Search results for: segmentation genes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1357

Search results for: segmentation genes

157 RNA-Seq Analysis of the Wild Barley (H. spontaneum) Leaf Transcriptome under Salt Stress

Authors: Ahmed Bahieldin, Ahmed Atef, Jamal S. M. Sabir, Nour O. Gadalla, Sherif Edris, Ahmed M. Alzohairy, Nezar A. Radhwan, Mohammed N. Baeshen, Ahmed M. Ramadan, Hala F. Eissa, Sabah M. Hassan, Nabih A. Baeshen, Osama Abuzinadah, Magdy A. Al-Kordy, Fotouh M. El-Domyati, Robert K. Jansen

Abstract:

Wild salt-tolerant barley (Hordeum spontaneum) is the ancestor of cultivated barley (Hordeum vulgare or H. vulgare). Although the cultivated barley genome is well studied, little is known about genome structure and function of its wild ancestor. In the present study, RNA-Seq analysis was performed on young leaves of wild barley treated with salt (500 mM NaCl) at four different time intervals. Transcriptome sequencing yielded 103 to 115 million reads for all replicates of each treatment, corresponding to over 10 billion nucleotides per sample. Of the total reads, between 74.8 and 80.3% could be mapped and 77.4 to 81.7% of the transcripts were found in the H. vulgare unigene database (unigene-mapped). The unmapped wild barley reads for all treatments and replicates were assembled de novo and the resulting contigs were used as a new reference genome. This resultedin94.3 to 95.3%oftheunmapped reads mapping to the new reference. The number of differentially expressed transcripts was 9277, 3861 of which were uni gene-mapped. The annotated unigene- and de novo-mapped transcripts (5100) were utilized to generate expression clusters across time of salt stress treatment. Two-dimensional hierarchical clustering classified differential expression profiles into nine expression clusters, four of which were selected for further analysis. Differentially expressed transcripts were assigned to the main functional categories. The most important groups were ‘response to external stimulus’ and ‘electron-carrier activity’. Highly expressed transcripts are involved in several biological processes, including electron transport and exchanger mechanisms, flavonoid biosynthesis, reactive oxygen species (ROS) scavenging, ethylene production, signaling network and protein refolding. The comparisons demonstrated that mRNA-Seq is an efficient method for the analysis of differentially expressed genes and biological processes under salt stress.

Keywords: electron transport, flavonoid biosynthesis, reactive oxygen species, rnaseq

Procedia PDF Downloads 392
156 Use of Pig as an Animal Model for Assessing the Differential MicroRNA Profiling in Kidney after Aristolochic Acid Intoxication

Authors: Daniela E. Marin, Cornelia Braicu, Gina C. Pistol, Roxana Cojocneanu-Petric, Ioana Berindan Neagoe, Mihail A. Gras, Ionelia Taranu

Abstract:

Aristolochic acid (AA) is a carcinogenic, mutagenic, and nephrotoxic compound commonly found in the Aristolochiaceae family of plants. AA is frequently associated with urothelial carcinoma of the upper urinary tract in human and animals and is considered as being responsible for Balkan Endemic Nephropathy. The pig provides a good animal model because the porcine urological system is very similar to that of humans, both in aspects of physiology and anatomy. MicroRNA (miRNA) are small non-coding RNAs that have an impact on a wide range of biological processes by regulating gene expression at post-transcriptional level. The objective of this study was to analyze the miRNA profiling in the kidneys of AA intoxicated swine. For this purpose, ten TOPIGS-40 crossbred weaned piglets, 4-week-old, male and females with an initial average body weight of 9.83 ± 0.5 kg were studied for 28 days. They were given ad libitum access to water and feed and randomly allotted to one of the following groups: control group (C) or aristolochic acid group (AA). They were fed a maize-soybean-meal-based diet contaminated or not with 0.25mgAA/kg. To profile miRNA in the kidneys of pigs, microarrays and bioinformatics approaches were applied to analyze the miRNA in the kidney of control and AA intoxicated pigs. After normalization, our results have shown that a total of 5 known miRNAs and 4 novel miRNAs had different profiling in the kidney of intoxicated animals versus control ones. Expression of miR-32-5p, miR-497-5p, miR-423-3p, miR-218-5p, miR-128-3p were up-regulated by 0.25mgAA/kg feed, while the expression of miR-9793-5p, miR-9835-3p, miR-9840-3p, miR-4334-5p was down-regulated. The microRNA profiling in kidney of intoxicated animals was associated with modified expression of target genes as: RICTOR, LASP1, SFRP2, DKK2, BMI1, RAF1, IGF1R, MAP2K1, WEE1, HDGF, BCL2, EIF4E etc, involved in cell division cycle, apoptosis, cell differentiation and cell migration, cell signaling, cancer etc. In conclusion, this study provides new data concerning the microRNA profiling in kidney after aristolochic acid intoxications with important implications for human and animal health.

Keywords: aristolochic acid, kidney, microRNA, swine

Procedia PDF Downloads 283
155 A Visualization Classification Method for Identifying the Decayed Citrus Fruit Infected by Fungi Based on Hyperspectral Imaging

Authors: Jiangbo Li, Wenqian Huang

Abstract:

Early detection of fungal infection in citrus fruit is one of the major problems in the postharvest commercialization process. The automatic and nondestructive detection of infected fruits is still a challenge for the citrus industry. At present, the visual inspection of rotten citrus fruits is commonly performed by workers through the ultraviolet induction fluorescence technology or manual sorting in citrus packinghouses to remove fruit subject with fungal infection. However, the former entails a number of problems because exposing people to this kind of lighting is potentially hazardous to human health, and the latter is very inefficient. Orange is used as a research object. This study would focus on this problem and proposed an effective method based on Vis-NIR hyperspectral imaging in the wavelength range of 400-1000 nm with a spectroscopic resolution of 2.8 nm. In this work, three normalization approaches are applied prior to analysis to reduce the effect of sample curvature on spectral profiles, and it is found that mean normalization was the most effective pretreatment for decreasing spectral variability due to curvature. Then, principal component analysis (PCA) was applied to a dataset composing of average spectra from decayed and normal tissue to reduce the dimensionality of data and observe the ability of Vis-NIR hyper-spectra to discriminate data from two classes. In this case, it was observed that normal and decayed spectra were separable along the resultant first principal component (PC1) axis. Subsequently, five wavelengths (band) centered at 577, 702, 751, 808, and 923 nm were selected as the characteristic wavelengths by analyzing the loadings of PC1. A multispectral combination image was generated based on five selected characteristic wavelength images. Based on the obtained multispectral combination image, the intensity slicing pseudocolor image processing method is used to generate a 2-D visual classification image that would enhance the contrast between normal and decayed tissue. Finally, an image segmentation algorithm for detection of decayed fruit was developed based on the pseudocolor image coupled with a simple thresholding method. For the investigated 238 independent set samples including infected fruits infected by Penicillium digitatum and normal fruits, the total success rate is 100% and 97.5%, respectively, and, the proposed algorithm also used to identify the orange infected by penicillium italicum with a 100% identification accuracy, indicating that the proposed multispectral algorithm here is an effective method and it is potential to be applied in citrus industry.

Keywords: citrus fruit, early rotten, fungal infection, hyperspectral imaging

Procedia PDF Downloads 299
154 GC-MS-Based Untargeted Metabolomics to Study the Metabolism of Pectobacterium Strains

Authors: Magdalena Smoktunowicz, Renata Wawrzyniak, Malgorzata Waleron, Krzysztof Waleron

Abstract:

Pectobacterium spp. were previously classified into the Erwinia genus founded in 1917 to unite at that time all Gram-negative, fermentative, nonsporulating and peritrichous flagellated plant pathogenic bacteria. After work of Waldee (1945), on Approved Lists of Bacterial Names and bacteriology manuals in 1980, they were described either under the species named Erwinia or Pectobacterium. The Pectobacterium genus was formally described in 1998 of 265 Pectobacterium strains. Currently, there are 21 species of Pectobacterium bacteria, including Pectobacterium betavasculorum since 2003, which caused soft rot on sugar beet tubers. Based on the biochemical experiments carried out for this, it is known that these bacteria are gram-negative, catalase-positive, oxidase-negative, facultatively anaerobic, using gelatin and causing symptoms of soft rot on potato and sugar beet tubers. The mere fact of growing on sugar beet may indicate a metabolism characteristic only for this species. Metabolomics, broadly defined as the biology of the metabolic systems, which allows to make comprehensive measurements of metabolites. Metabolomics, in combination with genomics, are complementary tools for the identification of metabolites and their reactions, and thus for the reconstruction of metabolic networks. The aim of this study was to apply the GC-MS-based untargeted metabolomics to study the metabolism of P. betavasculorum in different growing conditions. The metabolomic profiles of biomass and biomass media were determined. For sample preparation the following protocol was used: extraction with 900 µl of methanol: chloroform: water mixture (10: 3: 1, v: v) were added to 900 µl of biomass from the bottom of the tube and up to 900 µl of nutrient medium from the bacterial biomass. After centrifugation (13,000 x g, 15 min, 4oC), 300µL of the obtained supernatants were concentrated by rotary vacuum and evaporated to dryness. Afterwards, two-step derivatization procedure was performed before GC-MS analyses. The obtained results were subjected to statistical calculations with the use of both uni- and multivariate tests. The obtained results were evaluated using KEGG database, to asses which metabolic pathways are activated and which genes are responsible for it, during the metabolism of given substrates contained in the growing environment. The observed metabolic changes, combined with biochemical and physiological tests, may enable pathway discovery, regulatory inference and understanding of the homeostatic abilities of P. betavasculorum.

