Search results for: reduced modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7868

Search results for: reduced modeling

6668 Peridynamic Modeling of an Isotropic Plate under Tensile and Flexural Loading

Authors: Eda Gök

Abstract:

Peridynamics is a new modeling concept of non-local interactions for solid structures. The formulations of Peridynamic (PD) theory are based on integral equations rather than differential equations. Through, undefined equations of associated problems are avoided. PD theory might be defined as continuum version of molecular dynamics. The medium is usually modeled with mass particles bonded together. Particles interact with each other directly across finite distances through central forces named as bonds. The main assumption of this theory is that the body is composed of material points which interact with other material points within a finite distance. Although, PD theory developed for discontinuities, it gives good results for structures which have no discontinuities. In this paper, displacement control of the isotropic plate under the effect of tensile and bending loading has been investigated by means of PD theory. A MATLAB code is generated to create PD bonds and corresponding surface correction factors. Using generated MATLAB code the geometry of the specimen is generated, and the code is implemented in Finite Element Software. The results obtained from non-local continuum theory are compared with the Finite Element Analysis results and analytical solution. The results show good agreement.

Keywords: non-local continuum mechanics, peridynamic theory, solid structures, tensile loading, flexural loading

Procedia PDF Downloads 121
6667 Challenges and Opportunities for Implementing Integrated Project Delivery Method in Public Sector Construction

Authors: Ahsan Ahmed, Ming Lu, Syed Zaidi, Farhan Khan

Abstract:

The Integrated Project Delivery (IPD) method has been proposed as the solution to tackle complexity and fragmentation in the real world while addressing the construction industry’s growing needs for productivity and sustainability. Although the private sector has taken the initiative in implementing IPD and taken advantage of new technology such as building information modeling (BIM) in delivering projects, IPD remains less known and rarely used in public sector construction. The focus of this paper is set on the use of IPD in projects in public sector, which is potentially complemented by the use of analytical functionalities for workface planning and construction oriented design enabled by recent research advances in BIM. Experiences and lessons learned from implementing IPD in the private sector and in BIM-based construction automation research would play a vital role in reducing barriers and eliminating issues in connection with project delivery in the public sector. The paper elaborates issues challenges, contractual relationships and the interactions throughout the planning, design and construction phases in the context of implementing IPD on construction projects in the public sector. A slab construction case is used as a ‘sandbox’ model to elaborate (1) the ideal way of communication, integration, and collaboration among all the parties involved in project delivery in planning and (2) the execution of projects by using IDP principles and optimization, simulation analyses.

Keywords: integrated project delivery, IPD, building information modeling, BIM

Procedia PDF Downloads 202
6666 CFD Modeling of Insect Flight at Low Reynolds Numbers

Authors: Wu Di, Yeo Khoon Seng, Lim Tee Tai

Abstract:

The typical insects employ a flapping-wing mode of flight. The numerical simulations on free flight of a model fruit fly (Re=143) including hovering and are presented in this paper. Unsteady aerodynamics around a flapping insect is studied by solving the three-dimensional Newtonian dynamics of the flyer coupled with Navier-Stokes equations. A hybrid-grid scheme (Generalized Finite Difference Method) that combines great geometry flexibility and accuracy of moving boundary definition is employed for obtaining flow dynamics. The results show good points of agreement and consistency with the outcomes and analyses of other researchers, which validate the computational model and demonstrate the feasibility of this computational approach on analyzing fluid phenomena in insect flight. The present modeling approach also offers a promising route of investigation that could complement as well as overcome some of the limitations of physical experiments in the study of free flight aerodynamics of insects. The results are potentially useful for the design of biomimetic flapping-wing flyers.

Keywords: free hovering flight, flapping wings, fruit fly, insect aerodynamics, leading edge vortex (LEV), computational fluid dynamics (CFD), Navier-Stokes equations (N-S), fluid structure interaction (FSI), generalized finite-difference method (GFD)

Procedia PDF Downloads 410
6665 Developing Integrated Model for Building Design and Evacuation Planning

Authors: Hao-Hsi Tseng, Hsin-Yun Lee

Abstract:

In the process of building design, the designers have to complete the spatial design and consider the evacuation performance at the same time. It is usually difficult to combine the two planning processes and it results in the gap between spatial design and evacuation performance. Then the designers cannot complete an integrated optimal design solution. In addition, the evacuation routing models proposed by previous researchers is different from the practical evacuation decisions in the real field. On the other hand, more and more building design projects are executed by Building Information Modeling (BIM) in which the design content is formed by the object-oriented framework. Thus, the integration of BIM and evacuation simulation can make a significant contribution for designers. Therefore, this research plan will establish a model that integrates spatial design and evacuation planning. The proposed model will provide the support for the spatial design modifications and optimize the evacuation planning. The designers can complete the integrated design solution in BIM. Besides, this research plan improves the evacuation routing method to make the simulation results more practical. The proposed model will be applied in a building design project for evaluation and validation when it will provide the near-optimal design suggestion. By applying the proposed model, the integration and efficiency of the design process are improved and the evacuation plan is more useful. The quality of building spatial design will be better.

