Search results for: organosilicon compounds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2316

Search results for: organosilicon compounds

1116 2D Fingerprint Performance for PubChem Chemical Database

Authors: Fatimah Zawani Abdullah, Shereena Mohd Arif, Nurul Malim

Abstract:

The study of molecular similarity search in chemical database is increasingly widespread, especially in the area of drug discovery. Similarity search is an application in the field of Chemoinformatics to measure the similarity between the molecular structure which is known as the query and the structure of chemical compounds in the database. Similarity search is also one of the approaches in virtual screening which involves computational techniques and scoring the probabilities of activity. The main objective of this work is to determine the best fingerprint when compared to the other five fingerprints selected in this study using PubChem chemical dataset. This paper will discuss the similarity searching process conducted using 6 types of descriptors, which are ECFP4, ECFC4, FCFP4, FCFC4, SRECFC4 and SRFCFC4 on 15 activity classes of PubChem dataset using Tanimoto coefficient to calculate the similarity between the query structures and each of the database structure. The results suggest that ECFP4 performs the best to be used with Tanimoto coefficient in the PubChem dataset.

Keywords: 2D fingerprints, Tanimoto, PubChem, similarity searching, chemoinformatics

Procedia PDF Downloads 272
1115 Recovery of Rare Earths and Scandium from in situ Leaching Solutions

Authors: Maxim S. Botalov, Svetlana М. Titova, Denis V. Smyshlyaev, Grigory M. Bunkov, Evgeny V. Kirillov, Sergey V. Kirillov, Maxim A. Mashkovtsev, Vladimir N. Rychkov

Abstract:

In uranium production, in-situ leaching (ISL) with its relatively low cost has become an important technology. As the orebody containing uranium most often contains a considerable value of other metals, particularly rare earth metals it has rendered feasible to recover the REM from the barren ISL solutions, from which the major uranium content has been removed. Ural Federal University (UrFU, Ekaterinburg, Russia) have performed joint research on the development of industrial technologies for the extraction of REM and Scandium compounds from Uranium ISL solutions. Leaching experiments at UrFU have been supported with multicomponent solution model. The experimental work combines solvent extraction with advanced ion exchange methodology in a pilot facility capable of treating 500 kg/hr of solids. The pilot allows for the recovery of a 99% concentrate of scandium oxide and collective concentrate with over 50 % REM content, with further recovery of heavy and light REM concentrates (99%).

Keywords: extraction, ion exchange, rare earth elements, scandium

Procedia PDF Downloads 214
1114 Biosensors as Analytical Tools in Legume Processing

Authors: S. V. Ncube, A. I. O. Jideani, E. T. Gwata

Abstract:

The plight of food insecurity in developing countries has led to renewed interest in underutilized legumes. Their nutritional versatility, desirable functionality, pharmaceutical value and inherent bioactive compounds have drawn the attention of researchers. This has provoked the development of value added products with the aim of commercially exploiting their full potential. However processing of these legumes leads to changes in nutritional composition as affected by processing variables like pH, temperature and pressure. There is therefore a need for process control and quality assurance during production of the value added products. However, conventional methods for microbiological and biochemical identification are labour intensive and time-consuming. Biosensors offer rapid and affordable methods to assure the quality of the products. They may be used to quantify nutrients and anti-nutrients in the products while manipulating and monitoring variables such as pH, temperature, pressure and oxygen that affect the quality of the final product. This review gives an overview of the types of biosensors used in the food industry, their advantages and disadvantages and their possible application in processing of legumes.

Keywords: legume processing, biosensors, quality control, nutritional versatility

Procedia PDF Downloads 472
1113 Extractive Desulfurization of Atmospheric Gasoil with N,N-Dimethylformamide

Authors: Kahina Bedda, Boudjema Hamada

Abstract:

Environmental regulations have been introduced in many countries around the world to reduce the sulfur content of diesel fuel to ultra low levels with the intention of lowering diesel engine’s harmful exhaust emissions and improving air quality. Removal of sulfur containing compounds from diesel feedstocks to produce ultra low sulfur diesel fuel by extraction with selective solvents has received increasing attention in recent years. This is because the sulfur extraction technologies compared to the hydrotreating processes could reduce the cost of desulfurization substantially since they do not demand hydrogen, and are carried out at atmospheric pressure. In this work, the desulfurization of distillate gasoil by liquid-liquid extraction with N, N-dimethylformamide was investigated. This fraction was recovered from a mixture of Hassi Messaoud crude oils and Hassi R'Mel gas-condensate in Algiers refinery. The sulfur content of this cut is 281 ppm. Experiments were performed in six-stage with a ratio of solvent:feed equal to 3:1. The effect of the extraction temperature was investigated in the interval 30 ÷ 110°C. At 110°C the yield of refined gas oil was 82% and its sulfur content was 69 ppm.

