Search results for: thermal expansion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4608

Search results for: thermal expansion

3408 Electrical Properties of Nanocomposite Fibres Based On Cellulose and Graphene Nanoplatelets Prepared Using Ionic Liquids

Authors: Shaya Mahmoudian, Mohammad Reza Sazegar, Nazanin Afshari

Abstract:

Graphene, a single layer of carbon atoms in a hexagonal lattice, has recently attracted great attention due to its unique mechanical, thermal and electrical properties. The high aspect ratio and unique surface features of graphene resulted in significant improvements of the nano composites properties. In this study, nano composite fibres made of cellulose and graphene nano platelets were wet spun from solution by using ionic liquid, 1-ethyl-3-methylimidazolium acetate (EMIMAc) as solvent. The effect of graphene loading on the thermal and electrical properties of the nanocomposite fibres was investigated. The nano composite fibres characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. XRD analysis revealed a cellulose II crystalline structure for regenerated cellulose and the nano composite fibres. SEM images showed a homogenous morphology and round cross section for the nano composite fibres along with well dispersion of graphene nano platelets in regenerated cellulose matrix. The incorporation of graphene into cellulose matrix generated electrical conductivity. At 6 wt. % of graphene, the electrical conductivity was 4.7 × 10-4 S/cm. The nano composite fibres also showed considerable improvements in thermal stability and char yield compared to pure regenerated cellulose fibres. This work provides a facile and environmentally friendly method of preparing nano composite fibres based on cellulose and graphene nano platelets that can find several applications in cellulose-based carbon fibres, conductive fibres, apparel, etc.

Keywords: nanocomposite, graphene nanoplatelets, regenerated cellulose, electrical properties

Procedia PDF Downloads 345
3407 Heat Transfer Augmentation in Solar Air Heater Using Fins and Twisted Tape Inserts

Authors: Rajesh Kumar, Prabha Chand

Abstract:

Fins and twisted tape inserts are widely used passive elements to enhance heat transfer rate in various engineering applications. The present paper describes the theoretical analysis of solar air heater fitted with fins and twisted tape inserts. Mathematical model is develop for this novel design of solar air heater and a MATLAB code is generated for the solution of the model. The effect of twist ratio, mass flow rate and inlet temperature on the thermal efficiency and exit air temperature has been investigated. The results are compared with the results of plane solar air heater. Results show a substantial enhancement in heat transfer rate, efficiency and exit air temperature.

Keywords: solar air heater, thermal efficiency, twisted tape, twist ratio

Procedia PDF Downloads 251
3406 Multi-Scale Spatial Difference Analysis Based on Nighttime Lighting Data

Authors: Qinke Sun, Liang Zhou

Abstract:

The ‘Dragon-Elephant Debate’ between China and India is an important manifestation of global multipolarity in the 21st century. The two rising powers have carried out economic reforms one after another in the interval of more than ten years, becoming the fastest growing developing country and emerging economy in the world. At the same time, the development differences between China and India have gradually attracted wide attention of scholars. Based on the continuous annual night light data (DMSP-OLS) from 1992 to 2012, this paper systematically compares and analyses the regional development differences between China and India by Gini coefficient, coefficient of variation, comprehensive night light index (CNLI) and hot spot analysis. The results show that: (1) China's overall expansion from 1992 to 2012 is 1.84 times that of India, in which China's change is 2.6 times and India's change is 2 times. The percentage of lights in unlighted areas in China dropped from 92% to 82%, while that in India from 71% to 50%. (2) China's new growth-oriented cities appear in Hohhot, Inner Mongolia, Ordos, and Urumqi in the west, and the declining cities are concentrated in Liaoning Province and Jilin Province in the northeast; India's new growth-oriented cities are concentrated in Chhattisgarh in the north, while the declining areas are distributed in Uttar Pradesh. (3) China's differences on different scales are lower than India's, and regional inequality of development is gradually narrowing. Gini coefficients at the regional and provincial levels have decreased from 0.29, 0.44 to 0.24 and 0.38, respectively, while regional inequality in India has slowly improved and regional differences are gradually widening, with Gini coefficients rising from 0.28 to 0.32. The provincial Gini coefficient decreased slightly from 0.64 to 0.63. (4) The spatial pattern of China's regional development is mainly east-west difference, which shows the difference between coastal and inland areas; while the spatial pattern of India's regional development is mainly north-south difference, but because the southern states are sea-dependent, it also reflects the coastal inland difference to a certain extent. (5) Beijing and Shanghai present a multi-core outward expansion model, with an average annual CNLI higher than 0.01, while New Delhi and Mumbai present the main core enhancement expansion model, with an average annual CNLI lower than 0.01, of which the average annual CNLI in Shanghai is about five times that in Mumbai.