Keywords: GC-MS chromatograpfy, metabolomics, metabolism, pectobacterium strains, pectobacterium betavasculorum

Procedia PDF Downloads 78
153 Profile of Programmed Death Ligand-1 (PD-L1) Expression and PD-L1 Gene Amplification in Indonesian Colorectal Cancer Patients

Authors: Akterono Budiyati, Gita Kusumo, Teguh Putra, Fritzie Rexana, Antonius Kurniawan, Aru Sudoyo, Ahmad Utomo, Andi Utama

Abstract:

The presence of the programmed death ligand-1 (PD-L1) has been used in multiple clinical trials and approved as biomarker for selecting patients more likely to respond to immune checkpoint inhibitors. However, the expression of PD-L1 is regulated in different ways, which leads to a different significance of its presence. Positive PD-L1 within tumors may result from two mechanisms, induced PD-L1 expression by T-cell presence or genetic mechanism that lead to constitutive PD-L1 expression. Amplification of PD-L1 genes was found as one of genetic mechanism which causes an increase in PD-L1 expression. In case of colorectal cancer (CRC), targeting immune checkpoint inhibitor has been recommended for patients with microsatellite instable (MSI). Although the correlation between PD-L1 expression and MSI status has been widely studied, so far the precise mechanism of PD-L1 gene activation in CRC patients, particularly in MSI population have yet to be clarified. In this present study we have profiled 61 archived formalin fixed paraffin embedded CRC specimens of patients from Medistra Hospital, Jakarta admitted in 2010 - 2016. Immunohistochemistry was performed to measure expression of PD-L1 in tumor cells as well as MSI status using antibodies against PD-L1 and MMR (MLH1, MSH2, PMS2 and MSH6), respectively. PD-L1 expression was measured on tumor cells with cut off of 1% whereas loss of nuclear MMR protein expressions in tumor cells but not in normal or stromal cells indicated presence of MSI. Subset of PD-L1 positive patients was then assessed for copy number variations (CNVs) using single Tube TaqMan Copy Number Assays Gene CD247PD-L1. We also observed KRAS mutation to profile possible genetic mechanism leading to the presence or absence of PD-L1 expression. Analysis of 61 CRC patients revealed 15 patients (24%) expressed PD-L1 on their tumor cell membranes. The prevalence of surface membrane PD-L1 was significantly higher in patients with MSI (87%; 7/8) compared to patients with microsatellite stable (MSS) (15%; 8/53) (P=0.001). Although amplification of PD-L1 gene was not found among PD-L1 positive patients, low-level amplification of PD-L1 gene was commonly observed in MSS patients (75%; 6/8) than in MSI patients (43%; 3/7). Additionally, we found 26% of CRC patients harbored KRAS mutations (16/61), so far the distribution of KRAS status did not correlate with PD-L1 expression. Our data suggest genetic mechanism through amplification of PD-L1 seems not to be the mechanism underlying upregulation of PD-L1 expression in CRC patients. However, further studies are warranted to confirm the results.

Keywords: colorectal cancer, gene amplification, microsatellite instable, programmed death ligand-1

Procedia PDF Downloads 222
152 Comparison of Methodologies to Compute the Probabilistic Seismic Hazard Involving Faults and Associated Uncertainties

Authors: Aude Gounelle, Gloria Senfaute, Ludivine Saint-Mard, Thomas Chartier

Abstract:

The long-term deformation rates of faults are not fully captured by Probabilistic Seismic Hazard Assessment (PSHA). PSHA that use catalogues to develop area or smoothed-seismicity sources is limited by the data available to constraint future earthquakes activity rates. The integration of faults in PSHA can at least partially address the long-term deformation. However, careful treatment of fault sources is required, particularly, in low strain rate regions, where estimated seismic hazard levels are highly sensitive to assumptions concerning fault geometry, segmentation and slip rate. When integrating faults in PSHA various constraints on earthquake rates from geologic and seismologic data have to be satisfied. For low strain rate regions where such data is scarce it would be especially challenging. Faults in PSHA requires conversion of the geologic and seismologic data into fault geometries, slip rates and then into earthquake activity rates. Several approaches exist for translating slip rates into earthquake activity rates. In the most frequently used approach, the background earthquakes are handled using a truncated approach, in which earthquakes with a magnitude lower or equal to a threshold magnitude (Mw) occur in the background zone, with a rate defined by the rate in the earthquake catalogue. Although magnitudes higher than the threshold are located on the fault with a rate defined using the average slip rate of the fault. As high-lighted by several research, seismic events with magnitudes stronger than the selected magnitude threshold may potentially occur in the background and not only at the fault, especially in regions of slow tectonic deformation. It also has been known that several sections of a fault or several faults could rupture during a single fault-to-fault rupture. It is then essential to apply a consistent modelling procedure to allow for a large set of possible fault-to-fault ruptures to occur aleatory in the hazard model while reflecting the individual slip rate of each section of the fault. In 2019, a tool named SHERIFS (Seismic Hazard and Earthquake Rates in Fault Systems) was published. The tool is using a methodology to calculate the earthquake rates in a fault system where the slip-rate budget of each fault is conversed into rupture rates for all possible single faults and faultto-fault ruptures. The objective of this paper is to compare the SHERIFS method with one other frequently used model to analyse the impact on the seismic hazard and through sensibility studies better understand the influence of key parameters and assumptions. For this application, a simplified but realistic case study was selected, which is in an area of moderate to hight seismicity (South Est of France) and where the fault is supposed to have a low strain.

Keywords: deformation rates, faults, probabilistic seismic hazard, PSHA

Procedia PDF Downloads 64
151 Antigen Stasis can Predispose Primary Ciliary Dyskinesia (PCD) Patients to Asthma

Authors: Nadzeya Marozkina, Joe Zein, Benjamin Gaston

Abstract:

Introduction: We have observed that many patients with Primary Ciliary Dyskinesia (PCD) benefit from asthma medications. In healthy airways, the ciliary function is normal. Antigens and irritants are rapidly cleared, and NO enters the gas phase normally to be exhaled. In the PCD airways, however, antigens, such as Dermatophagoides, are not as well cleared. This defect leads to oxidative stress, marked by increased DUOX1 expression and decreased superoxide dismutase [SOD] activity (manuscript under revision). H₂O₂, in high concentrations in the PCD airway, injures the airway. NO is oxidized rather than being exhaled, forming cytotoxic peroxynitrous acid. Thus, antigen stasis on PCD airway epithelium leads to airway injury and may predispose PCD patients to asthma. Indeed, recent population genetics suggest that PCD genes may be associated with asthma. We therefore hypothesized that PCD patients would be predisposed to having asthma. Methods. We analyzed our database of 18 million individual electronic medical records (EMRs) in the Indiana Network for Patient Care research database (INPCR). There is not an ICD10 code for PCD itself; code Q34.8 is most commonly used clinically. To validate analysis of this code, we queried patients who had an ICD10 code for both bronchiectasis and situs inversus totalis in INPCR. We also studied a validation cohort using the IBM Explorys® database (over 80 million individuals). Analyses were adjusted for age, sex and race using a 1 PCD: 3 controls matching method in INPCR and multivariable logistic regression in the IBM Explorys® database. Results. The prevalence of asthma ICD10 codes in subjects with a code Q34.8 was 67% vs 19% in controls (P < 0.0001) (Regenstrief Institute). Similarly, in IBM*Explorys, the OR [95% CI] for having asthma if a patient also had ICD10 code 34.8, relative to controls, was =4.04 [3.99; 4.09]. For situs inversus alone the OR [95% CI] was 4.42 [4.14; 4.71]; and bronchiectasis alone the OR [95% CI] =10.68 (10.56; 10.79). For both bronchiectasis and situs inversus together, the OR [95% CI] =28.80 (23.17; 35.81). Conclusions: PCD causes antigen stasis in the human airway (under review), likely predisposing to asthma in addition to oxidative and nitrosative stress and to airway injury. Here, we show that, by several different population-based metrics, and using two large databases, patients with PCD appear to have between a three- and 28-fold increased risk of having asthma. These data suggest that additional studies should be undertaken to understand the role of ciliary dysfunction in the pathogenesis and genetics of asthma. Decreased antigen clearance caused by ciliary dysfunction may be a risk factor for asthma development.