Keywords: building information modeling, evacuation, design, floor plan

Procedia PDF Downloads 456
6664 Potential Micro Hydro at Irrigation Canal in the Gorontalo Province and Modeling Setling Basin for Reduction of Sedimentation Effect

Authors: Arifin Matoka, Nadjamuddin Harun, Salama Manjang, M. Arsyad Thaha

Abstract:

Along irrigation canals in certain areas falling water level height is have potential for micro hydro power plant (MHP), which generally MHP potential valley away from society consumer of electricity and needed a long conductor cable, so that with the MHP Irrigation is ideal are typical with an Open Flume type turbines. This study is divided into two phases research phase of the potential power that exist in irrigation channels at the Gorontalo Province and stages solution sedimentation effects. The total power generated in the irrigation channel of the results of this study at 781.83 Kw, it is quite significant for the 1737 rural households on average consumes 450 watt per household. In the field of observation, sedimentation lifting effect on the quality of electric power, at which time the turbid sediment concentrations occur significant voltage fluctuations causing damage to some household electrical appliances such as electronic equipment and lighting. This problem is solution by modeling the sedimentation tub (setling basin) to reduce sedimentation thus olso can reduce the regulation load control equipment which can minimize the cost of investment and maintenance.

Keywords: irrigation canals, microhydro powerplant, sedimentation, Gorontalo Province

Procedia PDF Downloads 581
6663 Energy Efficient Clustering with Reliable and Load-Balanced Multipath Routing for Wireless Sensor Networks

Authors: Alamgir Naushad, Ghulam Abbas, Shehzad Ali Shah, Ziaul Haq Abbas

Abstract:

Unlike conventional networks, it is particularly challenging to manage resources efficiently in Wireless Sensor Networks (WSNs) due to their inherent characteristics, such as dynamic network topology and limited bandwidth and battery power. To ensure energy efficiency, this paper presents a routing protocol for WSNs, namely, Enhanced Hybrid Multipath Routing (EHMR), which employs hierarchical clustering and proposes a next hop selection mechanism between nodes according to a maximum residual energy metric together with a minimum hop count. Load-balancing of data traffic over multiple paths is achieved for a better packet delivery ratio and low latency rate. Reliability is ensured in terms of higher data rate and lower end-to-end delay. EHMR also enhances the fast-failure recovery mechanism to recover a failed path. Simulation results demonstrate that EHMR achieves a higher packet delivery ratio, reduced energy consumption per-packet delivery, lower end-to-end latency, and reduced effect of data rate on packet delivery ratio when compared with eminent WSN routing protocols.

Keywords: energy efficiency, load-balancing, hierarchical clustering, multipath routing, wireless sensor networks

Procedia PDF Downloads 85
6662 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127
6661 The Fuzzy Logic Modeling of Performance Driver Seat’s Localised Cooling and Heating in Standard Car Air Conditioning System

Authors: Ali Ates, Sadık Ata, Kevser Dincer

Abstract:

In this study, performance of the driver seat‘s localized cooling and heating in a standard car air conditioning system was experimentally investigated and modeled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modeling technique. Climate function at automobile is an important variable for thermal comfort. In the experimental study localized heating and cooling performances have been examined with the aid of a mechanism established to a vehicle. The equipment’s used in the experimental setup/mechanism have been provided and assembled. During the measurement, the status of the performance level has been determined. Input parameters revolutions per minute and time; output parameters car seat cooling temperature, car back cooling temperature, car seat heating temperature, car back heating temperature were described by RBMTF if-the rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF could be successfully used in standard car air conditioning system.

Keywords: air conditioning system, cooling-heating, RMBTF modelling, car seat

Procedia PDF Downloads 353
6660 CFD Modelling and Thermal Performance Analysis of Ventilated Double Skin Roof Structure

Authors: A. O. Idris, J. Virgone, A. I. Ibrahim, D. David, E. Vergnault

Abstract:

In hot countries, the major challenge is the air conditioning. The increase in energy consumption by air conditioning stems from the need to live in more comfortable buildings, which is understandable. But in Djibouti, one of the countries with the most expensive electricity in the world, this need is exacerbated by an architecture that is inappropriate and unsuitable for climatic conditions. This paper discusses the design of the roof which is the surface receiving the most solar radiation. The roof determines the general behavior of the building. The study presents Computational Fluid Dynamics (CFD) modeling and analysis of the energy performance of a double skin ventilated roof. The particularity of this study is that it considers the climate of Djibouti characterized by hot and humid conditions in winter and very hot and humid in summer. Roof simulations are carried out using the Ansys Fluent software to characterize the flow and the heat transfer induced in the ventilated roof in steady state. This modeling is carried out by comparing the influence of several parameters such as the internal emissivity of the upper surface, the thickness of the insulation of the roof and the thickness of the ventilated channel on heat gain through the roof. The energy saving potential compared to the current construction in Djibouti is also presented.

Keywords: building, double skin roof, CFD, thermo-fluid analysis, energy saving, forced convection, natural convection

Procedia PDF Downloads 263
6659 Recognizing an Individual, Their Topic of Conversation and Cultural Background from 3D Body Movement

Authors: Gheida J. Shahrour, Martin J. Russell

Abstract:

The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that inter-subject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.