Keywords: spatial pattern, spatial difference, DMSP-OLS, China, India

Procedia PDF Downloads 151
3405 Buildings Founded on Thermal Insulation Layer Subjected to Earthquake Load

Authors: David Koren, Vojko Kilar

Abstract:

The modern energy-efficient houses are often founded on a thermal insulation (TI) layer placed under the building’s RC foundation slab. The purpose of the paper is to identify the potential problems of the buildings founded on TI layer from the seismic point of view. The two main goals of the study were to assess the seismic behavior of such buildings, and to search for the critical structural parameters affecting the response of the superstructure as well as of the extruded polystyrene (XPS) layer. As a test building a multi-storeyed RC frame structure with and without the XPS layer under the foundation slab has been investigated utilizing nonlinear dynamic (time-history) and static (pushover) analyses. The structural response has been investigated with reference to the following performance parameters: i) Building’s lateral roof displacements, ii) Edge compressive and shear strains of the XPS, iii) Horizontal accelerations of the superstructure, iv) Plastic hinge patterns of the superstructure, v) Part of the foundation in compression, and vi) Deformations of the underlying soil and vertical displacements of the foundation slab (i.e. identifying the potential uplift). The results have shown that in the case of higher and stiff structures lying on firm soil the use of XPS under the foundation slab might induce amplified structural peak responses compared to the building models without XPS under the foundation slab. The analysis has revealed that the superstructure as well as the XPS response is substantially affected by the stiffness of the foundation slab.

Keywords: extruded polystyrene (XPS), foundation on thermal insulation, energy-efficient buildings, nonlinear seismic analysis, seismic response, soil–structure interaction

Procedia PDF Downloads 296
3404 An Investigation of System and Operating Parameters on the Performance of Parabolic Trough Solar Collector for Power Generation

Authors: Umesh Kumar Sinha, Y. K. Nayak, N. Kumar, Swapnil Saurav, Monika Kashyap

Abstract:

The authors investigate the effect of system and operating parameters on the performance of high temperature solar concentrator for power generation. The effects of system and operating parameters were investigated using the developed mathematical expressions for collector efficiency, heat removal factor, fluid outlet temperature and power, etc. The results were simulated using C++program. The simulated results were plotted for investigation like effect of thermal loss parameter and radiative loss parameters on the collector efficiency, heat removal factor, fluid outlet temperature, rise of temperature and effect of mass flow rate of the fluid outlet temperature. In connection with the power generation, plots were drawn for the effect of (TM–TAMB) on the variation of concentration efficiency, concentrator irradiance on PM/PMN, evaporation temperature on thermal to electric power efficiency (Conversion efficiency) of the plant and overall efficiency of solar power plant.

Keywords: parabolic trough solar collector, radiative and thermal loss parameters, collector efficiency, heat removal factor, fluid outlet and inlet temperatures, rise of temperature, mass flow rate, conversion efficiency, concentrator irradiance

Procedia PDF Downloads 314
3403 An Investigation into the Potential of Industrial Low Grade Heat in Membrane Distillation for Freshwater Production

Authors: Yehia Manawi, Ahmad Kayvanifard

Abstract:

Membrane distillation is an emerging technology which has been used to produce freshwater and purify different types of aqueous mixtures. Qatar is an arid country where almost 100% of its freshwater demand is supplied through the energy-intensive thermal desalination process. The country’s need for water has reached an all-time high which stipulates finding an alternative way to augment freshwater without adding any drastic affect to the environment. The objective of this paper was to investigate the potential of using the industrial low grade waste heat to produce freshwater using membrane distillation. The main part of this work was conducting a heat audit on selected Qatari chemical industries to estimate the amounts of freshwater produced if such industrial waste heat were to be recovered. By the end of this work, the main objective was met and the heat audit conducted on the Qatari chemical industries enabled us to estimate both the amounts of waste heat which can be potentially recovered in addition to the amounts of freshwater which can be produced if such waste heat were to be recovered. By the end, the heat audit showed that around 605 Mega Watts of waste heat can be recovered from the studied Qatari chemical industries which resulted in a total daily production of 5078.7 cubic meter of freshwater. This water can be used in a wide variety of applications such as human consumption or industry. The amount of produced freshwater may look small when compared to that produced through thermal desalination plants; however, one must bear in mind that this water comes from waste and can be used to supply water for small cities or remote areas which are not connected to the water grid. The idea of producing freshwater from the two widely-available wastes (thermal rejected brine and waste heat) seems promising as less environmental and economic impacts will be associated with freshwater production which may in the near future augment the conventional way of producing freshwater currently being thermal desalination. This work has shown that low grade waste heat in the chemical industries in Qatar and perhaps the rest of the world can contribute to additional production of freshwater using membrane distillation without significantly adding to the environmental impact.

Keywords: membrane distillation, desalination, heat recovery, environment

Procedia PDF Downloads 314
3402 Heat Transfer Studies on CNT Nanofluids in a Turbulent Flow Heat Exchanger

Authors: W. Rashmi, M. Khalid, O. Seiksan, R. Saidur, A. F. Ismail

Abstract:

Nanofluids have received much more attention since its discovery. They are believed to be promising coolants in heat transfer applications due to their enhanced thermal conductivity and heat transfer characteristics. In this study, the enhancement in heat transfer of CNT-nanofluids under turbulent flow conditions is investigated experimentally. Carbon nanotube (CNTs) concentration was varied between 0.051-0.085 wt%. The nanofluid suspension was stabilized by gum arabic (GA) through a process of homogenisation and sonication. The flow rates of cold fluid (water) is varied from 1.7-3 L/min and flow rates of the hot fluid is varied between 2-3.5 L/min. Thermal conductivity, density and viscosity of the nanofluids were also measured as a function of temperature and CNT concentration. The experimental results are validated with theoretical correlations for turbulent flow available in the literature. Results showed an enhancement in heat transfer range between 9-67% as a function of temperature and CNT concentration.

