and perpetuated in the Internet pornography discourse. To this end, the study will explore the association between the specific morphosyntactic aspects of the references to performers of both genders, the person and the thematic role, and the gender of referred performer in the corpus of online pornographic movie titles. Distinctive collexeme analysis will be conducted to uncover possible associations between for gender of the performer denoted by the linguistic expression, and the person and thematic role assigned to it in the titles of online pornography movies. Initial results of the chi-square procedure performed on a sample of 295 online pornography movie titles on the largest pornography streaming website ‘Pornhub’ yielded significant results. The use of the three person categories was not equally distributed between genders, X2 (2, N = 106) = 32.52, p < 0.001, with female performers being referred to in the third person in 71.7% of the instances, and speaking in the first person 20.8% of the time, whereas male performers spoke in the first person 68% of the time, and were referred to in the third person in 17% of the instances. Moreover, there was a gender disparity in the assignment of thematic roles, with linguistic expressions for women being assigned the Patient role and men the Agent role in 58.8% of the cases, whereas the roles were reversed in 41.2% of the instances, X2 (1, N = 262) = 8.07633, p < 0.005. The results are discussed in terms of the ideologies surrounding female and male sexuality in the pornography discourse. Potential patterns of power imbalance, objectification, and discrimination are highlighted. Finally, the evidence from psycholinguistic studies on the influence of the language structure on event construal is related to the results of the study.Keywords: corpus linguistics, gender studies, pornography, thematic roles
Procedia PDF Downloads 189959 Ways for University to Conduct Research Evaluation: Based on National Research University Higher School of Economics Example
Authors: Svetlana Petrikova, Alexander Yu Kostinskiy
Abstract:
Management of research evaluation in the Higher School of Economics (HSE) originates from the HSE Academic Fund created in 2004 to facilitate and support academic research and presents its results to international academic community. As the means to inspire the applicants, science projects went through competitive selection process evaluated by the group of experts. Drastic development of HSE, quantity of applied projects for each Academic Fund competition and the need to coordinate the conduct of expert evaluation resulted in founding of the Office for Research Evaluation in 2013. The Office’s primary objective is management of research evaluation of science projects. The standards to conduct the evaluation are defined as follows: - The exercise of the process approach, the unification of the functioning of department. - The uniformity of regulatory, organizational and methodological framework. - The development of proper on-line evaluation system. - The broad involvement of external Russian and international experts, the renouncement of the usage of own employees. - The development of an algorithm to make a correspondence between experts and science projects. - The methodical usage of opened/closed international and Russian databases to extend the expert database. - The transparency of evaluation results – free access to assessment while keeping experts confidentiality. The management of research evaluation of projects is based on the sole standard, organization and financing. The standard way of conducting research evaluation at HSE is based upon Regulations on basic principles for research evaluation at HSE. These Regulations have been developed from the moment of establishment of the Office for Research Evaluation and are based on conventional corporate standards for regulatory document management. The management system of research evaluation is implemented on the process approach basis. Process approach means deployment of work as a process, which is the aggregation of interrelated and interacting activities processing inputs into outputs. Inputs are firstly client asking for the assessment to be conducted, defining the conditions for organizing and carrying of the assessment and secondly the applicant with proper for the competition application; output is assessment given to the client. While exercising process approach to clarify interrelation and interacting main parties or subjects of the assessment are determined and the way for interaction between them forms up. Parties to expert assessment are: - Ordering Party – The department of the university taking the decision to subject a project to expert assessment; - Providing Party – The department of the university authorized to provide such assessment by the Ordering Party; - Performing Party – The legal and natural entities that have expertise in the area of research evaluation. Experts assess projects in accordance with criteria and states of expert opinions approved by the Ordering Party. Objects of assessment generally are applications or HSE competition project reports. Mainly assessments are deployed for internal needs, i.e. the most ordering parties are HSE branches and departments, but assessment can also be conducted for external clients. The financing of research evaluation at HSE is based on the established corporate culture and traditions of HSE.Keywords: expert assessment, management of research evaluation, process approach, research evaluation