Keywords: person recognition, topic recognition, culture recognition, 3D body movement signals, variability compensation

Procedia PDF Downloads 541
6658 Commissioning of a Flattening Filter Free (FFF) using an Anisotropic Analytical Algorithm (AAA)

Authors: Safiqul Islam, Anamul Haque, Mohammad Amran Hossain

Abstract:

Aim: To compare the dosimetric parameters of the flattened and flattening filter free (FFF) beam and to validate the beam data using anisotropic analytical algorithm (AAA). Materials and Methods: All the dosimetric data’s (i.e. depth dose profiles, profile curves, output factors, penumbra etc.) required for the beam modeling of AAA were acquired using the Blue Phantom RFA for 6 MV, 6 FFF, 10MV & 10FFF. Progressive resolution Optimizer and Dose Volume Optimizer algorithm for VMAT and IMRT were are also configured in the beam model. Beam modeling of the AAA were compared with the measured data sets. Results: Due to the higher and lover energy component in 6FFF and 10 FFF the surface doses are 10 to 15% higher compared to flattened 6 MV and 10 MV beams. FFF beam has a lower mean energy compared to the flattened beam and the beam quality index were 6 MV 0.667, 6FFF 0.629, 10 MV 0.74 and 10 FFF 0.695 respectively. Gamma evaluation with 2% dose and 2 mm distance criteria for the Open Beam, IMRT and VMAT plans were also performed and found a good agreement between the modeled and measured data. Conclusion: We have successfully modeled the AAA algorithm for the flattened and FFF beams and achieved a good agreement with the calculated and measured value.

Keywords: commissioning of a Flattening Filter Free (FFF) , using an Anisotropic Analytical Algorithm (AAA), flattened beam, parameters

Procedia PDF Downloads 301
6657 An In-silico Pharmacophore-Based Anti-Viral Drug Development for Hepatitis C Virus

Authors: Romasa Qasim, G. M. Sayedur Rahman, Nahid Hasan, M. Shazzad Hosain

Abstract:

Millions of people worldwide suffer from Hepatitis C, one of the fatal diseases. Interferon (IFN) and ribavirin are the available treatments for patients with Hepatitis C, but these treatments have their own side-effects. Our research focused on the development of an orally taken small molecule drug targeting the proteins in Hepatitis C Virus (HCV), which has lesser side effects. Our current study aims to the Pharmacophore based drug development of a specific small molecule anti-viral drug for Hepatitis C Virus (HCV). Drug designing using lab experimentation is not only costly but also it takes a lot of time to conduct such experimentation. Instead in this in silico study, we have used computer-aided techniques to propose a Pharmacophore-based anti-viral drug specific for the protein domains of the polyprotein present in the Hepatitis C Virus. This study has used homology modeling and ab initio modeling for protein 3D structure generation followed by pocket identification in the proteins. Drug-able ligands for the pockets were designed using de novo drug design method. For ligand design, pocket geometry is taken into account. Out of several generated ligands, a new Pharmacophore is proposed, specific for each of the protein domains of HCV.

Keywords: pharmacophore-based drug design, anti-viral drug, in-silico drug design, Hepatitis C virus (HCV)

Procedia PDF Downloads 271
6656 Parallel Gripper Modelling and Design Optimization Using Multi-Objective Grey Wolf Optimizer

Authors: Golak Bihari Mahanta, Bibhuti Bhusan Biswal, B. B. V. L. Deepak, Amruta Rout, Gunji Balamurali

Abstract:

Robots are widely used in the manufacturing industry for rapid production with higher accuracy and precision. With the help of End-of-Arm Tools (EOATs), robots are interacting with the environment. Robotic grippers are such EOATs which help to grasp the object in an automation system for improving the efficiency. As the robotic gripper directly influence the quality of the product due to the contact between the gripper surface and the object to be grasped, it is necessary to design and optimize the gripper mechanism configuration. In this study, geometric and kinematic modeling of the parallel gripper is proposed. Grey wolf optimizer algorithm is introduced for solving the proposed multiobjective gripper optimization problem. Two objective functions developed from the geometric and kinematic modeling along with several nonlinear constraints of the proposed gripper mechanism is used to optimize the design variables of the systems. Finally, the proposed methodology compared with a previously proposed method such as Teaching Learning Based Optimization (TLBO) algorithm, NSGA II, MODE and it was seen that the proposed method is more efficient compared to the earlier proposed methodology.

Keywords: gripper optimization, metaheuristics, , teaching learning based algorithm, multi-objective optimization, optimal gripper design

Procedia PDF Downloads 188
6655 Sublethal Effects of Entomopathogenic Nematodes and Fungus against the Red Palm Weevil, Rhynchophorus Ferrugineus (Olivier) (Curculionidae: Coleoptera)

Authors: M. Manzoor, J. N. Ahmad, R. M. Giblin Davis, N. Javed, M. S. Haider

Abstract:

The invasive Red Palm Weevil (RPW) (Rhynchophorus ferrugineus [Olivier] (Coleoptera: Curculionidae) is one of the most destructive palm pests in the world. Synthetic pesticides are environmentally hazardous pest control strategies being used in the past with emerging need of eco-friendly biological approaches including microbial entomopathogens for RPW management. The sublethal effects of a single entomopathogenic fungus (EPF) Beauveria bassiana (WG-11) (Ascomycota: Hypocreales) and two entomopathogenic nematode (EPN) species Heterorhabditis bacteriophora (Poinar) and Steinernema carpocapsae (Weiser) (Nematoda: Rhabditida) were evaluated in various combinations against laboratory-reared 3rd, 5th and 8th instar larvae of RPW in laboratory assays. Individual and combined effects of both entomopathogens (EP) were observed after the pre-application of B. bassiana fungus at 1-2-week intervals. A number of parameters were measured after the application of sub-lethal doses of EPF such as diet consumption, development, frass production, mortality, and weight gain. Combined treatments were tested for additive and synergistic effects. Synergism was more frequently observed in B. bassiana and S. carpocapsae combined treatments than in B. bassiana and H. bacteriophora combinations. Early instar larvae of RPW were more susceptible than older instars. Synergistic effects were observed in the 3rd and 5th instars exposed to B. bassiana and S. carpocapsae at 0, 7 and 14-day intervals. Whereas, in 8th instar larvae, the synergistic effect was observed only in B. bassiana and S. carpocapsae treatments after 0 and 7 days intervals. EPN treatments decreased pupation, egg hatching and emergence of adults. Lethal effects of nematodes were also observed in all growth stages of R. ferrugineus. Reduced larval weight, increased larval, pre-pupal and pupal duration, reduced adult weight and life span were observed. Sub-lethal concentrations of both entomopathogens induced variations in the different developmental stages and reduced food consumption, frass production, growth, and weight gain. So, on the basis of results, it is concluded that synthetic pesticides should be replaced with environmentally friendly sustainable biopesticides.

Keywords: H. bacteriophora, S. carpocapsae, B. bassiana, mortality

Procedia PDF Downloads 169
6654 Optimization of Process Parameters and Modeling of Mass Transport during Hybrid Solar Drying of Paddy

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying is one of the most critical unit operations for prolonging the shelf-life of food grains in order to ensure global food security. Photovoltaic integrated solar dryers can be a sustainable solution for replacing energy intensive thermal dryers as it is capable of drying in off-sunshine hours and provide better control over drying conditions. But, performance and reliability of PV based solar dryers depend hugely on climatic conditions thereby, drastically affecting process parameters. Therefore, to ensure quality and prolonged shelf-life of paddy, optimization of process parameters for solar dryers is critical. Proper moisture distribution within the grains is most detrimental factor to enhance the shelf-life of paddy therefore; modeling of mass transport can help in providing a better insight of moisture migration. Hence, present work aims at optimizing the process parameters and to develop a 3D finite element model (FEM) for predicting moisture profile in paddy during solar drying. Optimization of process parameters (power level, air velocity and moisture content) was done using box Behnken model in Design expert software. Furthermore, COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Optimized model for drying paddy was found to be 700W, 2.75 m/s and 13% wb with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Furthermore, 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product to achieve global food and energy security

Keywords: finite element modeling, hybrid solar drying, mass transport, paddy, process optimization

Procedia PDF Downloads 139
6653 Potential of Intercropping Corn and Cowpea to Ratooned Sugarcane for Food and Forage

Authors: Maricon E. Gepolani, Edna A. Aguilar, Pearl B. Sanchez, Enrico P. Supangco

Abstract:

Intercropping farming system and biofertilizer application are sustainable agricultural practices that increase farm productivity by improving the yield performance of the components involved in the production system. Thus, this on-farm trial determined the yield and forage quality of corn and cowpea with and without biofertilizer application when intercropped with ratooned sugarcane. Intercropping corn and cowpea without biofertilizer application had no negative effect on the vegetative growth of sugarcane. However, application of biofertilizer on intercrops decreased tiller production at 117 days after stubble shaving (DASS), consequently reducing the estimated tonnage yield of sugarcane. The yield of intercrops and forage production of Cp3 cowpea variety increased when intercropped to ratooned sugarcane. In contrast, intercropping PSB 97-92 corn variety to ratooned sugarcane reduced its forage production, but when biofertilizer was applied to intercropped Cp5 cowpea variety, the forage production increased. Profitability (income equivalent ratio) of intercropping for both corn and cowpea are higher than monocropping and are thus suitable intercrops to ratooned sugarcane. Unaffected tiller count (a determinant of sugarcane tonnage yield) when biofertilizer was not applied to intercrops and a reduced tiller count with biofertilizer application to intercrops implies the need to develop a nutrient management practices specific for intercropping systems.