Keywords: antigen, PCD, asthma, nitric oxide

Procedia PDF Downloads 103
150 Effect of a Synthetic Platinum-Based Complex on Autophagy Induction in Leydig TM3 Cells

Authors: Ezzati Givi M., Hoveizi E., Nezhad Marani N.

Abstract:

Platinum-based anticancer therapeutics are the most widely used drugs in clinical chemotherapy but have major limitations and various side effects in clinical applications. Gonadotoxicity and sterility is one of the most common complications for cancer survivors, which seem to be drug-specific and dose-related. Therefore, many efforts have been dedicated to discovering a new structure of platinum-based anticancer agents with improved therapeutic index, fewer side effects. In this regard, new Pt(II)-phosphane complexes containing heterocyclic thionate ligands (PCTL) have been synthesized, which show more potent antitumor activities in comparison to cisplatin. Cisplatin, the best leading metal-based antitumor drug in the field, induces testicular toxicity on Leydig and Sertoli cells leading to serious side effects such as azoospermia and infertility. Therefore in the present study, we aimed to investigate the cytotoxicity effect of PCTL on mice TM4 Sertoli cells with particular emphasis on the role of autophagy in comparison to cisplatin. In this study, an MTT assay was performed to evaluate the IC50 of PCTL and to analyze the TM3 Leydig cell's viability. Cells morphology was evaluated via invert microscope and Changing in morphology for nuclei swelling or autophagic vacuoles formation were assessed by DAPI and MDC staining. Testosterone production in the culture medium was measured using an ELISA kit. Finally, the expression of Autophagy-related genes, Atg5, Beclin1 and p62, were analyzed by qPCR. Based on the obtained results by MTT, the IC50 value of PCTL was 50 μM in TM3 cells and cytotoxic effects was in a dose- and time-dependent manner. Cells morphological changes investigated by inverted microscopy, DAPI, and MDC staining which showed the cytotoxic concentrations of PCTL was significantly higher than cisplatin in the treated TM3 Leydig cells. The results of PCR showed a lack of expression of the p62, Atg5 and Beclin1 gene in TM3 cells treated with PCTL in comparison to cisplatin and control groups. It should be noted that the effects of 25 μM PCTL concentration on TM3 cells have been associated with increased testosterone production and secretion, which requires further study to explain the possible causes and involved molecular mechanisms. The results of the study showed that the PCTL had less-lethal effects on TM3 cells in comparison to cisplatin and probably did not induce autophagy in TM3 cells.

Keywords: platinum-based anticancer agents, cisplatin, Leydig TM3 cells, autophagy

Procedia PDF Downloads 128
149 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 125
148 Genotyping of Rotaviruses in Pediatric Patients with Gastroenteritis by Using Real-Time Reverse Transcription Polymerase Chain Reaction

Authors: Recep Kesli, Cengiz Demir, Riza Durmaz, Zekiye Bakkaloglu, Aysegul Bukulmez

Abstract:

Objective: Acute diarrhea disease in children is a major cause of morbidity worldwide and is a leading cause of mortality, and it is the most common agent responsible for acute gastroenteritis in developing countries. With hospitalized children suffering from acute enteric disease up to 50% of the analyzed specimen were positive for rotavirus. Further molecular surveillance could provide a sound basis for improving the response to epidemic gastroenteritis and could provide data needed for the introduction of vaccination programmes in the country. The aim of this study was to investigate the prevalence of viral etiology of the gastroenteritis in children aged 0-6 years with acute gastroenteritis and to determine predominant genotypes of rotaviruses in the province of Afyonkarahisar, Turkey. Methods: An epidemiological study on rotavirus was carried out during 2016. Fecal samples obtained from the 144 rotavirus positive children with 0-6 years of ages and applied to the Pediatric Diseases Outpatient of ANS Research and Practice Hospital, Afyon Kocatepe University with the complaint of diarrhea. Bacterial agents causing gastroenteritis were excluded by using bacteriological culture methods and finally, no growth observed. Rotavirus antigen was examined by both the immunochromatographic (One Step Rotavirus and Adenovirus Combo Test, China) and ELISA (Premier Rotaclone, USA) methods in stool samples. Rotavirus RNA was detected by using one step real-time reverse transcription-polymerase chain reaction (RT-PCR). G and P genotypes were determined using RT-PCR with consensus primers of VP7 and VP4 genes, followed by semi nested type-specific multiplex PCR. Results: Of the total 144 rotavirus antigen-positive samples with RT-PCR, 4 (2,8%) were rejected, 95 (66%) were examined, and 45 (31,2%) have not been examined for PCR yet. Ninety-one (95,8%) of the 95 examined samples were found to be rotavirus positive with RT-PCR. Rotavirus subgenotyping distributions in G, P and G/P genotype groups were determined as; G1:45%, G2:27%, G3:13%, G9:13%, G4:1% and G12:1% for G genotype, and P[4]:33%, P[8]:66%, P[10]:1% for P genotype, and G1P[8]:%37, G2P[4]:%21, G3P[8]:%10, G4P[8]:%1, G9P[8]:%8, G2P[8]:%3 for G/P genotype . Not common genotype combination were %20 in G/P genotype. Conclusions: This study subscribes to the global agreement of the molecular epidemiology of rotavirus which will be useful in guiding the alternative and application of rotavirus vaccines or effective control and interception. Determining the diversity and rates of rotavirus genotypes will definitely provide guidelines for developing the most suitable vaccine.

Keywords: gastroenteritis, genotyping, rotavirus, RT-PCR

Procedia PDF Downloads 241
147 Water Stress Response Profiling of Nigerian Bambara Groundnut (Vigna subterranea L. Verdc.) Germplasm and Genetic Diversity Studies of Some Selected Accessions Using SSR Markers

Authors: Dorcas Ropo Abejide, Olamide Ahmed Falusi, Oladipupo Abdulazeez Yusuf Daudu, Bolaji Zuluqurineen Salihu, Muhammad Liman Muhammad

Abstract:

This study evaluated the morpho-agronomic response of twenty-four (24) Nigerian Bambara groundnut landraces to water stress and genetic diversity of some selected accessions using SSR markers. The studies were carried out in the botanical garden of the Department of Plant Biology, Federal University of Technology, Minna, Niger State, Nigeria in a randomized complete block design using three replicates. Molecular analysis using SSR primers was carried out at the International Institute of Tropical Agriculture (IITA) Ibadan in order to characterize ten selected accessions comprising the seven most drought tolerant and three most susceptible accessions from the 24 accessions evaluated. Results revealed that water stress decreased morpho-agronomic traits such as plant height, leaf area, number of leaves per plant, seed yield, etc. A total of 22 alleles were detected by the SSR markers used with a mean number of 4 allelles. SSR markers MBamCO₃₃, Primer 65, and G358B2-D15 each detected 4 allelles, while Primer 3FR and 4FR detected 5 allelles each. The study revealed significantly high polymorphisms in 10 Loci. The mean value of polymorpic information content was 0.6997, implying the usefulness of the primers used in identifying genetic similarities and differences among the Bambara groundnut genotypes. The SSR analysis revealed a comparable pattern between genetic diversity and drought tolerance of the genotypes. The UPGMA dendrogram showed that at a genetic distance of 0.1, the accessions were grouped into three groups according to their level of tolerance to drought. The two most drought-tolerant accessions were grouped together, and the 5th and 6th most drought-tolerant accessions were also grouped together. This suggests that the genotypes grouped together may be genetically close, may possess similar genes, or have a common origin. The degree of genetic variants obtained from this profiling could be useful in Bambara groundnut breeding for drought tolerance. The identified drought tolerant Bambara groundnut landraces are important genetic resources for drought stress tolerance breeding programme of Bambara groundnut. The genotypes are also useful for germplasm conservation and global implications.