Keywords: nanofluids, carbon nanotubes (CNT), heat transfer enhancement, heat transfer

Procedia PDF Downloads 495
3401 The Effect of the Thermal Temperature and Injected Current on Laser Diode 808 nm Output Power

Authors: Hassan H. Abuelhassan, M. Ali Badawi, Abdelrahman A. Elbadawi, Adam A. Elbashir

Abstract:

In this paper, the effect of the injected current and temperature into the output power of the laser diode module operating at 808nm were applied, studied and discussed. Low power diode laser was employed as a source. The experimental results were demonstrated and then the output power of laser diode module operating at 808nm was clearly changed by the thermal temperature and injected current. The output power increases by the increasing the injected current and temperature. We also showed that the increasing of the injected current results rising in heat, which also, results into decreasing of the laser diode output power during the highest temperature as well. The best ranges of characteristics made by diode module operating at 808nm were carefully handled and determined.

Keywords: laser diode, light amplification, injected current, output power

Procedia PDF Downloads 384
3400 Effect of Temperature on the Binary Mixture of Imidazolium Ionic Liquid with Pyrrolidin-2-One: Volumetric and Ultrasonic Study

Authors: T. Srinivasa Krishna, K. Narendra, K. Thomas, S. S. Raju, B. Munibhadrayya

Abstract:

The densities, speeds of sound and refractive index of the binary mixture of ionic liquid (IL) 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Imide]) and Pyrrolidin-2-one(PY) was measured at atmospheric pressure, and over the range of temperatures T= (298.15 -323.15)K. The excess molar volume, excess isentropic compressibility, excess speed of sound, partial molar volumes, and isentropic partial molar compressibility were calculated from the values of the experimental density and speed of sound. From the experimental data excess thermal expansion coefficients and isothermal pressure coefficient of excess molar enthalpy at 298.15K were calculated. The results were analyzed and were discussed from the point of view of structural changes. Excess properties were calculated and correlated by the Redlich–Kister and the Legendre polynomial equation and binary coefficients were obtained. Values of excess partial volumes at infinite dilution for the binary system at different temperatures were calculated from the adjustable parameters obtained from Legendre polynomial and Redlich–Kister smoothing equation. Deviation in refractive indices ΔnD and deviation in molar refraction, ΔRm were calculated from the measured refractive index values. Equations of state and several mixing rules were used to predict refractive indices of the binary mixtures and compared with the experimental values by means of the standard deviation and found to be in excellent agreement. By using Prigogine–Flory–Patterson (PFP) theory, the above thermodynamic mixing functions have been calculated and the results obtained from this theory were compared with experimental results.

Keywords: density, refractive index, speeds of sound, Prigogine-Flory-Patterson theory

Procedia PDF Downloads 403
3399 Thermal Postbuckling of First Order Shear Deformable Functionally Graded Plates

Authors: Merbouha Barka, K. H. Benrahou, A. Fakrar, A. Tounsi, E. A. Adda Bedia

Abstract:

This paper presents an analytical investigation on the buckling and postbuckling behaviors of thick functionally graded plates subjected to thermal load .Material properties are assumed to be temperature dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents. The formulations are based on first order shear deformation plate theory taking into account Von Karman nonlinearity and initial geometrical imperfection. By applying Galerkin method, closed-form relations of postbuckling equilibrium paths for simply supported plates are determined. Analysis is carried out to show the effects of material and geometrical properties, in-plane boundary restraint, and imperfection on the buckling and postbuckling loading capacity of the plates.

Keywords: functionally graded materials, postbuckling, first order shear deformation theory, imperfection

Procedia PDF Downloads 309
3398 Life-Cycle Cost and Life-Cycle Assessment of Photovoltaic/Thermal Systems (PV/T) in Swedish Single-Family Houses

Authors: Arefeh Hesaraki

Abstract:

The application of photovoltaic-thermal hybrids (PVT), which delivers both electricity and heat simultaneously from the same system, has become more popular during the past few years. This study addresses techno-economic and environmental impacts assessment of photovoltaic/thermal systems combined with a ground-source heat pump (GSHP) for three single-family houses located in Stockholm, Sweden. Three case studies were: (1) A renovated building built in 1936, (2) A renovated building built in 1973, and (3) A new building built-in 2013. Two simulation programs of SimaPro 9.1 and IDA Indoor Climate and Energy 4.8 (IDA ICE) were applied to analyze environmental impacts and energy usage, respectively. The cost-effectiveness of the system was evaluated using net present value (NPV), internal rate of return (IRR), and discounted payback time (DPBT) methods. In addition to cost payback time, the studied PVT system was evaluated using the energy payback time (EPBT) method. EPBT presents the time that is needed for the installed system to generate the same amount of energy which was utilized during the whole lifecycle (fabrication, installation, transportation, and end-of-life) of the system itself. Energy calculation by IDA ICE showed that a 5 m² PVT was sufficient to create a balance between the maximum heat production and the domestic hot water consumption during the summer months for all three case studies. The techno-economic analysis revealed that combining a 5 m² PVT with GSHP in the second case study possess the smallest DPBT and the highest NPV and IRR among the three case studies. It means that DPBTs (IRR) were 10.8 years (6%), 12.6 years (4%), and 13.8 years (3%) for the second, first, and the third case study, respectively. Moreover, environmental assessment of embodied energy during cradle- to- grave life cycle of the studied PVT, including fabrication, delivery of energy and raw materials, manufacture process, installation, transportation, operation phase, and end of life, revealed approximately two years of EPBT in all cases.