Keywords: biofertilizer, corn, cowpea, intercropping system, ratooned sugarcane

Procedia PDF Downloads 131
6652 Utility of Thromboelastography to Reduce Coagulation-Related Mortality and Blood Component Rate in Neurosurgery ICU

Authors: Renu Saini, Deepak Agrawal

Abstract:

Background: Patients with head and spinal cord injury frequently have deranged coagulation profiles and require blood products transfusion perioperatively. Thromboelastography (TEG) is a ‘bedside’ global test of coagulation which may have role in deciding the need of transfusion in such patients. Aim: To assess the usefulness of TEG in department of neurosurgery in decreasing transfusion rates and coagulation-related mortality in traumatic head and spinal cord injury. Method and Methodology: A retrospective comparative study was carried out in the department of neurosurgery over a period of 1 year. There are two groups in this study. ‘Control’ group constitutes the patients in whom data was collected over 6 months (1/6/2009-31/12/2009) prior to installation of TEG machine. ‘Test’ group includes patients in whom data was collected over 6months (1/1/2013-30/6/2013) post TEG installation. Total no. of platelet, FFP, and cryoprecipitate transfusions were noted in both groups along with in hospital mortality and length of stay. Result: Both groups were matched in age and sex of patients, number of head and spinal cord injury cases, number of patients with thrombocytopenia and number of patients who underwent operation. Total 178 patients (135 head injury and 43 spinal cord injury patents) were admitted in neurosurgery department during time period June 2009 to December 2009 i.e. prior to TEG installation and after TEG installation a total of 243 patients(197 head injury and 46 spinal cord injury patents) were admitted. After TEG introduction platelet transfusion significantly reduced (p=0.000) compare to control group (67 units to 34 units). Mortality rate was found significantly reduced after installation (77 patients to 57 patients, P=0.000). Length of stay was reduced significantly (Prior installation 1-211days and after installation 1-115days, p=0.02). Conclusion: Bedside TEG can dramatically reduce platelet transfusion components requirement in department of neurosurgery. TEG also lead to a drastic decrease in mortality rate and length of stay in patients with traumatic head and spinal cord injuries. We recommend its use as a standard of care in the patients with traumatic head and spinal cord injuries.

Keywords: blood component transfusion, mortality, neurosurgery ICU, thromboelastography

Procedia PDF Downloads 325
6651 Modeling the Performance of Natural Sand-Bentonite Barriers after Infiltration with Polar and Non-Polar Hydrocarbon Leachates

Authors: Altayeb Qasem, Mousa Bani Baker, Amani Nawafleh

Abstract:

The complexity of the sand-bentonite liner barrier system calls for an adequate model that reflects the conditions depending on the barrier materials and the characteristics of the permeates which lead to hydraulic conductivity changes when liners infiltrated with polar, no-polar, miscible and immiscible liquids. This paper is dedicated to developing a model for evaluating the hydraulic conductivity in the form of a simple indicator for the compatibility of the liner versus leachate. Based on two liner compositions (95% sand: 5% bentonite; and 90% sand: 10% bentonite), two pressures (40 kPa and 100 kPa), and three leachates: water, ethanol and biofuel. Two characteristics of the leacahtes were used: viscosity of permeate and its octanol-water partitioning coefficient (Kow). Three characteristics of the liners mixtures were evaluated which had impact on the hydraulic conductivity of the liner system: the initial content of bentonite (%), the free swelling index, and the shrinkage limit of the initial liner’s mixture. Engineers can use this modest tool to predict a potential liner failure in sand-bentonite barriers.

Keywords: liner performance, sand-bentonite barriers, viscosity, free swelling index, shrinkage limit, octanol-water partitioning coefficient, hydraulic conductivity, theoretical modeling

Procedia PDF Downloads 414
6650 Potential of Nymphaea lotus (Nymphaeaceae) in the Treatment of Metoclopramide-Induced Hyperprolactinemia in Female Wistar Rats

Authors: O. J. Sharaibi, O. T. Ogundipe, O. A. Magbagbeola, M. I. Kazeem, A. J. Afolayan, M. T. Yakubu

Abstract:

Hyperprolactinemia is a condition of elevated levels of serum prolactin in humans. It is one of the major causes of female infertility because, excess prolactin inhibits gonadotropin secretion. When gonadotropin is low, follicle stimulating hormone (FSH) and luteinizing hormone (LH) secretions are low and so, do not stimulate gamete production and gonadal steroid synthesis. The aim of this study is to identify and investigate indigenous medicinal plants that can be used in the treatment of hyperprolactinemia. Based on the frequency of mentioning during the ethnobotanical survey, Nymphaea lotus L. was selected for studies. The prolactin-lowering potential of aqueous extract of N. lotus and its effects on other female reproductive hormones in comparison with bromocritptine was evaluated by inducing hyperprolactinemia with metoclopramide at a dose of 5 mg/kg body weight of the animals for 21 days and then administered various doses of aqueous extract of N. lotus for another 21 days. Aqueous extract of N. lotus at 50, 100 and 200 mg/kg body weight significantly reduced the serum prolactin levels in female Wistar rats by 40.06, 52.60 and 61.92 % respectively. The extract at 200 mg/kg body weight had higher prolactin-lowering effect (61.92%) than bromocriptine (53.53%). Aqueous extract of N. lotus significantly increased (p < 0.05) the serum concentrations of FSH, LH and progesterone while estradiol concentrations were reduced. This study shows that Nymphaea lotus is a medicinal plant that can be used in the treatment of hyperprolactinemia.