Keywords: Bambara groundnut, genetic diversity, germplasm, SSR markers, water stress

Procedia PDF Downloads 59
146 Bioinformatics High Performance Computation and Big Data

Authors: Javed Mohammed

Abstract:

Right now, bio-medical infrastructure lags well behind the curve. Our healthcare system is dispersed and disjointed; medical records are a bit of a mess; and we do not yet have the capacity to store and process the crazy amounts of data coming our way from widespread whole-genome sequencing. And then there are privacy issues. Despite these infrastructure challenges, some researchers are plunging into bio medical Big Data now, in hopes of extracting new and actionable knowledge. They are doing delving into molecular-level data to discover bio markers that help classify patients based on their response to existing treatments; and pushing their results out to physicians in novel and creative ways. Computer scientists and bio medical researchers are able to transform data into models and simulations that will enable scientists for the first time to gain a profound under-standing of the deepest biological functions. Solving biological problems may require High-Performance Computing HPC due either to the massive parallel computation required to solve a particular problem or to algorithmic complexity that may range from difficult to intractable. Many problems involve seemingly well-behaved polynomial time algorithms (such as all-to-all comparisons) but have massive computational requirements due to the large data sets that must be analyzed. High-throughput techniques for DNA sequencing and analysis of gene expression have led to exponential growth in the amount of publicly available genomic data. With the increased availability of genomic data traditional database approaches are no longer sufficient for rapidly performing life science queries involving the fusion of data types. Computing systems are now so powerful it is possible for researchers to consider modeling the folding of a protein or even the simulation of an entire human body. This research paper emphasizes the computational biology's growing need for high-performance computing and Big Data. It illustrates this article’s indispensability in meeting the scientific and engineering challenges of the twenty-first century, and how Protein Folding (the structure and function of proteins) and Phylogeny Reconstruction (evolutionary history of a group of genes) can use HPC that provides sufficient capability for evaluating or solving more limited but meaningful instances. This article also indicates solutions to optimization problems, and benefits Big Data and Computational Biology. The article illustrates the Current State-of-the-Art and Future-Generation Biology of HPC Computing with Big Data.

Keywords: high performance, big data, parallel computation, molecular data, computational biology

Procedia PDF Downloads 363
145 Expression of miRNA 335 in Gall Bladder Cancer: A Correlative Study

Authors: Naseem Fatima, A. N. Srivastava, Tasleem Raza, Vijay Kumar

Abstract:

Introduction: Carcinoma gallbladder is third most common gastrointestinal lethal disease with the highest incidence and mortality rate among women in Northern India. Scientists have found several risk factors that make a person more likely to develop gallbladder cancer; among these risk factors, deregulation of miRNAs has been demonstrated to be one of the most crucial factors. The changes in the expression of specific miRNA genes result in the control of inflammation, cell cycle regulation, stress response, proliferation, differentiation, apoptosis and invasion thus mediate the process in tumorgenesis. The aim of this study was to investigate the role of MiRNA-335 and may as a molecular marker in early detection of gallbladder cancer in suspected cases. Material and Methods: A total of 20 consecutive patients with gallbladder cancer aged between 30-75 years were registered for the study. Total RNA was extracted from tissue by using the mirVANA MiRNA isolation Kit according to the manufacturer’s protocol. The MiRNA- 335 and U6 snRNA-specific cDNA were reverse-transcribed from total RNA using Taqman microRNA reverse-transcription kit according to the manufacturer’s protocol. TaqMan MiRNA probes hsa-miR-335 and Taqman Master Mix without AmpEase UNG, Individual real-time PCR assays were performed in a 20 μL reaction volume on a Real-Time PCR system (Applied Biosystems StepOnePlus™) to detect MiRNA-335 expression in tissue. Relative quantification of target MiRNA expression was evaluated using the comparative cycle threshold (CT) method. The correlation was done in between cycle threshold (CT Value) of target MiRNA in gallbladder cancer with respect to non-cancerous Cholelithiasis gallbladder. Each sample was examined in triplicate. The Newman-Keuls Multiple Comparison Test was used to determine the expression of miR-335. Results: MiRNA335 was found to be significantly downregulated in the gallbladder cancer tissue (P<0.001), when compared with non-cancerous Cholelithiasis gallbladder cases. Out of 20 cases, 75% showed reduced expression of MiRNA335, were at last stage of disease with low overall survival rate and remaining 25% were showed up-regulated expression of MiRNA335 with high survival rate. Conclusion: The present study showed that reduced expression of MiRNA335 is associated with the advancement of the disease, and its deregulation may provide important clues to understanding it as a prognostic marker and opportunities for future research.

Keywords: carcinoma gallbladder, downregulation, MiRNA-335, RT-PCR assay

Procedia PDF Downloads 360
144 The Effects of Molecular and Climatic Variability on the Occurrence of Aspergillus Species and Aflatoxin Production in Commercial Maize from Different Agro-climatic Regions in South Africa

Authors: Nji Queenta Ngum, Mwanza Mulunda

Abstract:

Introduction Most African research reports on the frequent aflatoxin contamination of various foodstuffs, with researchers rarely specifying which of the Aspergillus species are present in these commodities. Numerous research works provide evidence of the ability of fungi to grow, thrive, and interact with other crop species and focus on the fact that these processes are largely affected by climatic variables. South Africa is a water-stressed country with high spatio-temporal rainfall variability; moreover, temperatures have been projected to rise at a rate twice the global rate. This weather pattern change may lead to crop stress encouraging mold contamination with subsequent mycotoxin production. In this study, the biodiversity and distribution of Aspergillus species with their corresponding toxins in maize from six distinct maize producing regions with different weather patterns in South Africa were investigated. Materials And Methods By applying cultural and molecular methods, a total of 1028 maize samples from six distinct agro-climatic regions were examined for contamination by the Aspergillus species while the high performance liquid chromatography (HPLC) method was applied to analyse the level of contamination by aflatoxins. Results About 30% of the overall maize samples were contaminated by at least one Aspergillus species. Less than 30% (28.95%) of the 228 isolates subjected to the aflatoxigenic test was found to possess at least one of the aflatoxin biosynthetic genes. Furthermore, almost 20% were found to be contaminated with aflatoxins, with mean total aflatoxin concentration levels of 64.17 ppb. Amongst the contaminated samples, 59.02% had mean total aflatoxin concentration levels above the SA regulatory limit of 20ppb for animals and 10 for human consumption. Conclusion In this study, climate variables (rainfall reduction) were found to significantly (p<0.001) influence the occurrence of the Aspergillus species (especially Aspergillus fumigatus) and the production of aflatoxin in South Africa commercial maize by maize variety, year of cultivation as well as the agro-climatic region in which the maize is cultivated. This included, amongst others, a reduction in the average annual rainfall of the preceding year to about 21.27 mm, and, as opposed to other regions whose average maximum rainfall ranged between 37.24 – 44.1 mm, resulted in a significant increase in the aflatoxin contamination of maize.

Keywords: aspergillus species, aflatoxins, diversity, drought, food safety, HPLC and PCR techniques

Procedia PDF Downloads 76
143 Intensive Multidisciplinary Feeding Intervention for a Toddler with In-Utero Drug Exposure

Authors: Leandra Prempeh, Emily Malugen

Abstract:

Prenatal drug exposure can have a molecular impact on the hypothalamic and reward genes that regulate feeding behavior. This can impact feeding regulation, resulting in feeding difficulties and growth failure. This was potentially seen in “McKayla,” a 19- month old girl with a history of in-utero drug exposure, patent ductus arteriosus, and gastroesophageal reflux disease who presented for intensive day treatment feeding therapy. She was diagnosed with Avoidant Restrictive Food Intake Disorder, described as total food refusal and meeting 100% of her caloric needs from a gastrostomy tube. The primary goals during intensive feeding therapy were to increase her oral intake and decrease her reliance on supplementation with formula. Several behavioral antecedent manipulations were implemented to establish consistent responding and make progress towards treatment goals. This included multiple modified bolus placements (using underloaded and Nuk brush), reinforcement contingencies, and variety fading before stability was finally achieved. Following, increasing retention of bites then increasing volume and variety were goals targeted. From treatment onset to the last 3 days of treatment, McKayla's rate of rapid acceptance of bite presentations increased significantly from 33.33% to 93.13%, rapid swallowing went from 0.00% to 92.32%, and her percentage of inappropriate mealtime behavior and expels decreased from 58.33% and 100% to 2.31% and 7.68%, respectively. Overall, the treatment team successfully introduced and increased the bite size of 7 pureed foods, generalize the treatment to caregivers with high integrity, and began facilitating tube weaning. She was receiving about 33.42% of her needs by mouth at the time of discharge. Other nutritional concerns addressed during treatment included drinking a nutritionally complete drink out of an open cup and age appropriate growth. McKayla continued to have emesis almost daily, as was her baseline before starting treatment; however, the frequency during mealtime decreased. Overall, McKayla responded well to treatment. She had a very slow response to treatment and required a lot of antecedent manipulations to establish consistent responding. As the literature suggests, [drug]-exposed neonates, like McKayla, may be at increased risk for nutritional and growth challenges that may persist throughout development. This supports the need for longterm follow-up of infant growth.