Keywords: life-cycle cost, life-cycle assessment, photovoltaic/thermal, IDA ICE, net present value

Procedia PDF Downloads 111
3397 Future trends of MED-TVC Desalination Technology

Authors: Irfan Wazeer

Abstract:

Desalination has become one of the major water treatment process in several countries around the world where shortage of water is a serious problem. Energy consumption is a vital economic factor in selecting the type of desalination processes because current desalination processes require large amount of energy which is costly. Multi-effect desalination system with thermal vapor compression (MED-TVC) is particularly more attractive than other thermal desalination systems due to its low energy consumption. MED-TVC is characterized by high performance ratio (PR), easier operation, low maintenance requirements and simple geometry. These attractive features make MED-TVC highly competitive to other well established desalination techniques that include the reverse osmosis (RO) and multi-stage flash desalination (MSF). The primary goal of this paper is to present a preview of some aspects related with the theory of the technology, parametric study of the MED-TVC systems and its development. It will analyzed the current and future aspects of the MED-TVC technology in view of latest installed plants.

Keywords: MED-TVC, parallel feed, performance ratio, GOR

Procedia PDF Downloads 254
3396 Enhanced Dimensional Stability of Rigid PVC Foams Using Glass Fibers

Authors: Nidal H. Abu-Zahra, Murtatha M. Jamel, Parisa Khoshnoud, Subhashini Gunashekar

Abstract:

Two types of glass fibers having different lengths (1/16" and 1/32") were added into rigid PVC foams to enhance the dimensional stability of extruded rigid Polyvinyl Chloride (PVC) foam at different concentrations (0-20 phr) using a single screw profile extruder. PVC foam-glass fiber composites (PVC-GF) were characterized for their dimensional stability, structural, thermal, and mechanical properties. Experimental results show that the dimensional stability, heat resistance, and storage modulus were enhanced without compromising the tensile and flexural strengths of the composites. Overall, foam composites which were prepared with longer glass fibers exhibit better mechanical and thermal properties than those prepared with shorter glass fibers due to higher interlocking between the fibers and the foam cells, which result in better load distribution in the matrix.

Keywords: polyvinyl chloride, PVC foam, PVC composites, polymer composites, glass fiber composites, reinforced polymers

Procedia PDF Downloads 390
3395 Characterization and Properties of Novel Flame Retardants Based on s-Triazine

Authors: Sameh M. Osman, El-Refaie Kenawy, Zeid A. Al-Othman, Mohamed H. El-Newehy, El-Saied A. Aly, Sherine N. Khattab, Ayman El-Faham

Abstract:

Recently, there has been a huge interest in using cyanuric chloride in a wide range of functional group transformations, as Cyanuric chloride has temperature-dependent differential reactivity for displacement of chlorides with various nucleophiles In the present work, some copolymers based on s-triazine Unit were prepared by microwave-assisted synthesis. For comparison study, the copolymers were synthesized by the conventional method. Synthesized Copolymers were characterized by MP, IR, TGA, DSC and GPC. The result indicated that copolymers are thermally stable and in good in composition and yield. Further studies that involve the test for selected removal of transition elements such as Cu (II), Zn (II) and Mn (II). Moreover, the effects of the polymeric triazine derivatives containing different functional groups which expected to have a good thermal stability and char formation ability on thermal degradation and flame retardancy.

Keywords: flame retardants, heavy metals, microwave-assisted synthesis, s-triazine

Procedia PDF Downloads 356
3394 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants

Authors: Balgaisha Mukanova, Natalya Glazyrina, Sergey Glazyrin

Abstract:

The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.

Keywords: direct problem, multiparametric optimization, optimization parameters, water treatment

Procedia PDF Downloads 384
3393 Gamma Irradiation Effects on the Crystal Structural and Transport Properties of Bi₂Te₃ Thin Films Grown by Thermal Evaporation

Authors: Shoroog Alraddadi

Abstract:

In this study, the effect of gamma irradiation on the structural and transport properties of Bismuth Telluride (Bi₂Te₃) thin films was investigated. Bi₂Te₃ thin films with thicknesses varying from 100 nm to 500 nm were grown using thermal evaporation in vacuum 10⁻⁵ Torr. The films were irradiated by Gamma radiation with different doses (50, 200, and 500 kGy). The crystal structure of Bi₂Te₃ thin films was studied by XRD diffraction. It was showed that the degree of crystallinity of films increases as the doses increase. Furthermore, it was found that the electrical conductivity of Bi₂Te₃ increase as the doses increase. From these results, it can be concluding that the effect of radiation on the structural and transport properties was positive at the levels of irradiation used.