Keywords: desulfurization, gasoil, N, N-dimethylformamide, sulfur content

Procedia PDF Downloads 363
1112 Systematic Review of Dietary Fiber Characteristics Relevant to Appetite and Energy Intake Outcomes in Clinical Intervention Trials of Healthy Humans

Authors: K. S. Poutanen, P. Dussort, A. Erkner, S. Fiszman, K. Karnik, M. Kristensen, C. F. M. Marsaux, S. Miquel-Kergoat, S. Pentikäinen, P. Putz, R. E. Steinert, J. Slavin, D. J. Mela

Abstract:

Dietary fiber (DF) intake has been associated with lower body weight or less weight gain. These effects are generally attributed to putative effects of DF on appetite. Many intervention studies have tested the effect of DFs on appetite-related measures, with inconsistent results. However, DF includes a wide category of different compounds with diverse chemical and physical characteristics, and correspondingly diverse effects in human digestion. Thus, inconsistent results between DF consumption and appetite are not surprising. The specific contribution of different compounds with varying physico-chemical properties to appetite control and the mediating mechanisms are not well characterized. This systematic review aimed to assess the influence of specific DF characteristics, including viscosity, gel forming capacity, fermentability, and molecular weight, on appetite-related outcomes in healthy humans. Medline and FSTA databases were searched for controlled human intervention trials, testing the effects of well-characterized DFs on subjective satiety/appetite or energy intake outcomes. Studies were included only if they reported: 1) fiber name and origin, and 2) data on viscosity, gelling properties, fermentability, or molecular weight of the DF materials tested. The search generated 3001 unique records, 322 of which were selected for further consideration from title and abstract screening. Of these, 149 were excluded due to insufficient fiber characterization and 124 for other reasons (not original article, not randomized controlled trial, or no appetite related outcome), leaving 49 papers meeting all the inclusion criteria, most of which reported results from acute testing (<1 day). The eligible 49 papers described 90 comparisons of DFs in foods, beverages or supplements. DF-containing material of interest was efficacious for at least one appetite-related outcome in 51/90 comparisons. Gel-forming DF sources were most consistently efficacious but there were no clear associations between viscosity, MW or fermentability and appetite-related outcomes. A considerable number of papers had to be excluded from the review due to shortcomings in fiber characterization. To build understanding about the impact of DF on satiety/appetite specifically there should be clear hypotheses about the mechanisms behind the proposed beneficial effect of DF material on appetite, and sufficient data about the DF properties relevant for the hypothesized mechanisms to justify clinical testing. The hypothesized mechanisms should also guide the decision about relevant duration of exposure in studies, i.e. are the effects expected to occur during acute time frame (related to stomach emptying, digestion rate, etc.) or develop from sustained exposure (gut fermentation mediated mechanisms). More consistent measurement methods and reporting of fiber specifications and characterization are needed to establish reliable structure-function relationships for DF and health outcomes.

Keywords: appetite, dietary fiber, physico-chemical properties, satiety

Procedia PDF Downloads 218
1111 Evaluation of the Fire Propagation Characteristics of Thermoplastics

Authors: Ji-Hun Choi, Kyoung-Suk Cho, Seung-Un Chae

Abstract:

Consisting of organic compounds, plastic ignites easily and burns fast. In addition, a large amount of toxic gas is produced while it is burning. When plastic is heated, its volume decreases because its surface is melted. The decomposition of its molecular bond generates combustible liquid of low viscosity, which accelerates plastic combustion and spreads the flames. Radiant heat produced in the process propagates the fire to increase the risk of human and property damages. Accordingly, the purpose of this study was to identify chemical, thermal and combustion characteristics of thermoplastic plastics using the fire propagation apparatus based on experimental criteria of ISO 12136 and ASTM E 2058. By the experiment result, as the ignition time increased, the thermal response parameter (TRP) decreased and as the TRP increased, the slope decreased. In other words, the large the TRP was, the longer the time taken for heating and ignition of the material was. It was identified that the fire propagation speed dropped accordingly.

Keywords: fire propagation apparatus (FPA), ISO 12136, thermal response parameter (TRP), fire propagation index (FPI)

Procedia PDF Downloads 189
1110 Studies on the Bioactivity of Different Solvents Extracts of Selected Marine Macroalgae against Fish Pathogens

Authors: Mary Ghobrial, Sahar Wefky

Abstract:

Marine macroalgae have proven to be rich source of bioactive compounds with biomedical potential, not only for human but also for veterinary medicine. Emergence of microbial disease in aquaculture industries implies serious loses. Usage of commercial antibiotics for fish disease treatment produces undesirable side effects. Marine organisms are a rich source of structurally novel biologically active metabolites. Competition for space and nutrients led to the evolution of antimicrobial defense strategies in the aquatic environment. The interest in marine organisms as a potential and promising source of pharmaceutical agents has increased in the last years. Many bioactive and pharmacologically active substances have been isolated from microalgae. Compounds with antibacterial, antifungal and antiviral activities have been also detected in green, brown and red algae. Selected species of marine benthic algae belonging to the Phaeophyta and Rhodophyta, collected from different coastal areas of Alexandria (Egypt), were investigated for their antibacterial and antifungal, activities. Macroalgae samples were collected during low tide from the Alexandria Mediterranean coast. Samples were air dried under shade at room temperature. The dry algae were ground, using electric mixer grinder. They were soaked in 10 ml of each of the solvents acetone, ethanol, methanol and hexane. Antimicrobial activity was evaluated using well-cut diffusion technique In vitro screening of organic solvent extracts from the marine macroalgae Laurencia pinnatifida, Pterocladia capillaceae, Stepopodium zonale, Halopteris scoparia and Sargassum hystrix, showed specific activity in inhibiting the growth of five virulent strains of bacteria pathogenic to fish Pseudomonas fluorescens, Aeromonas hydrophila, Vibrio anguillarum, V. tandara, Escherichia coli and two fungi Aspergillus flavus and A. niger. Results showed that, acetone and ethanol extracts of all test macroalgae exhibited antibacterial activity, while acetone extract of the brown Sargassum hystrix displayed the highest antifungal activity. The extracts of seaweeds inhibited bacteria more strongly than fungi and species of the Rhodophyta showed the greatest activity against the bacteria rather than fungi tested. The gas liquid chromatography coupled with mass spectrometry detection technique allows good qualitative and quantitative analysis of the fractionated extracts with high sensitivity to the smaller amounts of components. Results indicated that, the main common component in the acetone extracts of L. pinnatifida and P. capillacea is 4-hydroxy-4-methyl2-pentanone representing 64.38 and 58.60%. Thus, the extracts derived from the red macroalgae were more efficient than those obtained from the brown macroalgae in combating bacterial pathogens rather than pathogenic fungi. The most preferred species over all was the red Laurencia pinnatifida. In conclusion, the present study provides the potential of red and brown macroalgae extracts for development of anti-pathogenic agents for use in fish aquaculture.

Keywords: bacteria, fungi, extracts, solvents

Procedia PDF Downloads 421
1109 Synthesis, Characterization, and Properties Study of New Magnetic Materials

Authors: Messai Amel, Badis Zakaria, Benali-Cherif Nourredine, Dominique Luneaub

Abstract:

We are interested in molecular polymetallic species having high spin and nuclearities in relation to the field of so call single-molecule magnets (SMMs). The goal is to find a way to synthesis metal clusters which may have application in magnetism and nano sciences. With this purpose, we decided to investigate the coordination chemistry of the Schiff base. Along this way we were able to create cubane-like complexes and elaborate new Single Molecule-Magnets. The idea was to use Schiff base ligands and different metals to generate high nuclear complexes. Complexation of Shiff base with copper (II) has been investigated. Tetra nuclear complex with a cubane like core have been synthesized with (Sciff base), with the same base and cobalt (II) we obtain an other single magnetic complex completely different. In this presentation, we report the synthesis, crystal structure and magnetic properties of the tetranuclear compound (Cu4 L4), and the tetranuclear compound. (Co4L4)

Keywords: cluster-assembled materials, magnetic compounds, Sciff base, cupper, cobalt

Procedia PDF Downloads 426
1108 Bioactivity of Peptides from Two Mushrooms

Authors: Parisa Farzaneh, Azade Harati

Abstract:

Mushrooms, or macro-fungi, as an important superfood, contain many bioactive compounds, particularly bio-peptides. In this research, mushroom proteins were extracted by buffer or buffer plus salt (0.15 M), along with an ultrasound bath to extract the intercellular protein. As a result, the highest amount of proteins in mushrooms were categorized into albumin. Proteins were also hydrolyzed and changed into peptides through endogenous and exogenous proteases, including gastrointestinal enzymes. The potency of endogenous proteases was also higher in Agaricus bisporus than Terfezia claveryi, as their activity ended at 75 for 15 min. The blanching process, endogenous enzymes, the mixture of gastrointestinal enzymes (pepsin-trypsin-α-chymotrypsin or trypsin- α-chymotrypsin) produced the different antioxidant and antibacterial hydrolysates. The peptide fractions produced with different cut-off ultrafilters also had various levels of radical scavenging, lipid peroxidation inhibition, and antibacterial activities. The bio-peptides with superior bioactivities (less than 3 kD of T. claveryi) were resistant to various environmental conditions (pH and temperatures). Therefore, they are good options to be added to nutraceutical and pharmaceutical preparations or functional foods, even during processing.