Keywords: behavioral intervention, feeding problems, in-utero drug exposure, intensive multidisciplinary intervention

Procedia PDF Downloads 66
142 Identification and Characterization of Antimicrobial Peptides Isolated from Entophytic Bacteria and Their Activity against Multidrug-Resistance Gram-Negative Bacteria in South Korea

Authors: Maryam Beiranvand

Abstract:

Multi-drug resistance in various microorganisms has increased globally in many healthcare facilities. Less effective antimicrobial activity of drug therapies for infection control becomes trouble. Since 1980, no new type of antimicrobial drug has been identified, even though combinations of antibiotic drugs have been discovered almost every decade. Between 1981 and 2006, over 70% of novel pharmaceuticals and chemical agents came from natural sources. Microorganisms have yielded almost 22,000 natural compounds. The identification of antimicrobial components from endophytes bacteria could help overcome the threat posed by multi-drug resistant strains. The project aims to analyze and identify antimicrobial peptides isolated from entophytic bacteria and their activity against multidrug-resistant Gram-negative bacteria in South Korea. Endophytic Paenibacillus polymyxa. 4G3 isolated from the plant, Gynura procumbery exhibited considerable antimicrobial activity against Methicillin-resistant Staphylococcus aureus, and Escherichia coli. The Rapid Annotations using Subsystems Technology showed that the total size of the draft genome was 5,739,603bp, containing 5178 genes with 45.8% G+C content. Genome annotation using antiSMASH version 6.0.0 was performed, which predicted the most common types of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS). In this study, diethyl aminoethyl cellulose (DEAEC) resin was used as the first step in purifying for unknown peptides, and then the target protein was identified using hydrophilic and hydrophobic solutions, optimal pH, and step-by-step tests for antimicrobial activity. This crude was subjected to C18 chromatography and elution with 0, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% methanol, respectively. Only the fraction eluted with 20% -60% methanol demonstrated good antimicrobial activity against MDR E. coli. The concentration of the active fragment was measured by the Brad-ford test, and Protein A280 - Thermo Fisher Scientific at the end by examining the SDS PAGE Resolving Gel, 10% Acrylamide and purity were confirmed. Our study showed that, based on the combined results of the analysis and purification. P polymyxa. 4G3 has a high potential exists for producing novel functions of polymyxin E and bacitracin against bacterial pathogens.

Keywords: endophytic bacteria, antimicrobial activity, antimicrobial peptide, whole genome sequencing analysis, multi -drug resistance gram negative bacteria

Procedia PDF Downloads 77
141 Al₂O₃ Nano-Particles Impact on Pseudomonas Putida Gene Expression: Implications for Environmental Risk

Authors: Nina Doskocz, Katarzyna Affek, Magdalena Matczuk, Monika Załęska-Radziwiłł

Abstract:

Wastewater treatment is a critical environmental issue, especially in the face of increasing urbanization and industrialization. One of the emerging issues related to wastewater is the presence of nanoparticles (NPs) - tiny particles with dimensions measured in nanometers. These nanoparticles are widely used in various industries, including medicine, electronics, and consumer products. With technological advances, NPs are increasingly finding their way into water and wastewater systems, posing new environmental challenges that require urgent research and regulation. Therefore, research on the impact of nanoparticles on wastewater treatment processes is critical to protect environmental health and ensure sustainable development in the face of advancing nanotechnology. Traditional ecotoxicological tests are often inadequate for routine analysis as they do not provide insight into the mechanisms of toxicity of these compounds. The development of (geno)toxicity biomarkers for nanoparticles will greatly aid in the rapid assessment and prediction of the effects of current and emerging nanomaterials on various organisms. However, despite growing interest in gene expression responses to nanoparticle-induced stress, the toxic mechanisms of action and defense responses against nanoparticle toxicity remain poorly understood. The aim of our research was to investigate the expression of several molecular biomarkers related to essential cellular functions - such as oxidative stress, xenobiotic detoxification, and mitochondrial electron transport - in Pseudomonas putida in response to Al₂O₃ nanoparticles found in wastewater, both before and after biological treatment, as well as in their native form. Real-time PCR (qPCR) was used to assess gene expression changes after 1 hour and 16 hours of exposure to Al₂O₃ NPs and wastewater containing these nanoparticles, both before and after biological treatment. In addition, gene expression measurements were performed on P. putida in the presence of bulk Al₂O₃ (pristine and in wastewater). The results showed increased expression of ahpC, katE and ctaD genes, indicating oxidative stress, increased detoxification capacity and impaired mitochondrial function. Both untreated and treated wastewater containing nanoparticles caused significant changes in gene expression, demonstrating the persistent bioactivity and potential toxicity of these nanoparticles. Nanoparticles exhibited greater reactivity and bioavailability compared to their bulk counterparts.

Keywords: nanoparticles, wastewater, gene expression, qPCR

Procedia PDF Downloads 17
140 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates

Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe

Abstract:

Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.

Keywords: machine learning, MTB, WGS, drug resistant TB

Procedia PDF Downloads 51
139 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 154
138 MicroRNA Drivers of Resistance to Androgen Deprivation Therapy in Prostate Cancer

Authors: Philippa Saunders, Claire Fletcher

Abstract:

INTRODUCTION: Prostate cancer is the most prevalent malignancy affecting Western males. It is initially an androgen-dependent disease: androgens bind to the androgen receptor and drive the expression of genes that promote proliferation and evasion of apoptosis. Despite reduced androgen dependence in advanced prostate cancer, androgen receptor signaling remains a key driver of growth. Androgen deprivation therapy (ADT) is, therefore, a first-line treatment approach and works well initially, but resistance inevitably develops. Abiraterone and Enzalutamide are drugs widely used in ADT and are androgen synthesis and androgen receptor signaling inhibitors, respectively. The shortage of other treatment options means acquired resistance to these drugs is a major clinical problem. MicroRNAs (miRs) are important mediators of post-transcriptional gene regulation and show altered expression in cancer. Several have been linked to the development of resistance to ADT. Manipulation of such miRs may be a pathway to breakthrough treatments for advanced prostate cancer. This study aimed to validate ADT resistance-implicated miRs and their clinically relevant targets. MATERIAL AND METHOD: Small RNA-sequencing of Abiraterone- and Enzalutamide-resistant C42 prostate cancer cells identified subsets of miRs dysregulated as compared to parental cells. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) was used to validate altered expression of candidate ADT resistance-implicated miRs 195-5p, 497-5p and 29a-5p in ADT-resistant and -responsive prostate cancer cell lines, patient-derived xenografts (PDXs) and primary prostate cancer explants. RESULTS AND DISCUSSION: This study suggests a possible role for miR-497-5p in the development of ADT resistance in prostate cancer. MiR-497-5p expression was increased in ADT-resistant versus ADT-responsive prostate cancer cells. Importantly, miR-497-5p expression was also increased in Enzalutamide-treated, castrated (ADT-mimicking) PDXs versus intact PDXs. MiR-195-5p was also elevated in ADT-resistant versus -responsive prostate cancer cells, while there was a drop in miR-29a-5p expression. Candidate clinically relevant targets of miR-497-5p in prostate cancer were identified by mining AGO-PAR-CLIP-seq data sets and may include AVL9 and FZD6. CONCLUSION: In summary, this study identified microRNAs that are implicated in prostate cancer resistance to androgen deprivation therapy and could represent novel therapeutic targets for advanced disease.