Keywords: bismuth telluride, gamma irradiation, thin film, transport properties

Procedia PDF Downloads 154
3392 Hydrodynamic Analysis with Heat Transfer in Solid Gas Fluidized Bed Reactor for Solar Thermal Applications

Authors: Sam Rasoulzadeh, Atefeh Mousavi

Abstract:

Fluidized bed reactors are known as highly exothermic and endothermic according to uniformity in temperature as a safe and effective mean for catalytic reactors. In these reactors, a wide range of catalyst particles can be used and by using a continuous operation proceed to produce in succession. Providing optimal conditions for the operation of these types of reactors will prevent the exorbitant costs necessary to carry out laboratory work. In this regard, a hydrodynamic analysis was carried out with heat transfer in the solid-gas fluidized bed reactor for solar thermal applications. The results showed that in the fluid flow the input of the reactor has a lower temperature than the outlet, and when the fluid is passing from the reactor, the heat transfer happens between cylinder and solar panel and fluid. It increases the fluid temperature in the outlet pump and also the kinetic energy of the fluid has been raised in the outlet areas.

Keywords: heat transfer, solar reactor, fluidized bed reactor, CFD, computational fluid dynamics

Procedia PDF Downloads 171
3391 Temperature Dependent Interaction Energies among X (=Ru, Rh) Impurities in Pd-Rich PdX Alloys

Authors: M. Asato, C. Liu, N. Fujima, T. Hoshino, Y. Chen, T. Mohri

Abstract:

We study the temperature dependence of the interaction energies (IEs) of X (=Ru, Rh) impurities in Pd, due to the Fermi-Dirac (FD) distribution and the thermal vibration effect by the Debye-Grüneisen model. The n-body (n=2~4) IEs among X impurities in Pd, being used to calculate the internal energies in the free energies of the Pd-rich PdX alloys, are determined uniquely and successively from the lower-order to higher-order, by the full-potential Korringa-Kohn-Rostoker Green’s function method (FPKKR), combined with the generalized gradient approximation in the density functional theory. We found that the temperature dependence of IEs due to the FD distribution, being usually neglected, is very important to reproduce the X-concentration dependence of the observed solvus temperatures of the Pd-rich PdX (X=Ru, Rh) alloys.

Keywords: full-potential KKR-green’s function method, Fermi-Dirac distribution, GGA, phase diagram of Pd-rich PdX (X=Ru, Rh) alloys, thermal vibration effect

Procedia PDF Downloads 270
3390 Horse Chestnut Starch: A Noble Inedible Feedstock Source for Producing Thermoplastic Starch (TPS)

Authors: J. Castaño, S. Rodriguez, C. M. L. Franco

Abstract:

Starch isolated from non-edible A. hippocastanum seeds was characterized and used for preparing starch-based materials. The apparent amylose content of the isolated starch was 33.1%. The size of starch granules ranged from 0.7 to 35µm, and correlated with the shape of granules (spherical, oval and irregular). The chain length distribution profile of amylopectin showed two peaks, at polymerization degree (DP) of 12 and 41-43. Around 53% of branch unit chains had DP in the range of 11-20. A. hippocastanum starch displayed a typical C-type pattern and the maximum decomposition temperature was 317°C. Thermoplastic starch (TPS) prepared from A. hippocastanum with glycerol and processed by melt blending exhibited adequate mechanical and thermal properties. In contrast, plasticized TPS with glycerol:malic acid (1:1) showed lower thermal stability and a pasty and sticky behavior, indicating that malic acid accelerates degradation of starch during processing.

Keywords: Aesculus hippocastanum L., amylopectin structure, thermoplastic starch, non-edible source

Procedia PDF Downloads 370
3389 UV-Cured Thiol-ene Based Polymeric Phase Change Materials for Thermal Energy Storage

Authors: M. Vezir Kahraman, Emre Basturk

Abstract:

Energy storage technology offers new ways to meet the demand to obtain efficient and reliable energy storage materials. Thermal energy storage systems provide the potential to acquire energy savings, which in return decrease the environmental impact related to energy usage. For this purpose, phase change materials (PCMs) that work as 'latent heat storage units' which can store or release large amounts of energy are preferred. Phase change materials (PCMs) are being utilized to absorb, collect and discharge thermal energy during the cycle of melting and freezing, converting from one phase to another. Phase Change Materials (PCMs) can generally be arranged into three classes: organic materials, salt hydrates and eutectics. Many kinds of organic and inorganic PCMs and their blends have been examined as latent heat storage materials. PCMs have found different application areas such as solar energy storage and transfer, HVAC (Heating, Ventilating and Air Conditioning) systems, thermal comfort in vehicles, passive cooling, temperature controlled distributions, industrial waste heat recovery, under floor heating systems and modified fabrics in textiles. Ultraviolet (UV)-curing technology has many advantages, which made it applicable in many different fields. Low energy consumption, high speed, room-temperature operation, low processing costs, high chemical stability, and being environmental friendly are some of its main benefits. UV-curing technique has many applications. One of the many advantages of UV-cured PCMs is that they prevent the interior PCMs from leaking. Shape-stabilized PCM is prepared by blending the PCM with a supporting material, usually polymers. In our study, this problem is minimized by coating the fatty alcohols with a photo-cross-linked thiol-ene based polymeric system. Leakage is minimized because photo-cross-linked polymer acts a matrix. The aim of this study is to introduce a novel thiol-ene based shape-stabilized PCM. Photo-crosslinked thiol-ene based polymers containing fatty alcohols were prepared and characterized for the purpose of phase change materials (PCMs). Different types of fatty alcohols were used in order to investigate their properties as shape-stable PCMs. The structure of the PCMs was confirmed by ATR-FTIR techniques. The phase transition behaviors, thermal stability of the prepared photo-crosslinked PCMs were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). This work was supported by Marmara University, Commission of Scientific Research Project.