Keywords: hyperprolactinemia, infertility, metoclopramide, Nymphaea lotus

Procedia PDF Downloads 287
6649 An Application of Meta-Modeling Methods for Surrogating Lateral Dynamics Simulation in Layout-Optimization for Electric Drivetrains

Authors: Christian Angerer, Markus Lienkamp

Abstract:

Electric vehicles offer a high variety of possible drivetrain topologies with up to 4 motors. Multi-motor-designs can have several advantages regarding traction, vehicle dynamics, safety and even efficiency. With a rising number of motors, the whole drivetrain becomes more complex. All permutations of gearings, drivetrain-layouts, motor-types and –sizes lead up in a very large solution space. Single elements of this solution space can be analyzed by simulation methods. In addition to longitudinal vehicle behavior, which most optimization-approaches are restricted to, also lateral dynamics are important for vehicle dynamics, stability and efficiency. In order to compete large solution spaces and to find an optimal result, genetic algorithm based optimization is state-of-the-art. As lateral dynamics simulation is way more CPU-intensive, optimization takes much more time than in case of longitudinal-only simulation. Therefore, this paper shows an approach how to create meta-models from a 14-degree of freedom vehicle model in order to enable a numerically efficient drivetrain-layout optimization process under consideration of lateral dynamics. Different meta-modelling approaches such as neural networks or DoE are implemented and comparatively discussed.

Keywords: driving dynamics, drivetrain layout, genetic optimization, meta-modeling, lateral dynamicx

Procedia PDF Downloads 417
6648 Assessment the Correlation of Rice Yield Traits by Simulation and Modelling Methods

Authors: Davood Barari Tari

Abstract:

In order to investigate the correlation of rice traits in different nitrogen management methods by modeling programming, an experiment was laid out in rice paddy field in an experimental field at Caspian Coastal Sea region from 2013 to 2014. Variety used was Shiroudi as a high yielding variety. Nitrogen management was in two methods. Amount of nitrogen at four levels (30, 60, 90, and 120 Kg N ha-1 and control) and nitrogen-splitting at four levels (T1: 50% in base + 50% in maximum tillering stage, T2= 33.33% basal +33.33% in maximum tillering stage +33.33% in panicle initiation stage, T3=25% basal+37.5% in maximum tillering stage +37.5% in panicle initiation stage, T4: 25% in basal + 25% in maximum tillering stage + 50% in panicle initiation stage). Results showed that nitrogen traits, total grain number, filled spikelets, panicle number per m2 had a significant correlation with grain yield. Results related to calibrated and validation of rice model methods indicated that correlation between rice yield and yield components was accurate. The correlation between panicle length and grain yield was minimum. Physiological indices was simulated with low accuracy. According to results, investigation of the correlation between rice traits in physiological, morphological and phenological characters and yield by modeling and simulation methods are very useful.

Keywords: rice, physiology, modelling, simulation, yield traits

Procedia PDF Downloads 343
6647 Tensile Properties of 3D Printed PLA under Unidirectional and Bidirectional Raster Angle: A Comparative Study

Authors: Shilpesh R. Rajpurohit, Harshit K. Dave

Abstract:

Fused deposition modeling (FDM) gains popularity in recent times, due to its capability to create prototype as well as functional end use product directly from CAD file. Parts fabricated using FDM process have mechanical properties comparable with those of injection-molded parts. However, performance of the FDM part is severally affected by the poor mechanical properties of the part due to nature of layered structure of printed part. Mechanical properties of the part can be improved by proper selection of process variables. In the present study, a comparative study between unidirectional and bidirectional raster angle has been carried out at a combination of different layer height and raster width. Unidirectional raster angle varied at five different levels, and bidirectional raster angle has been varied at three different levels. Fabrication of tensile specimen and tensile testing of specimen has been conducted according to ASTM D638 standard. From the results, it can be observed that higher tensile strength has been obtained at 0° raster angle followed by 45°/45° raster angle, while lower tensile strength has been obtained at 90° raster angle. Analysis of fractured surface revealed that failure takes place along with raster deposition direction for unidirectional and zigzag failure can be observed for bidirectional raster angle.

Keywords: additive manufacturing, fused deposition modeling, unidirectional, bidirectional, raster angle, tensile strength

Procedia PDF Downloads 185
6646 Protective Effects of Sinapic Acid on Organophosphate Poisoning

Authors: Turker Yardan, Bahattin Avci, S. Sirri Bilge, Ayhan Bozkurt

Abstract:

Sinapic acid (SA) is a phenylpropanoid compound with anti-inflammatory, antioxidant, and neuroprotective activities. The purpose of this study was to characterize the possible protective effect of sinapic acid on chlorpyrifos (CPF), a common organophosphorus pesticide used worldwide, induced toxicity in rats. Forty male and female rats (240-270 g) were used in this study. Each group was composed of 5 male and 5 female rats. Sinapic acid (20 mg/kg or 40 mg/kg) or vehicle (olive oil, 1 ml ⁄ rat) were given orally for 5 days. CPF (279 mg/kg) or vehicle (peanut oil, 2 ml ⁄ kg, s.c.) was administered on the sixth day, immediately after the recording of the body weight of the animals. Twenty four hours following CPF administration body weight, body temperature and locomotor activity values were recorded before decapitation of the animals. Trunk blood, brain, and liver samples were collected for biochemical examinations. Chlorpyrifos administration decreased butyrylcholinesterase activity in blood, brain, and liver, while it increased malondialdehyde (MDA) levels and advanced oxidation protein products (AOPPs) (p < 0.01 - 0.001). Additionally, CPF administration reduced the body weight, body temperature, and locomotor activity values of the animals (p < 0.01 - 0.001). All these physiological and biochemical changes induced by CPF were reduced with the 40 mg/kg dose of SA (p < 0.05 - 0.001). Our results suggest that SA administration ameliorates CPF induced toxicity in rats, possibly by supporting the antioxidant mechanism.