Procedia PDF Downloads 253958 The Pore–Scale Darcy–Brinkman–Stokes Model for the Description of Advection–Diffusion–Precipitation Using Level Set Method
Authors: Jiahui You, Kyung Jae Lee
Abstract:
Hydraulic fracturing fluid (HFF) is widely used in shale reservoir productions. HFF contains diverse chemical additives, which result in the dissolution and precipitation of minerals through multiple chemical reactions. In this study, a new pore-scale Darcy–Brinkman–Stokes (DBS) model coupled with Level Set Method (LSM) is developed to address the microscopic phenomena occurring during the iron–HFF interaction, by numerically describing mass transport, chemical reactions, and pore structure evolution. The new model is developed based on OpenFOAM, which is an open-source platform for computational fluid dynamics. Here, the DBS momentum equation is used to solve for velocity by accounting for the fluid-solid mass transfer; an advection-diffusion equation is used to compute the distribution of injected HFF and iron. The reaction–induced pore evolution is captured by applying the LSM, where the solid-liquid interface is updated by solving the level set distance function and reinitialized to a signed distance function. Then, a smoothened Heaviside function gives a smoothed solid-liquid interface over a narrow band with a fixed thickness. The stated equations are discretized by the finite volume method, while the re-initialized equation is discretized by the central difference method. Gauss linear upwind scheme is used to solve the level set distance function, and the Pressure–Implicit with Splitting of Operators (PISO) method is used to solve the momentum equation. The numerical result is compared with 1–D analytical solution of fluid-solid interface for reaction-diffusion problems. Sensitivity analysis is conducted with various Damkohler number (DaII) and Peclet number (Pe). We categorize the Fe (III) precipitation into three patterns as a function of DaII and Pe: symmetrical smoothed growth, unsymmetrical growth, and dendritic growth. Pe and DaII significantly affect the location of precipitation, which is critical in determining the injection parameters of hydraulic fracturing. When DaII<1, the precipitation uniformly occurs on the solid surface both in upstream and downstream directions. When DaII>1, the precipitation mainly occurs on the solid surface in an upstream direction. When Pe>1, Fe (II) transported deeply into and precipitated inside the pores. When Pe<1, the precipitation of Fe (III) occurs mainly on the solid surface in an upstream direction, and they are easily precipitated inside the small pore structures. The porosity–permeability relationship is subsequently presented. This pore-scale model allows high confidence in the description of Fe (II) dissolution, transport, and Fe (III) precipitation. The model shows fast convergence and requires a low computational load. The results can provide reliable guidance for injecting HFF in shale reservoirs to avoid clogging and wellbore pollution. Understanding Fe (III) precipitation, and Fe (II) release and transport behaviors give rise to a highly efficient hydraulic fracture project.Keywords: reactive-transport , Shale, Kerogen, precipitation
Procedia PDF Downloads 162957 Thermo-Hydro-Mechanical-Chemical Coupling in Enhanced Geothermal Systems: Challenges and Opportunities
Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo
Abstract:
Geothermal reservoirs (GTRs) have garnered global recognition as a sustainable energy source. The Thermo-Hydro-Mechanical-Chemical (THMC) integration coupling proves to be a practical and effective method for optimizing production in GTRs. The study outcomes demonstrate that THMC coupling serves as a versatile and valuable tool, offering in-depth insights into GTRs and enhancing their operational efficiency. This is achieved through temperature analysis and pressure changes and their impacts on mechanical properties, structural integrity, fracture aperture, permeability, and heat extraction efficiency. Moreover, THMC coupling facilitates potential benefits assessment and risks associated with different geothermal technologies, considering the complex thermal, hydraulic, mechanical, and chemical interactions within the reservoirs. However, THMC-coupling utilization in GTRs presents a multitude of challenges. These challenges include accurately modeling and predicting behavior due to the interconnected nature of processes, limited data availability leading to uncertainties, induced seismic events risks to nearby communities, scaling and mineral deposition reducing operational efficiency, and reservoirs' long-term sustainability. In addition, material degradation, environmental impacts, technical challenges in monitoring and control, accurate