Keywords: differential scanning calorimetry (DSC), Polymeric phase change material, thermal energy storage, UV-curing

Procedia PDF Downloads 225
3388 A Concept in Addressing the Singularity of the Emerging Universe

Authors: Mahmoud Reza Hosseini

Abstract:

The universe is in a continuous expansion process, resulting in the reduction of its density and temperature. Also, by extrapolating back from its current state, the universe at its early times has been studied known as the big bang theory. According to this theory, moments after creation, the universe was an extremely hot and dense environment. However, its rapid expansion due to nuclear fusion led to a reduction in its temperature and density. This is evidenced through the cosmic microwave background and the universe structure at a large scale. However, extrapolating back further from this early state reaches singularity which cannot be explained by modern physics and the big bang theory is no longer valid. In addition, one can expect a nonuniform energy distribution across the universe from a sudden expansion. However, highly accurate measurements reveal an equal temperature mapping across the universe which is contradictory to the big bang principles. To resolve this issue, it is believed that cosmic inflation occurred at the very early stages of the birth of the universe According to the cosmic inflation theory, the elements which formed the universe underwent a phase of exponential growth due to the existence of a large cosmological constant. The inflation phase allows the uniform distribution of energy so that an equal maximum temperature could be achieved across the early universe. Also, the evidence of quantum fluctuations of this stage provides a means for studying the types of imperfections the universe would begin with. Although well-established theories such as cosmic inflation and the big bang together provide a comprehensive picture of the early universe and how it evolved into its current state, they are unable to address the singularity paradox at the time of universe creation. Therefore, a practical model capable of describing how the universe was initiated is needed. This research series aims at addressing the singularity issue by introducing an energy conversion mechanism. This is accomplished by establishing a state of energy called a “neutral state”, with an energy level which is referred to as “base energy” capable of converting into other states. Although it follows the same principles, the unique quanta state of the base energy allows it to be distinguishable from other states and have a uniform distribution at the ground level. Although the concept of base energy can be utilized to address the singularity issue, to establish a complete picture, the origin of the base energy should be also identified. This matter is the subject of the first study in the series “A Conceptual Study for Investigating the Creation of Energy and Understanding the Properties of Nothing” which is discussed in detail. Therefore, the proposed concept in this research series provides a road map for enhancing our understating of the universe's creation from nothing and its evolution and discusses the possibility of base energy as one of the main building blocks of this universe.

Keywords: big bang, cosmic inflation, birth of universe, energy creation

Procedia PDF Downloads 84
3387 The Role of Privatization on the Formulation of Productive Supply Chain: The Case of Ethiopian Firms

Authors: Merhawit Fisseha Gebremariam, Yohannes Yebabe Tesfay

Abstract:

This study focuses on the formulation of a sustainable, effective, and efficient supply chain strategy framework that will enable Ethiopian privatized firms. The study examined the role of privatization in productive sourcing, production, and delivery to Ethiopian firm’s performances. To analyze our hypothesis, the authors applied the concepts of Key Performance Indicator (KPI), strategic outsourcing, purchasing portfolio analysis, and Porter's marketing analysis. The authors selected ten privatized companies and compared their financial, market expansion, and sustainability performances. The Chi-Square Test showed that at the 5% level of significance, privatization and outsourcing activities can assist the business performances of Ethiopian firms in terms of product promotion and new market expansion. At the 5% level of significance, the independent t-test result showed that firms that were privatized by Ethiopian investors showed stronger financial performance than those that were privatized by foreign investors. Furthermore, it is better if Ethiopian firms apply both cost leadership and differentiated strategy to enhance thriving in their business area. Ethiopian firms need to implement the supply chain operations reference (SCOR) model for an exclusive framework that supports communication links the supply chain partners, and enhances productivity. The government of Ethiopia should be aware that the privatization of firms by Ethiopian investors will strengthen the economy. Otherwise, the privatization process will be risky for the country, and therefore, the government of Ethiopia should stop doing those activities.

Keywords: correlation analysis, market strategies, KPIs, privatization, risk and Ethiopia

Procedia PDF Downloads 58
3386 Geometry, the language of Manifestation of Tabriz School’s Mystical Thoughts in Architecture (Case Study: Dome of Soltanieh)

Authors: Lida Balilan, Dariush Sattarzadeh, Rana Koorepaz

Abstract:

In the Ilkhanid era, the mystical school of Tabriz manifested itself as an art school in various aspects, including miniatures, architecture, urban planning and design, simultaneously with the expansion of the many sciences of its time. In this era, mysticism, both in form and in poetry and prose, as well as in works of art reached its peak. Mysticism, as an inner belief and thought, brought the audience to the artistic and aesthetical view using allegorical and symbolic expression of the religion and had a direct impact on the formation of the intellectual and cultural layers of the society. At the same time, Mystic school of Tabriz could create a symbolic and allegorical language to create magnificent works of architecture with the expansion of science in various fields and using various sciences such as mathematics, geometry, science of numbers and by Abjad letters. In this era, geometry is the middle link between mysticism and architecture and it is divided into two categories, including intellectual and sensory geometry and based on its function. Soltaniyeh dome is one of the prominent buildings of the Tabriz school with the shrine land use. In this article, information is collected using a historical-interpretive method and the results are analyzed using an analytical-comparative method. The results of the study suggest that the designers and builders of the Soltaniyeh dome have used shapes, colors, numbers, letters and words in the form of motifs, geometric patterns as well as lines and writings in levels and layers ranging from plans to decorations and arrays for architectural symbolization and encryption to express and transmit mystical ideas.