Keywords: microRNA, androgen deprivation therapy, Enzalutamide, abiraterone, patient-derived xenograft

Procedia PDF Downloads 143
137 Characterization of Soil Microbial Communities from Vineyard under a Spectrum of Drought Pressures in Sensitive Area of Mediterranean Region

Authors: Gianmaria Califano, Júlio Augusto Lucena Maciel, Olfa Zarrouk, Miguel Damasio, Jose Silvestre, Ana Margarida Fortes

Abstract:

Global warming, with rapid and sudden changes in meteorological conditions, is one of the major constraints to ensuring agricultural and crop resilience in the Mediterranean regions. Several strategies are being adopted to reduce the pressure of drought stress on grapevines at regional and local scales: improvements in the irrigation systems, adoption of interline cover crops, and adaptation of pruning techniques. However, still, more can be achieved if also microbial compartments associated with plants are considered in crop management. It is known that the microbial community change according to several factors such as latitude, plant variety, age, rootstock, soil composition and agricultural management system. Considering the increasing pressure of the biotic and abiotic stresses, it is of utmost necessity to also evaluate the effects of drought on the microbiome associated with the grapevine, which is a commercially important crop worldwide. In this study, we characterize the diversity and the structure of the microbial community under three long-term irrigation levels (100% ETc, 50% ETc and rain-fed) in a drought-tolerant grapevine cultivar present worldwide, Syrah. To avoid the limitations of culture-dependent methods, amplicon sequencing with target primers for bacteria and fungi was applied to the same soil samples. The use of the DNeasy PowerSoil (Qiagen) extraction kit required further optimization with the use of lytic enzymes and heating steps to improve DNA yield and quality systematically across biological treatments. Target regions (16S rRNA and ITS genes) of our samples are being sequenced with Illumina technology. With bioinformatic pipelines, it will be possible to obtain a characterization of the bacterial and fungal diversity, structure and composition. Further, the microbial communities will be assessed for their functional activity, which remains an important metric considering the strong inter-kingdom interactions existing between plants and their associated microbiome. The results of this study will lay the basis for biotechnological applications: in combination with the establishment of a bacterial library, it will be possible to explore the possibility of testing synthetic microbial communities to support plant resistance to water scarcity.

Keywords: microbiome, metabarcoding, soil, vinegrape, syrah, global warming, crop sustainability

Procedia PDF Downloads 123
136 Genome Sequencing, Assembly and Annotation of Gelidium Pristoides from Kenton-on-Sea, South Africa

Authors: Sandisiwe Mangali, Graeme Bradley

Abstract:

Genome is complete set of the organism's hereditary information encoded as either deoxyribonucleic acid or ribonucleic acid in most viruses. The three different types of genomes are nuclear, mitochondrial and the plastid genome and their sequences which are uncovered by genome sequencing are known as an archive for all genetic information and enable researchers to understand the composition of a genome, regulation of gene expression and also provide information on how the whole genome works. These sequences enable researchers to explore the population structure, genetic variations, and recent demographic events in threatened species. Particularly, genome sequencing refers to a process of figuring out the exact arrangement of the basic nucleotide bases of a genome and the process through which all the afore-mentioned genomes are sequenced is referred to as whole or complete genome sequencing. Gelidium pristoides is South African endemic Rhodophyta species which has been harvested in the Eastern Cape since the 1950s for its high economic value which is one motivation for its sequencing. Its endemism further motivates its sequencing for conservation biology as endemic species are more vulnerable to anthropogenic activities endangering a species. As sequencing, mapping and annotating the Gelidium pristoides genome is the aim of this study. To accomplish this aim, the genomic DNA was extracted and quantified using the Nucleospin Plank Kit, Qubit 2.0 and Nanodrop. Thereafter, the Ion Plus Fragment Library was used for preparation of a 600bp library which was then sequenced through the Ion S5 sequencing platform for two runs. The produced reads were then quality-controlled and assembled through the SPAdes assembler with default parameters and the genome assembly was quality assessed through the QUAST software. From this assembly, the plastid and the mitochondrial genomes were then sampled out using Gelidiales organellar genomes as search queries and ordered according to them using the Geneious software. The Qubit and the Nanodrop instruments revealed an A260/A280 and A230/A260 values of 1.81 and 1.52 respectively. A total of 30792074 reads were obtained and produced a total of 94140 contigs with resulted into a sequence length of 217.06 Mbp with N50 value of 3072 bp and GC content of 41.72%. A total length of 179281bp and 25734 bp was obtained for plastid and mitochondrial respectively. Genomic data allows a clear understanding of the genomic constituent of an organism and is valuable as foundation information for studies of individual genes and resolving the evolutionary relationships between organisms including Rhodophytes and other seaweeds.

Keywords: Gelidium pristoides, genome, genome sequencing and assembly, Ion S5 sequencing platform

Procedia PDF Downloads 150
135 Fast and Non-Invasive Patient-Specific Optimization of Left Ventricle Assist Device Implantation

Authors: Huidan Yu, Anurag Deb, Rou Chen, I-Wen Wang

Abstract:

The use of left ventricle assist devices (LVADs) in patients with heart failure has been a proven and effective therapy for patients with severe end-stage heart failure. Due to the limited availability of suitable donor hearts, LVADs will probably become the alternative solution for patient with heart failure in the near future. While the LVAD is being continuously improved toward enhanced performance, increased device durability, reduced size, a better understanding of implantation management becomes critical in order to achieve better long-term blood supplies and less post-surgical complications such as thrombi generation. Important issues related to the LVAD implantation include the location of outflow grafting (OG), the angle of the OG, the combination between LVAD and native heart pumping, uniform or pulsatile flow at OG, etc. We have hypothesized that an optimal implantation of LVAD is patient specific. To test this hypothesis, we employ a novel in-house computational modeling technique, named InVascular, to conduct a systematic evaluation of cardiac output at aortic arch together with other pertinent hemodynamic quantities for each patient under various implantation scenarios aiming to get an optimal implantation strategy. InVacular is a powerful computational modeling technique that integrates unified mesoscale modeling for both image segmentation and fluid dynamics with the cutting-edge GPU parallel computing. It first segments the aortic artery from patient’s CT image, then seamlessly feeds extracted morphology, together with the velocity wave from Echo Ultrasound image of the same patient, to the computation model to quantify 4-D (time+space) velocity and pressure fields. Using one NVIDIA Tesla K40 GPU card, InVascular completes a computation from CT image to 4-D hemodynamics within 30 minutes. Thus it has the great potential to conduct massive numerical simulation and analysis. The systematic evaluation for one patient includes three OG anastomosis (ascending aorta, descending thoracic aorta, and subclavian artery), three combinations of LVAD and native heart pumping (1:1, 1:2, and 1:3), three angles of OG anastomosis (inclined upward, perpendicular, and inclined downward), and two LVAD inflow conditions (uniform and pulsatile). The optimal LVAD implantation is suggested through a comprehensive analysis of the cardiac output and related hemodynamics from the simulations over the fifty-four scenarios. To confirm the hypothesis, 5 random patient cases will be evaluated.

Keywords: graphic processing unit (GPU) parallel computing, left ventricle assist device (LVAD), lumped-parameter model, patient-specific computational hemodynamics

Procedia PDF Downloads 133
134 Insulin Receptor Substrate-1 (IRS1) and Transcription Factor 7-Like 2 (TCF7L2) Gene Polymorphisms Associated with Type 2 Diabetes Mellitus in Eritreans

Authors: Mengistu G. Woldu, Hani Y. Zaki, Areeg Faggad, Badreldin E. Abdalla

Abstract:

Background: Type 2 diabetes mellitus (T2DM) is a complex, degenerative, and multi-factorial disease, which is culpable for huge mortality and morbidity worldwide. Even though relatively significant numbers of studies are conducted on the genetics domain of this disease in the developed world, there is huge information gap in the sub-Saharan Africa region in general and in Eritrea in particular. Objective: The principal aim of this study was to investigate the association of common variants of the Insulin Receptor Substrate 1 (IRS1) and Transcription Factor 7-Like 2 (TCF7L2) genes with T2DM in the Eritrean population. Method: In this cross-sectional case control study 200 T2DM patients and 112 non-diabetes subjects were participated and genotyping of the IRS1 (rs13431179, rs16822615, 16822644rs, rs1801123) and TCF7L2 (rs7092484) tag SNPs were carries out using PCR-RFLP method of analysis. Haplotype analyses were carried out using Plink version 1.07, and Haploview 4.2 software. Linkage disequilibrium (LD), and Hardy-Weinberg equilibrium (HWE) analyses were performed using the Plink software. All descriptive statistical data analyses were carried out using SPSS (Version-20) software. Throughout the analysis p-value ≤0.05 was considered statistically significant. Result: Significant association was found between rs13431179 SNP of the IRS1 gene and T2DM under the recessive model of inheritance (OR=9.00, 95%CI=1.17-69.07, p=0.035), and marginally significant association found in the genotypic model (OR=7.50, 95%CI=0.94-60.06, p=0.058). The rs7092484 SNP of the TCF7L2 gene also showed markedly significant association with T2DM in the recessive (OR=3.61, 95%CI=1.70-7.67, p=0.001); and allelic (OR=1.80, 95%CI=1.23-2.62, p=0.002) models. Moreover, eight haplotypes of the IRS1 gene found to have significant association withT2DM (p=0.013 to 0.049). Assessments made on the interactions of genotypes of the rs13431179 and rs7092484 SNPs with various parameters demonstrated that high density lipoprotein (HDL), low density lipoprotein (LDL), waist circumference (WC), and systolic blood pressure (SBP) are the best T2DM onset predicting models. Furthermore, genotypes of the rs7092484 SNP showed significant association with various atherogenic indexes (Atherogenic index of plasma, LDL/HDL, and CHLO/HDL); and Eritreans carrying the GG or GA genotypes were predicted to be more susceptible to cardiovascular diseases onset. Conclusions: Results of this study suggest that IRS1 (rs13431179) and TCF7L2 (rs7092484) gene polymorphisms are associated with increased risk of T2DM in Eritreans.