assessment of resource potential, and regulatory and social acceptance further complicate geothermal projects. Addressing these multifaceted challenges is crucial for successful geothermal energy resources sustainable utilization. This paper aims to illuminate the challenges and opportunities associated with THMC coupling in enhanced geothermal systems. Practical solutions and strategies for mitigating these challenges are discussed, emphasizing the need for interdisciplinary approaches, improved data collection and modeling techniques, and advanced monitoring and control systems. Overcoming these challenges is imperative for unlocking the full potential of geothermal energy making a substantial contribution to the global energy transition and sustainable development.Keywords: geothermal reservoirs, THMC coupling, interdisciplinary approaches, challenges and opportunities, sustainable utilization
Procedia PDF Downloads 68956 Study of Formation and Evolution of Disturbance Waves in Annular Flow Using Brightness-Based Laser-Induced Fluorescence (BBLIF) Technique
Authors: Andrey Cherdantsev, Mikhail Cherdantsev, Sergey Isaenkov, Dmitriy Markovich
Abstract:
In annular gas-liquid flow, liquid flows as a film along pipe walls sheared by high-velocity gas stream. Film surface is covered by large-scale disturbance waves which affect pressure drop and heat transfer in the system and are necessary for entrainment of liquid droplets from film surface into the core of gas stream. Disturbance waves are a highly complex and their properties are affected by numerous parameters. One of such aspects is flow development, i.e., change of flow properties with the distance from the inlet. In the present work, this question is studied using brightness-based laser-induced fluorescence (BBLIF) technique. This method enables one to perform simultaneous measurements of local film thickness in large number of points with high sampling frequency. In the present experiments first 50 cm of upward and downward annular flow in a vertical pipe of 11.7 mm i.d. is studied with temporal resolution of 10 kHz and spatial resolution of 0.5 mm. Thus, spatiotemporal evolution of film surface can be investigated, including scenarios of formation, acceleration and coalescence of disturbance waves. The behaviour of disturbance waves' velocity depending on phases flow rates and downstream distance was investigated. Besides measuring the waves properties, the goal of the work was to investigate the interrelation between disturbance waves properties and integral characteristics of the flow such as interfacial shear stress and flow rate of dispersed phase. In particular, it was shown that the initial acceleration of disturbance waves, defined by the value of shear stress, linearly decays with downstream distance. This lack of acceleration which may even lead to deceleration is related to liquid entrainment. Flow rate of disperse phase linearly grows with downstream distance. During entrainment events, liquid is extracted directly from disturbance waves, reducing their mass, area of interaction to the gas shear and, hence, velocity. Passing frequency of disturbance waves at each downstream position was measured automatically with a new algorithm of identification of characteristic lines of individual disturbance waves. Scenarios of coalescence of individual disturbance waves were identified. Transition from initial high-frequency Kelvin-Helmholtz waves appearing at the inlet to highly nonlinear disturbance waves with lower frequency was studied near the inlet using 3D realisation of BBLIF method in the same cylindrical channel and in a rectangular duct with cross-section of 5 mm by 50 mm. It was shown that the initial waves are generally two-dimensional but are promptly broken into localised three-dimensional wavelets. Coalescence of these wavelets leads to formation of quasi two-dimensional disturbance waves. Using cross-correlation analysis, loss and restoration of two-dimensionality of film surface with downstream distance were studied quantitatively. It was shown that all the processes occur closer to the inlet at higher gas velocities.Keywords: annular flow, disturbance waves, entrainment, flow development
Procedia PDF Downloads 249955 Quantified Metabolomics for the Determination of Phenotypes and Biomarkers across Species in Health and Disease
Authors: Miroslava Cuperlovic-Culf, Lipu Wang, Ketty Boyle, Nadine Makley, Ian Burton, Anissa Belkaid, Mohamed Touaibia, Marc E. Surrette
Abstract:
Metabolic changes are one of the major factors in the development of a variety of diseases in various species. Metabolism of agricultural plants is altered the following infection with pathogens sometimes contributing to resistance. At the same time, pathogens use metabolites for infection and progression. In humans, metabolism is a hallmark of cancer development for example. Quantified metabolomics data combined with other omics or clinical data and analyzed using various unsupervised and supervised methods can lead to better diagnosis and prognosis. It can also provide information about resistance as well as contribute knowledge of compounds significant for disease progression or prevention. In this work, different methods for metabolomics quantification and analysis from Nuclear Magnetic Resonance (NMR) measurements that are used for investigation of disease development in wheat and human cells will be presented. One-dimensional 1H NMR spectra are used extensively for metabolic profiling due to their high reliability, wide range of applicability, speed, trivial sample preparation and low cost. This presentation will describe a new method for metabolite quantification from NMR data that combines alignment of spectra of standards to sample spectra followed by multivariate linear regression optimization of spectra of assigned metabolites to samples’ spectra. Several different alignment methods were tested and multivariate linear regression result has been compared with other quantification methods. Quantified metabolomics data can be analyzed in the variety of ways and we will present different clustering methods used for phenotype determination, network analysis providing knowledge about the relationships between metabolites through metabolic network as well as biomarker selection providing novel markers. These analysis methods have been utilized for the investigation of fusarium head blight resistance in wheat cultivars as well as analysis of the effect of estrogen receptor and carbonic anhydrase activation and inhibition on breast cancer cell metabolism. Metabolic changes in spikelet’s of wheat cultivars FL62R1, Stettler, MuchMore and Sumai3 following fusarium graminearum infection were explored. Extensive 1D 1H and 2D NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. Quantification data is compared to results obtained using other published methods. Fusarium infection induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance. Quantitative metabolomics has been used for the investigation of the effect of targeted enzyme inhibition in cancer. In this work, the effect of 17 β -estradiol and ferulic acid on metabolism of ER+ breast cancer cells has been compared to their effect on ER- control cells. The effect of the inhibitors of carbonic anhydrase on the observed metabolic changes resulting from ER activation has also been determined. Metabolic profiles were studied using 1D and 2D metabolomic NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results is provided in the context of biochemical pathways.Keywords: metabolic biomarkers, metabolic network, metabolomics, multivariate linear regression, NMR quantification, quantified metabolomics, spectral alignment
Procedia PDF Downloads 337954 Investigation of Processing Conditions on Rheological Features of Emulsion Gels and Oleogels Stabilized by Biopolymers
Authors: M. Sarraf, J. E. Moros, M. C. Sánchez
Abstract:
Oleogels are self-standing systems that are able to trap edible liquid oil into a tridimensional network and also help to use less fat by forming crystallization oleogelators. There are different ways to generate oleogelation and oil structuring, including direct dispersion, structured biphasic systems, oil sorption, and indirect method (emulsion-template). The selection of processing conditions as well as the composition of the oleogels is essential to obtain a stable oleogel with characteristics suitable for its purpose. In this sense, one of the ingredients widely used in food products to produce oleogels and emulsions is polysaccharides. Basil seed gum (BSG), with the scientific name Ocimum basilicum, is a new native polysaccharide with high viscosity and pseudoplastic behavior because of its high molecular weight in the food industry. Also, proteins can stabilize oil in water due to the presence of amino and carboxyl moieties that result in surface activity. Whey proteins are widely used in the food industry due to available, cheap ingredients, nutritional and functional characteristics such as emulsifier and a gelling agent, thickening, and water-binding capacity. In general, the interaction of protein and polysaccharides has a significant effect on the food structures and their stability, like the texture of dairy products, by controlling the interactions in macromolecular systems. Using edible oleogels as oil structuring helps for targeted delivery of a component trapped in a structural network. Therefore, the development of efficient oleogel is essential in the food industry. A complete understanding of the important points, such as the ratio oil phase, processing conditions, and concentrations of biopolymers that affect the formation and stability of the emulsion, can result in crucial information in the production of a suitable oleogel. In this research, the effects of oil concentration and pressure used in the manufacture of the emulsion prior to obtaining the oleogel have been evaluated through the analysis of droplet size and rheological properties of obtained emulsions and oleogels. The results show that the emulsion prepared in the high-pressure homogenizer (HPH) at higher pressure values has smaller droplet sizes and a higher uniformity in the size distribution curve. On the other hand, in relation to the rheological characteristics of the emulsions and oleogels obtained, the