Keywords: geometry, Tabriz school, mystical thoughts, dome of Soltaniyeh

Procedia PDF Downloads 81
3385 Heating System for Water Pool by Solar Energy

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

A swimming pool heating system is presented, composed of two alternative collectors with serial PVC absorber tubes that work in regimen of forced stream that is gotten through a bomb. A 500 liters reservoir was used, simulating the swimming pool, being raised some data that show the viability of the considered system. The chosen outflow was corresponding to 100 l/h. In function of the low outflow it was necessary the use of a not popular bomb, choosing the use of a low outflow alternative pumping system, using an air conditioner engine with three different rotations for the desired end. The thermal data related to each collector and their developed system will be presented. The UV and thermal degradations of the PVC exposed to solar radiation will be also boarded, demonstrating the viability of using tubes of this material as absorber elements of radiation in water heating solar collectors.

Keywords: solar energy, solar swimming pool, water heating, PVC tubes, alternative system

Procedia PDF Downloads 458
3384 Measurements of Flow Mixing Behaviors Using a Wire-Mesh Sensor in a Wire-Wrapped 37-Pin Rod Assembly

Authors: Hyungmo Kim, Hwang Bae, Seok-Kyu Chang, Dong Won Lee, Yung Joo Ko, Sun Rock Choi, Hae Seob Choi, Hyeon Seok Woo, Dong-Jin Euh, Hyeong-Yeon Lee

Abstract:

Flow mixing characteristics in the wire-wrapped 37-pin rod bundle were measured by using a wire-mesh sensing system for a sodium-cooled fast reactor (SFR). The subchannel flow mixing in SFR core subchannels was an essential characteristic for verification of a core thermal design and safety analysis. A dedicated test facility including the wire-mesh sensor system and tracing liquid injection system was developed, and the conductivity fields at the end of 37-pin rod bundle were visualized in several different flow conditions. These experimental results represented the reasonable agreements with the results of CFD, and the uncertainty of the mixing experiments has been conducted to evaluate the experimental results.

Keywords: core thermal design, flow mixing, a wire-mesh sensor, a wire-wrap effect

Procedia PDF Downloads 626
3383 Reconnaissance Investigation of Thermal Springs in the Middle Benue Trough, Nigeria by Remote Sensing

Authors: N. Tochukwu, M. Mukhopadhyay, A. Mohamed

Abstract:

It is no new that Nigeria faces a continual power shortage problem due to its vast population power demand and heavy reliance on nonrenewable forms of energy such as thermal power or fossil fuel. Many researchers have recommended using geothermal energy as an alternative; however, Past studies focus on the geophysical & geochemical investigation of this energy in the sedimentary and basement complex; only a few studies incorporated the remote sensing methods. Therefore, in this study, the preliminary examination of geothermal resources in the Middle Benue was carried out using satellite imagery in ArcMap. Landsat 8 scene (TIR, NIR, Red spectral bands) was used to estimate the Land Surface Temperature (LST). The Maximum Likelihood Classification (MLC) technique was used to classify sites with very low, low, moderate, and high LST. The intermediate and high classification happens to be possible geothermal zones, and they occupy 49% of the study area (38077km2). Riverline were superimposed on the LST layer, and the identification tool was used to locate high temperate sites. Streams that overlap on the selected sites were regarded as geothermal springs as. Surprisingly, the LST results show lower temperatures (<36°C) at the famous thermal springs (Awe & Wukari) than some unknown rivers/streams found in Kwande (38°C), Ussa, (38°C), Gwer East (37°C), Yola Cross & Ogoja (36°C). Studies have revealed that temperature increases with depth. However, this result shows excellent geothermal resources potential as it is expected to exceed the minimum geothermal gradient of 25.47 with an increase in depth. Therefore, further investigation is required to estimate the depth of the causative body, geothermal gradients, and the sustainability of the reservoirs by geophysical and field exploration. This method has proven to be cost-effective in locating geothermal resources in the study area. Consequently, the same procedure is recommended to be applied in other regions of the Precambrian basement complex and the sedimentary basins in Nigeria to save a preliminary field survey cost.

Keywords: ArcMap, geothermal resources, Landsat 8, LST, thermal springs, MLC

Procedia PDF Downloads 178
3382 Preparation and Characterization of Lanthanum Aluminate Electrolyte Material for Solid Oxide Fuel Cell

Authors: Onkar Nath Verma, Nitish Kumar Singh, Raghvendra, Pravin Kumar, Prabhakar Singh

Abstract:

The perovskite type electrolyte material LaAlO3 was prepared by solution based auto-combustion method using Al (NO3)3.6H2O, La2O3 with dilute nitrate acid (HNO3) as precursors and citric acid (C6H8O7.H2O) as a fuel. The synthesis protocol gave an easy processing of the LaAlO3 nano-particles. The XRD measurement revealed that the material has single phase with space group R-3c (rhombohedral). Thermal behavior was measured by simultaneous differential thermal analysis and thermo gravimetric analysis (DTA-TGA). The compact pellet density was determined. Also, the surface morphology was studied using scanning electron microscopy (SEM). The conductivity of LaAlO3 was measured employing LCR meter and found to increase with increasing temperature. This increase in conductivity may be attributed to increased mobility of oxide ion.