Keywords: antioxidant, Chlorpyrifos, poisoning, sinapic acid

Procedia PDF Downloads 178
6645 Using 3D Satellite Imagery to Generate a High Precision Canopy Height Model

Authors: M. Varin, A. M. Dubois, R. Gadbois-Langevin, B. Chalghaf

Abstract:

Good knowledge of the physical environment is essential for an integrated forest planning. This information enables better forecasting of operating costs, determination of cutting volumes, and preservation of ecologically sensitive areas. The use of satellite images in stereoscopic pairs gives the capacity to generate high precision 3D models, which are scale-adapted for harvesting operations. These models could represent an alternative to 3D LiDAR data, thanks to their advantageous cost of acquisition. The objective of the study was to assess the quality of stereo-derived canopy height models (CHM) in comparison to a traditional LiDAR CHM and ground tree-height samples. Two study sites harboring two different forest stand types (broadleaf and conifer) were analyzed using stereo pairs and tri-stereo images from the WorldView-3 satellite to calculate CHM. Acquisition of multispectral images from an Unmanned Aerial Vehicle (UAV) was also realized on a smaller part of the broadleaf study site. Different algorithms using two softwares (PCI Geomatica and Correlator3D) with various spatial resolutions and band selections were tested to select the 3D modeling technique, which offered the best performance when compared with LiDAR. In the conifer study site, the CHM produced with Corelator3D using only the 50-cm resolution panchromatic band was the one with the smallest Root-mean-square deviation (RMSE: 1.31 m). In the broadleaf study site, the tri-stereo model provided slightly better performance, with an RMSE of 1.2 m. The tri-stereo model was also compared to the UAV, which resulted in an RMSE of 1.3 m. At individual tree level, when ground samples were compared to satellite, lidar, and UAV CHM, RMSE were 2.8, 2.0, and 2.0 m, respectively. Advanced analysis was done for all of these cases, and it has been noted that RMSE is reduced when the canopy cover is higher when shadow and slopes are lower and when clouds are distant from the analyzed site.

Keywords: very high spatial resolution, satellite imagery, WorlView-3, canopy height models, CHM, LiDAR, unmanned aerial vehicle, UAV

Procedia PDF Downloads 127
6644 Investigation on the Bogie Pseudo-Hunting Motion of a Reduced-Scale Model Railway Vehicle Running on Double-Curved Rails

Authors: Barenten Suciu, Ryoichi Kinoshita

Abstract:

In this paper, an experimental and theoretical study on the bogie pseudo-hunting motion of a reduced-scale model railway vehicle, running on double-curved rails, is presented. Since the actual bogie hunting motion, occurring for real railway vehicles running on straight rails at high travelling speeds, cannot be obtained in laboratory conditions, due to the speed and wavelength limitations, a pseudo- hunting motion was induced by employing double-curved rails. Firstly, the test rig and the experimental procedure are described. Then, a geometrical model of the double-curved rails is presented. Based on such model, the variation of the carriage rotation angle relative to the bogies and the working conditions of the yaw damper are clarified. Vibration spectra recorded during vehicle travelling, on straight and double-curved rails, are presented and interpreted based on a simple vibration model of the railway vehicle. Ride comfort of the vehicle is evaluated according to the ISO 2631 standard, and also by using some particular frequency weightings, which account for the discomfort perceived during the reading and writing activities. Results obtained in this work are useful for the adequate design of the yaw dampers, which are used to attenuate the lateral vibration of the train car bodies.

Keywords: double-curved rail, octave analysis, vibration model, ride comfort, railway vehicle

Procedia PDF Downloads 316
6643 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor

Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli

Abstract:

Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.

Keywords: acoustic sensor, diaphragm based, lumped element modeling (LEM), natural frequency, piezoelectric

Procedia PDF Downloads 442
6642 Efficient Model Order Reduction of Descriptor Systems Using Iterative Rational Krylov Algorithm

Authors: Muhammad Anwar, Ameen Ullah, Intakhab Alam Qadri

Abstract:

This study presents a technique utilizing the Iterative Rational Krylov Algorithm (IRKA) to reduce the order of large-scale descriptor systems. Descriptor systems, which incorporate differential and algebraic components, pose unique challenges in Model Order Reduction (MOR). The proposed method partitions the descriptor system into polynomial and strictly proper parts to minimize approximation errors, applying IRKA exclusively to the strictly adequate component. This approach circumvents the unbounded errors that arise when IRKA is directly applied to the entire system. A comparative analysis demonstrates the high accuracy of the reduced model and a significant reduction in computational burden. The reduced model enables more efficient simulations and streamlined controller designs. The study highlights IRKA-based MOR’s effectiveness in optimizing complex systems’ performance across various engineering applications. The proposed methodology offers a promising solution for reducing the complexity of large-scale descriptor systems while maintaining their essential characteristics and facilitating their analysis, simulation, and control design.