Keywords: IRS1, SNP, TCF7L2, type 2 diabetes

Procedia PDF Downloads 224
133 Engineering Escherichia coli for Production of Short Chain Fatty Acid by Exploiting Fatty Acid Metabolic Pathway

Authors: Kamran Jawed, Anu Jose Mattam, Zia Fatma, Saima Wajid, Malik Z. Abdin, Syed Shams Yazdani

Abstract:

Worldwide demand of natural and sustainable fuels and chemicals have encouraged researchers to develop microbial platform for synthesis of short chain fatty acids as they are useful precursors to replace petroleum-based fuels and chemicals. In this study, we evaluated the role of fatty acid synthesis and β-oxidation cycle of Escherichia coli to produce butyric acid, a 4-carbon short chain fatty acid, with the help of three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron. We found that E. coli strain transformed with gene for TesBT and grown in presence of 8 g/L glucose produced maximum butyric acid titer at 1.46 g/L, followed by that of TesBF at 0.85 g/L and TesAT at 0.12 g/L, indicating that these thioesterases were efficiently converting short chain fatty acyl-ACP intermediate of fatty acid synthesis pathway into the corresponding acid. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. Deletion of genes for fatty acyl-CoA synthetase and acyl-CoA dehydrogenase, which are involved in initiating the fatty acid degradation cycle, and overexpression of FadR, which is a dual transcriptional regulator and exerts negative control over fatty acid degradation pathway, reduced up to 30% of butyric acid titer. This observation suggested that β-oxidation pathway is working synergistically with fatty acid synthesis pathway in production of butyric acid. Moreover, accelerating the fatty acid elongation cycle by overexpressing acetyl-CoA carboxyltransferase (Acc) and 3-hydroxy-acyl-ACP dehydratase (FabZ) or by deleting FabR, the transcription suppressor of elongation, did not improve the butyric acid titer, rather favored the long chain fatty acid production. Finally, a balance between cell growth and butyric acid production was achieved with the use of phosphorous limited growth medium and 14.3 g/L butyric acid, and 17.5 g/L total free fatty acids (FFAs) titer was achieved during fed-batch cultivation. We have engineered an E. coli strain which utilizes the intermediate of both fatty acid synthesis and degradation pathway, i.e. butyryl-ACP and -CoA, to produce butyric acid from glucose. The strategy used in this study resulted in highest reported titers of butyric acid and FFAs in engineered E. coli.

Keywords: butenoic acid, butyric acid, Escherichia coli, fed-batch fermentation, short chain fatty acids, thioesterase

Procedia PDF Downloads 371
132 Anti-Inflammatory Studies on Chungpye-Tang in Asthmatic Human Lung Tissue

Authors: J. H. Bang, H. J. Baek, K. I. Kim, B. J. Lee, H. J. Jung, H. J. Jang, S. K. Jung

Abstract:

Asthma is a chronic inflammatory lung disease characterized by airway hyper responsiveness (AHR), airway obstruction and airway wall remodeling responsible for significant morbidity and mortality worldwide. Genetic and environment factors may result in asthma, but there are no the exact causes of asthma. Chungpye-tang (CPT) has been prescribed as a representative aerosol agent for patients with dyspnea, cough and phlegm in the respiratory clinic at Kyung Hee Korean Medicine Hospital. This Korean herbal medicines have the effect of dispelling external pathogen and dampness pattern. CPT is composed of 4 species of herbal medicines. The 4 species of herbal medicines are Ephedrae herba, Pogostemonis(Agatachis) herba, Caryophylli flos and Zingiberis rhizoma crudus. CPT suppresses neutrophil infiltration and the production of pro-inflammatory cytokines in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. Moreover, the anti-inflammatory effects of CPT on a mouse model of Chronic Obstructive Pulmonary Disease (COPD) was proved. Activation of the NF-κB has been proven that it plays an important role in inflammation via inducing transcription of pro-inflammatory genes. Over-expression of NF-κB has been believed be related to many inflammatory diseases such as arthritis, gastritis, asthma and COPD. So we firstly hypothesize whether CPT has an anti-inflammatory effect on asthmatic human airway epithelial tissue via inhibiting NF-κB pathway. In this study, CPT was extracted with distilled water for 3 hours at 100°C. After process of filtration and evaporation, it was freeze dried. And asthmatic human lung tissues were provided by MatTek Corp. We investigated the precise mechanism of the anti-inflammatory effect of CPT by western blotting analysis. We observed whether the decoction extracts could reduce NF-κB activation, COX-2 protein expression and NF-κB-mediated pro-inflammatory cytokines such as TNF-α, eotaxin, IL-4, IL-9 and IL-13 in asthmatic human lung tissue. As results of this study, there was a trend toward decreased NF-κB expression in asthmatic human airway epithelial tissue. We found that the inhibition effects of CPT on COX-2 expression was not determined. IL-9 and IL-13 secretion was significantly reduced in the asthmatic human lung tissue treated with CPT. Overall, our results indicate that CPT has an anti-inflammatory effect through blocking the signaling pathway of NF-κB, thereby CPT may be a potential remedial agent for allergic asthma.

Keywords: Chungpye-tang, allergic asthma, asthmatic human airway epithelial tissue, nuclear factor kappa B (NF-κB) pathway, COX-2

Procedia PDF Downloads 334
131 TARF: Web Toolkit for Annotating RNA-Related Genomic Features

Authors: Jialin Ma, Jia Meng

Abstract:

Genomic features, the genome-based coordinates, are commonly used for the representation of biological features such as genes, RNA transcripts and transcription factor binding sites. For the analysis of RNA-related genomic features, such as RNA modification sites, a common task is to correlate these features with transcript components (5'UTR, CDS, 3'UTR) to explore their distribution characteristics in terms of transcriptomic coordinates, e.g., to examine whether a specific type of biological feature is enriched near transcription start sites. Existing approaches for performing these tasks involve the manipulation of a gene database, conversion from genome-based coordinate to transcript-based coordinate, and visualization methods that are capable of showing RNA transcript components and distribution of the features. These steps are complicated and time consuming, and this is especially true for researchers who are not familiar with relevant tools. To overcome this obstacle, we develop a dedicated web app TARF, which represents web toolkit for annotating RNA-related genomic features. TARF web tool intends to provide a web-based way to easily annotate and visualize RNA-related genomic features. Once a user has uploaded the features with BED format and specified a built-in transcript database or uploaded a customized gene database with GTF format, the tool could fulfill its three main functions. First, it adds annotation on gene and RNA transcript components. For every features provided by the user, the overlapping with RNA transcript components are identified, and the information is combined in one table which is available for copy and download. Summary statistics about ambiguous belongings are also carried out. Second, the tool provides a convenient visualization method of the features on single gene/transcript level. For the selected gene, the tool shows the features with gene model on genome-based view, and also maps the features to transcript-based coordinate and show the distribution against one single spliced RNA transcript. Third, a global transcriptomic view of the genomic features is generated utilizing the Guitar R/Bioconductor package. The distribution of features on RNA transcripts are normalized with respect to RNA transcript landmarks and the enrichment of the features on different RNA transcript components is demonstrated. We tested the newly developed TARF toolkit with 3 different types of genomics features related to chromatin H3K4me3, RNA N6-methyladenosine (m6A) and RNA 5-methylcytosine (m5C), which are obtained from ChIP-Seq, MeRIP-Seq and RNA BS-Seq data, respectively. TARF successfully revealed their respective distribution characteristics, i.e. H3K4me3, m6A and m5C are enriched near transcription starting sites, stop codons and 5’UTRs, respectively. Overall, TARF is a useful web toolkit for annotation and visualization of RNA-related genomic features, and should help simplify the analysis of various RNA-related genomic features, especially those related RNA modifications.