Keywords: perovskite, LaAlO3, XRD, SEM, DTA-TGA, SOFC

Procedia PDF Downloads 496
3381 Development of Composite Material for Thermal and Electrical Insulation

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale, Rubens Maribondo do Nascimento, José Ubiragi de Lima Mendes

Abstract:

Recycling has been greatly stimulated by the market. There are already several products that are produced with recycled materials and various wastes have been studied in various forms of applications. The vast majority of insulation applications in domestic, commercial and industrial systems in the range of low and medium temperatures (up to 180 ° C), using the aggressive nature materials such as glass wool, rock wool, polyurethane, polystyrene. Such materials, while retaining the effectiveness of the heat flux, are disposed as expensive and take years too absorbed by nature. Thus, trying to adapt to a global policy on the preservation of the environment, a study in order to develop an insulating compound of natural / industrial waste and biodegradable materials conducted. Thus, this research presents the development of a composite material based zest tire and latex for thermal and electrical insulation.

Keywords: composite, latex, scrapes tire, insulation, electrical

Procedia PDF Downloads 532
3380 Internal Stresses and Structural Evolutions in Zr Alloys during Oxidation at High Temperature and Subsequent Cooling

Authors: Raphaelle Guillou, Matthieu Le Saux, Jean-Christophe Brachet, Thomas Guilbert, Elodie Rouesne, Denis Menut, Caroline Toffolon-Masclet, Dominique Thiaudiere

Abstract:

In some hypothetical accidental situations, such as during a Loss Of Coolant Accident (LOCA) in pressurized water reactors, fuel cladding tubes made of zirconium alloys can be exposed for a few minutes to steam at High Temperature (HT up to 1200°C) before being cooled and then quenched in water. Under LOCA-like conditions, the cladding undergoes a number of metallurgical changes (phase transformations, oxygen diffusion and growth of an oxide layer...) and is consequently submitted to internal stresses whose state evolves during the transient. These stresses can have an effect on the oxide structure and the oxidation kinetics of the material. They evolve during cooling, owing to differences between the thermal expansion coefficients of the various phases and phase transformations of the metal and the oxide. These stresses may result in the failure of the cladding during quenching, once the material is embrittled by oxidation. In order to progress in the evaluation of these internal stresses, X-ray diffraction experiments were performed in-situ under synchrotron radiation during HT oxidation and subsequent cooling on Zircaloy-4 sheet samples. First, structural evolutions, such as phase transformations, have been studied as a function of temperature for both the oxide layer and the metallic substrate. Then, internal stresses generated within the material oxidized at temperatures between 700 and 900°C have been evaluated thanks to the 2θ diffraction peak position shift measured during the in-situ experiments. Electron backscatter diffraction (EBSD) analysis was performed on the samples after cooling in order to characterize their crystallographic texture. Furthermore, macroscopic strains induced by oxidation in the conditions investigated during the in-situ X-ray diffraction experiments were measured in-situ in a dilatometer.

Keywords: APRP, stains measurements, synchrotron diffraction, zirconium allows

Procedia PDF Downloads 308
3379 Effects of pH, Load Capacity and Contact Time in the Sulphate Sorption onto a Functionalized Mesoporous Structure

Authors: Jaime Pizarro, Ximena Castillo

Abstract:

The intensive use of water in agriculture, industry, human consumption and increasing pollution are factors that reduce the availability of water for future generations; the challenge is to advance in sustainable and low-cost solutions to reuse water and to facilitate the availability of the resource in quality and quantity. The use of new low-cost materials with sorbent capacity for pollutants is a solution that contributes to the improvement and expansion of water treatment and reuse systems. Fly ash, a residue from the combustion of coal in power plants that is produced in large quantities in newly industrialized countries, contains a high amount of silicon oxides and aluminum oxides, whose properties can be used for the synthesis of mesoporous materials. Properly functionalized, this material allows obtaining matrixes with high sorption capacity. The mesoporous materials have a large surface area, thermal and mechanical stability, uniform porous structure, and high sorption and functionalization capacities. The goal of this study was to develop hexagonal mesoporous siliceous material (HMS) for the adsorption of sulphate from industrial and mining waters. The silica was extracted from fly ash after calcination at 850 ° C, followed by the addition of water. The mesoporous structure has a surface area of 282 m2 g-1 and a size of 5.7 nm and was functionalized with ethylene diamine through of a self-assembly method. The material was characterized by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The capacity of sulphate sorption was evaluated according to pH, maximum load capacity and contact time. The sulphate maximum adsorption capacity was 146.1 mg g-1, which is three times higher than commercial sorbents. The kinetic data were fitted according to a pseudo-second order model with a high coefficient of linear regression at different initial concentrations. The adsorption isotherm that best fitted the experimental data was the Freundlich model.

Keywords: fly ash, mesoporous siliceous, sorption, sulphate

Procedia PDF Downloads 151