Keywords: model order reduction, descriptor systems, iterative rational Krylov algorithm, interpolatory model reduction, computational efficiency, projection methods, H₂-optimal model reduction

Procedia PDF Downloads 31
6641 Therapeutic Effects of Toll Like Receptor 9 Ligand CpG-ODN on Radiation Injury

Authors: Jianming Cai

Abstract:

Exposure to ionizing radiation causes severe damage to human body and an safe and effective radioprotector is urgently required for alleviating radiation damage. In 2008, flagellin, an agonist of TLR5, was found to exert radioprotective effects on radiation injury through activating NF-kB signaling pathway. From then, the radioprotective effects of TLR ligands has shed new lights on radiation protection. CpG-ODN is an unmethylated oligonucleotide which activates TLR9 signaling pathway. In this study, we demonstrated that CpG-ODN has therapeutic effects on radiation injuries induced by γ ray and 12C6+ heavy ion particles. Our data showed that CpG-ODN increased the survival rate of mice after whole body irradiation and increased the number of leukocytes as well as the bone marrow cells. CpG-ODN also alleviated radiation damage on intestinal crypt through regulating apoptosis signaling pathway including bcl2, bax, and caspase 3 etc. By using a radiation-induced pulmonary fibrosis model, we found that CpG-ODN could alleviate structural damage, within 20 week after whole–thorax 15Gy irradiation. In this model, Th1/Th2 imbalance induced by irradiation was also reversed by CpG-ODN. We also found that TGFβ-Smad signaling pathway was regulated by CpG-ODN, which accounts for the therapeutic effects of CpG-ODN in radiation-induced pulmonary injury. On another hand, for high LET radiation protection, we investigated protective effects of CpG-ODN against 12C6+ heavy ion irradiation and found that after CpG-ODN treatment, the apoptosis and cell cycle arrest induced by 12C6+ irradiation was reduced. CpG-ODN also reduced the expression of Bax and caspase 3, while increased the level of bcl2. Then we detected the effect of CpG-ODN on heavy ion induced immune dysfunction. Our data showed that CpG-ODN increased the survival rate of mice and also the leukocytes after 12C6+ irradiation. Besides, the structural damage of immune organ such as thymus and spleen was also alleviated by CpG-ODN treatment. In conclusion, we found that TLR9 ligand, CpG-ODN reduced radiation injuries in response to γ ray and 12C6+ heavy ion irradiation. On one hand, CpG-ODN inhibited the activation of apoptosis induced by radiation through regulating bcl2, bax and caspase 3. On another hand, through activating TLR9, CpG-ODN recruit MyD88-IRAK-TRAF6 complex, activating TAK1, IRF5 and NF-kB pathway, and thus alleviates radiation damage. This study provides novel insights into protection and therapy of radiation damages.

Keywords: TLR9, CpG-ODN, radiation injury, high LET radiation

Procedia PDF Downloads 480
6640 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components

Authors: Jaimala Ghambir, Tilak Thakur, Puneet Chawla

Abstract:

As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, fault ride through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.

Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT

Procedia PDF Downloads 462
6639 Effect of Dietary Fortification with Hibiscus Sabdariffa Calyces Meal on Egg Production and Egg Qualiy of Japanese Quail

Authors: Nomagugu Ndlovu, Kennedy H. Erlwanger, Eliton Chivandi

Abstract:

In order to enhance egg production and egg quality from layer poultry, producers use synthetic feed additives that enhance nutrient digestion and absorption in the gut. Synthetic feed additives have negative effects on consumer health hence the need to replace them with natural alternatives which are deemed safer for consumer health. Hibiscus sabdariffa calyces meal has hypolipidemic, probiotic and antioxidant activities; hence we investigated the effect of fortifying Japanese quail pullet diets with its calyces meal on egg production and egg quality. A standard Japanese quail layer diet was supplemented with H. sabdariffa calyces meal at 0%, 5% and 10% in diets 1, 2 and 3, respectively. Ninety, 5-week old Japanese quail hens were randomly allocated to and fed the layer diets for 56 days. Body mass, feed intake and egg mass, width, length, shell mass and thickness, yolk mass, height and diameter, albumen mass, length, width and height, and the proximate content and fatty acid profile of the egg albumen and yolk were determined. Supplemental fortification of the Japanese quail layer diet with H. sabdariffa calyces meal had no effect on growth performance and feed intake and conversion rate of the quail (P>0.05). The meal delayed the onset of laying and reduced (P < 0.0001) the number of eggs laid. It did not affect the external and internal egg quality parameters of Japanese quail (P > 0.05). Dietary fortification with H. sabdariffa calyces meal at 10% significantly increased the dry matter and reduced the fat content of the yolk and albumin of Japanese quail eggs (P < 0.05). Dietary H. sabdariffa calyces meal reduced the total omega 3 fatty acids in the yolk and significantly increased arachidonic acid (P = 0.0019), an omega 6 fatty acid. Inclusion of Hibiscus sabdariffa meal depressed egg production, suppressed omega 3 fatty acids and increased arachidonic acid thus, using it as a dietary supplement may result in losses to producers of Japanese quail eggs and may result in eggs whose fatty acid profile can compromise consumer health.

Keywords: quail, eggs, hibiscus sabdariffa, quality

Procedia PDF Downloads 66