Keywords: RNA-related genomic features, annotation, visualization, web server

Procedia PDF Downloads 207
130 Fatty Acid Translocase (Cd36), Energy Substrate Utilization, and Insulin Signaling in Brown Adipose Tissue in Spontaneously Hypertensive Rats

Authors: Michal Pravenec, Miroslava Simakova, Jan Silhavy

Abstract:

Brown adipose tissue (BAT) plays an important role in lipid and glucose metabolism in rodents and possibly also in humans. Recently, using systems genetics approach in the BAT from BXH/HXB recombinant inbred strains, derived from the SHR (spontaneously hypertensive rat) and BN (Brown Norway) progenitors, we identified Cd36 (fatty acid translocase) as the hub gene of co-expression module associated with BAT relative weight and function. An important aspect of BAT biology is to better understand the mechanisms regulating the uptake and utilization of fatty acids and glucose. Accordingly, BAT function in the SHR that harbors mutant nonfunctional Cd36 variant (hereafter referred to as SHR-Cd36⁻/⁻) was compared with SHR transgenic line expressing wild type Cd36 under control of a universal promoter (hereafter referred to as SHR-Cd36⁺/⁺). BAT was incubated in media containing insulin and 14C-U-glucose alone or 14C-U-glucose together with palmitate. Incorporation of glucose into BAT lipids was significantly higher in SHR-Cd36⁺/⁺ versus SHR-Cd36⁻/⁻ rats when incubation media contained glucose alone (SHR-Cd36⁻/⁻ 591 ± 75 vs. SHR-Cd36⁺/⁺ 1036 ± 135 nmol/gl./2h; P < 0.005). Adding palmitate into incubation media had no effect in SHR-Cd36⁻/⁻ rats but significantly reduced glucose incorporation into BAT lipids in SHR-Cd36⁺/⁺ (SHR-Cd36⁻/⁻ 543 ± 55 vs. SHR-Cd36⁺/⁺ 766 ± 75 nmol/gl./2h; P < 0.05 denotes significant Cd36 x palmitate interaction determined by two-way ANOVA). This Cd36-dependent reduced glucose uptake in SHR-Cd36⁺/⁺ BAT was likely secondary to increased palmitate incorporation and utilization due to the presence of wild type Cd36 fatty acid translocase in transgenic rats. This possibility is supported by increased incorporation of 14C-U-palmitate into BAT lipids in the presence of both palmitate and glucose in incubation media (palmitate alone: SHR-Cd36⁻/⁻ 870 ± 21 vs. SHR-Cd36⁺/⁺ 899 ± 42; glucose+palmitate: SHR-Cd36⁻/⁻ 899 ± 47 vs. SHR-Cd36⁺/⁺ 1460 ± 111 nmol/palm./2h; P < 0.05 denotes significant Cd36 x glucose interaction determined by two-way ANOVA). It is possible that addition of glucose into the incubation media increased palmitate incorporation into BAT lipids in SHR-Cd36⁺/⁺ rats because of glucose availability for glycerol phosphate production and increased triglyceride synthesis. These changes in glucose and palmitate incorporation into BAT lipids were associated with significant differential expression of Irs1, Irs2, Slc2a4 and Foxo1 genes involved in insulin signaling and glucose metabolism only in SHR-Cd36⁺/⁺ rats which suggests Cd36-dependent effects on insulin action. In conclusion, these results provide compelling evidence that Cd36 plays an important role in BAT insulin signaling and energy substrate utilization.

Keywords: brown adipose tissue, Cd36, energy substrate utilization, insulin signaling, spontaneously hypertensive rat

Procedia PDF Downloads 139
129 Virtual Experiments on Coarse-Grained Soil Using X-Ray CT and Finite Element Analysis

Authors: Mohamed Ali Abdennadher

Abstract:

Digital rock physics, an emerging field leveraging advanced imaging and numerical techniques, offers a promising approach to investigating the mechanical properties of granular materials without extensive physical experiments. This study focuses on using X-Ray Computed Tomography (CT) to capture the three-dimensional (3D) structure of coarse-grained soil at the particle level, combined with finite element analysis (FEA) to simulate the soil's behavior under compression. The primary goal is to establish a reliable virtual testing framework that can replicate laboratory results and offer deeper insights into soil mechanics. The methodology involves acquiring high-resolution CT scans of coarse-grained soil samples to visualize internal particle morphology. These CT images undergo processing through noise reduction, thresholding, and watershed segmentation techniques to isolate individual particles, preparing the data for subsequent analysis. A custom Python script is employed to extract particle shapes and conduct a statistical analysis of particle size distribution. The processed particle data then serves as the basis for creating a finite element model comprising approximately 500 particles subjected to one-dimensional compression. The FEA simulations explore the effects of mesh refinement and friction coefficient on stress distribution at grain contacts. A multi-layer meshing strategy is applied, featuring finer meshes at inter-particle contacts to accurately capture mechanical interactions and coarser meshes within particle interiors to optimize computational efficiency. Despite the known challenges in parallelizing FEA to high core counts, this study demonstrates that an appropriate domain-level parallelization strategy can achieve significant scalability, allowing simulations to extend to very high core counts. The results show a strong correlation between the finite element simulations and laboratory compression test data, validating the effectiveness of the virtual experiment approach. Detailed stress distribution patterns reveal that soil compression behavior is significantly influenced by frictional interactions, with frictional sliding, rotation, and rolling at inter-particle contacts being the primary deformation modes under low to intermediate confining pressures. These findings highlight that CT data analysis combined with numerical simulations offers a robust method for approximating soil behavior, potentially reducing the need for physical laboratory experiments.

Keywords: X-Ray computed tomography, finite element analysis, soil compression behavior, particle morphology

Procedia PDF Downloads 29
128 Remote Sensing-Based Prediction of Asymptomatic Rice Blast Disease Using Hyperspectral Spectroradiometry and Spectral Sensitivity Analysis

Authors: Selvaprakash Ramalingam, Rabi N. Sahoo, Dharmendra Saraswat, A. Kumar, Rajeev Ranjan, Joydeep Mukerjee, Viswanathan Chinnasamy, K. K. Chaturvedi, Sanjeev Kumar

Abstract:

Rice is one of the most important staple food crops in the world. Among the various diseases that affect rice crops, rice blast is particularly significant, causing crop yield and economic losses. While the plant has defense mechanisms in place, such as chemical indicators (proteins, salicylic acid, jasmonic acid, ethylene, and azelaic acid) and resistance genes in certain varieties that can protect against diseases, susceptible varieties remain vulnerable to these fungal diseases. Early prediction of rice blast (RB) disease is crucial, but conventional techniques for early prediction are time-consuming and labor-intensive. Hyperspectral remote sensing techniques hold the potential to predict RB disease at its asymptomatic stage. In this study, we aimed to demonstrate the prediction of RB disease at the asymptomatic stage using non-imaging hyperspectral ASD spectroradiometer under controlled laboratory conditions. We applied statistical spectral discrimination theory to identify unknown spectra of M. Oryzae, the fungus responsible for rice blast disease. The infrared (IR) region was found to be significantly affected by RB disease. These changes may result in alterations in the absorption, reflection, or emission of infrared radiation by the affected plant tissues. Our research revealed that the protein spectrum in the IR region is impacted by RB disease. In our study, we identified strong correlations in the region (Amide group - I) around X 1064 nm and Y 1300 nm with the Lambda / Lambda derived spectra methods for protein detection. During the stages when the disease is developing, typically from day 3 to day 5, the plant's defense mechanisms are not as effective. This is especially true for the PB-1 variety of rice, which is highly susceptible to rice blast disease. Consequently, the proteins in the plant are adversely affected during this critical time. The spectral contour plot reveals the highly correlated spectral regions 1064 nm and Y 1300 nm associated with RB disease infection. Based on these spectral sensitivities, we developed new spectral disease indices for predicting different stages of disease emergence. The goal of this research is to lay the foundation for future UAV and satellite-based studies aimed at long-term monitoring of RB disease.

Keywords: rice blast, asymptomatic stage, spectral sensitivity, IR

Procedia PDF Downloads 86