predominantly elastic character of the systems must be noted, as they present values of the storage modulus higher than those of losses, also showing an important plateau zone, typical of structured systems. In the same way, if steady-state viscous flow tests have been analyzed on both emulsions and oleogels, the result is that, once again, the pressure used in the homogenizer is an important factor for obtaining emulsions with adequate droplet size and the subsequent oleogel. Thus, various routes for trapping oil inside a biopolymer matrix with adjustable mechanical properties could be applied for the creation of the three-dimensional network in order to the oil absorption and creating oleogel.Keywords: basil seed gum, particle size, viscoelastic properties, whey protein
Procedia PDF Downloads 64953 Implementation of a Distant Learning Physician Assistant Program in Northern Michigan to Address Health Care Provider Shortage: Importance of Evaluation
Authors: Theresa Bacon-Baguley, Martina Reinhold
Abstract:
Introduction: The purpose of this paper is to discuss the importance of both formative and summative evaluation of a Physician Assistant (PA) program with a distant campus delivered through Interactive Television (ITV) to assure equity of educational experiences. Methodology: A needs assessment utilizing a case-control design determined the need and interest in expanding the existing PA program to northern Michigan. A federal grant was written and funded, which supported the hiring of two full-time faculty members and support staff at the distant site. The strengths and weaknesses of delivering a program through ITV were evaluated using weekly formative evaluation, and bi-semester summative evaluation. Formative evaluation involved discussion of lecture content to be delivered, special ITV needs, orientation of new lecturers to the system, student concerns, support staff updates, and scheduling of student/faculty traveling between the two campuses. The summative evaluation, designed from a literature review of barriers to ITV, included 19 statements designed to evaluate the following items: quality of technology (audio, video, etc.), confidence in the ITV system, quality of instruction and instructor interaction between the two locations, and availability of resources at each location. In addition, students were given the opportunity to write qualitative remarks for each course delivered between the two locations. This summative evaluation was given to all students at mid-semester and at the end of the semester. The goal of the summative evaluation was to have 80% or greater of the students respond favorably (‘Very Good’ or ‘Good’) to each of the 19 statements. Results: Prior to the start of the first cohort at the distant campus, the technology was tested. During this time period, the formative evaluations identified key components needing modification, which were rapidly addressed: ability to record lectures, lighting, sound, and content delivery. When the mid-semester summative survey was given to the first cohort of students, 18 of the 19 statements in the summative evaluation met the goal of 80% or greater in the favorable category. When the summative evaluation statements were stratified by the two cohorts, the summative evaluation identified that students at the home location responded that they did not have adequate access to printers, and students at the expansion location responded that they did not have adequate access to library resources. These results allowed the program to address the deficiencies through contacting informational technology for additional printers, and to provide students with knowledge on how to access library resources. Conclusion: Successful expansion of programs to a distant site utilizing ITV technology requires extensive monitoring using both formative and summative evaluation. The formative evaluation allowed for quick identification of issues that could immediately be addressed, both at the planning and developing stage, as well as during implementation. Through use of the summative evaluation the program is able to monitor the success/ effectiveness of the expansion and identify specific needs of students at each location.Keywords: assessment, distance learning, formative feedback, interactive television (ITV), student experience, summative feedback, support
Procedia PDF Downloads 245952 Different Stages for the Creation of Electric Arc Plasma through Slow Rate Current Injection to Single Exploding Wire, by Simulation and Experiment
Authors: Ali Kadivar, Kaveh Niayesh
Abstract:
This work simulates the voltage drop and resistance of the explosion of copper wires of diameters 25, 40, and 100 µm surrounded by 1 bar nitrogen exposed to a 150 A current and before plasma formation. The absorption of electrical energy in an exploding wire is greatly diminished when the plasma is formed. This study shows the importance of considering radiation and heat conductivity in the accuracy of the circuit simulations. The radiation of the dense plasma formed on the wire surface is modeled with the Net Emission Coefficient (NEC) and is mixed with heat conductivity through PLASIMO® software. A time-transient code for analyzing wire explosions driven by a slow current rise rate is developed. It solves a circuit equation coupled with one-dimensional (1D) equations for the copper electrical conductivity as a function of its physical state and Net Emission Coefficient (NEC) radiation. At first, an initial voltage drop over the copper wire, current, and temperature distribution at the time of expansion is derived. The experiments have demonstrated that wires remain rather uniform lengthwise during the explosion and can be simulated utilizing 1D simulations. Data from the first stage are then used as the initial conditions of the second stage, in which a simplified 1D model for high-Mach-number flows is adopted to describe the expansion of the core. The current was carried by the vaporized wire material before it was dispersed in nitrogen by the shock wave. In the third stage, using a three-dimensional model of the test bench, the streamer threshold is estimated. Electrical breakdown voltage is calculated without solving a full-blown plasma model by integrating Townsend growth coefficients (TdGC) along electric field lines. BOLSIG⁺ and LAPLACE databases are used to calculate the TdGC at different mixture ratios of nitrogen/copper vapor. The simulations show both radiation and heat conductivity should be considered for an adequate description of wire resistance, and gaseous discharges start at lower voltages than expected due to ultraviolet radiation and the exploding shocks, which may have ionized the nitrogen.Keywords: exploding wire, Townsend breakdown mechanism, streamer, metal vapor, shock waves
Procedia PDF Downloads 86951 Chiral Molecule Detection via Optical Rectification in Spin-Momentum Locking
Authors: Jessie Rapoza, Petr Moroshkin, Jimmy Xu
Abstract:
Chirality is omnipresent, in nature, in life, and in the field of physics. One intriguing example is the homochirality that has remained a great secret of life. Another is the pairs of mirror-image molecules – enantiomers. They are identical in atomic composition and therefore indistinguishable in the scalar physical properties. Yet, they can be either therapeutic or toxic, depending on their chirality. Recent studies suggest a potential link between abnormal levels of certain D-amino acids and some serious health impairments, including schizophrenia, amyotrophic lateral sclerosis, and potentially cancer. Although indistinguishable in their scalar properties, the chirality of a molecule reveals itself in interaction with the surrounding of a certain chirality, or more generally, a broken mirror-symmetry. In this work, we report on a system for chiral molecule detection, in which the mirror-symmetry is doubly broken, first by asymmetric structuring a nanopatterned plasmonic surface than by the incidence of circularly polarized light (CPL). In this system, the incident circularly-polarized light induces a surface plasmon polariton (SPP) wave, propagating along the asymmetric plasmonic surface. This SPP field itself is chiral, evanescently bound to a near-field zone on the surface (~10nm thick), but with an amplitude greatly intensified (by up to 104) over that of the incident light. It hence probes just the molecules on the surface instead of those in the volume. In coupling to molecules along its path on the surface, the chiral SPP wave favors one chirality over the other, allowing for chirality detection via the change in an optical rectification current measured at the edges of the sample. The asymmetrically structured surface converts the high-frequency electron plasmonic-oscillations in the SPP wave into a net DC drift current that can be measured at the edge of the sample via the mechanism of optical rectification. The measured results validate these design concepts and principles. The observed optical rectification current exhibits a clear differentiation between a pair of enantiomers. Experiments were performed by focusing a 1064nm CW laser light at the sample - a gold grating microchip submerged in an approximately 1.82M solution of either L-arabinose or D-arabinose and water. A measurement of the current output was then recorded under both rights and left circularly polarized lights. Measurements were recorded at various angles of incidence to optimize the coupling between the spin-momentums of the incident light and that of the SPP, that is, spin-momentum locking. In order to suppress the background, the values of the photocurrent for the right CPL are subtracted from those for the left CPL. Comparison between the two arabinose enantiomers reveals a preferential signal response of one enantiomer to left CPL and the other enantiomer to right CPL. In sum, this work reports on the first experimental evidence of the feasibility of chiral molecule detection via optical rectification in a metal meta-grating. This nanoscale interfaced electrical detection technology is advantageous over other detection methods due to its size, cost, ease of use, and integration ability with read-out electronic circuits for data processing and interpretation.Keywords: Chirality, detection, molecule, spin
Procedia PDF Downloads 91