Keywords: bio-peptide, mushrooms, gastrointestinal enzymes, bioactivity

Procedia PDF Downloads 36
1107 Effect of Surface Treatment on Physico-Mechanical Properties of Sisal Fiber-Unsaturated Polyester Composites

Authors: A. H. Birniwa, A. A. Salisu, M. Y. Yakasai, A. Sabo, K. Aujara, A. Isma’il

Abstract:

Sisal fibre was extracted from Sisal leaves by enzymatic retting method. A portion of the fibre was subjected to treatment with alkali, benzoyl chloride and silane compounds. Sisal fibre composites were fabricated using unsaturated polyester resin, by hand lay-up technique using both the treated and untreated fibre. Tensile, flexural and water absorption tests were conducted and evaluated on the composites. The results obtained were found to increase in the treated fibre compared to untreated fibre. Surface morphology of the fibre was observed using scanning electron microscopy (SEM) and the result obtained showed variation in the morphology of the treated and untreated fibre. FT-IR results showed inclusion of benzoyl and silane groups on the fibre surface. The fibre chemical modification improves its adhesion to the matrix, mechanical properties of the composites were also found to improve.

Keywords: composite, flexural strength, matrix, sisal fibre

Procedia PDF Downloads 372
1106 Enrichment of the Antioxidant Activity of Decaffeinated Assam Green Tea by Herbal Plant: A Synergistic Effect

Authors: Abhijit Das, Runu Chakraborty

Abstract:

Tea is the most widely consumed beverage aside from water; it is grown in about 30 countries with a per capita worldwide consumption of approximately 0.12 liter per year. Green tea is of growing importance with its antioxidant contents associated with its health benefits. The various extraction methods can influence the polyphenol concentrations of green tea. The purpose of the study was to quantify the polyphenols, flavonoid and antioxidant activity of both caffeinated and decaffeinated form of tea manufactured commercially in Assam, North Eastern part of India. The results display that phenolic/flavonoid content well correlated with antioxidant activity which was performed by DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (Ferric reducing ability of plasma) assay. After decaffeination there is a decrease in the polyphenols concentration which also affects the antioxidant activity of green tea. For the enrichment of antioxidant activity of decaffeinated tea a herbal plant extract is used which shows a synergistic effect between green tea and herbal plant phenolic compounds.

Keywords: antioxidant activity, decaffeination, green tea, flavonoid content, phenolic content, plant extract

Procedia PDF Downloads 327
1105 Understanding the Origins of Pesticides Metabolites in Natural Waters through the Land Use, Hydroclimatic Conditions and Water Quality

Authors: Alexis Grandcoin, Stephanie Piel, Estelle Baures

Abstract:

Brittany (France) is an agricultural region, where emerging pollutants are highly at risk to reach water bodies. Among them, pesticides metabolites are frequently detected in surface waters. The Vilaine watershed (11 000 km²) is of great interest, as a large drinking water treatment plant (100 000 m³/day) is located at the extreme downstream of it. This study aims to provide an evaluation of the pesticides metabolites pollution in the Vilaine watershed, and an understanding of their availability, in order to protect the water resource. Hydroclimatic conditions, land use, and water quality parameters controlling metabolites availability are emphasized. Later this knowledge will be used to understand the favoring conditions resulting in metabolites export towards surface water. 19 sampling points have been strategically chosen along the 220 km of the Vilaine river and its 3 main influents. Furthermore, the intakes of two drinking water plants have been sampled, one is located at the extreme downstream of the Vilaine river and the other is the riparian groundwater under the Vilaine river. 5 sampling campaigns with various hydroclimatic conditions have been carried out. Water quality parameters and hydroclimatic conditions have been measured. 15 environmentally relevant pesticides and metabolites have been analyzed. Also, these compounds are recalcitrant to classic water treatment that is why they have been selected. An evaluation of the watershed contamination has been done in 2016-2017. First observations showed that aminomethylphosphonic acid (AMPA) and metolachlor ethanesulfonic acid (MESA) are the most detected compounds in surface waters samples with 100 % and 98 % frequency of detection respectively. They are the main pollutants of the watershed regardless of the hydroclimatic conditions. AMPA concentration in the river strongly increases downstream of Rennes agglomeration (220k inhabitants) and reaches a maximum of 2.3 µg/l in low waters conditions. Groundwater contains mainly MESA, Diuron and metazachlor ESA at concentrations close to limits of quantification (LOQ) (0.02 µg/L). Metolachlor, metazachlor and alachlor due to their fast degradation in soils were found in small amounts (LOQ – 0.2 µg/L). Conversely glyphosate was regularly found during warm and sunny periods up to 0.6 µg/L. Soil uses (agricultural cultures types, urban areas, forests, wastewater treatment plants implementation), water quality parameters, and hydroclimatic conditions have been correlated to pesticides and metabolites concentration in waters. Statistical treatments showed that chloroacetamides metabolites and AMPA behave differently regardless of the hydroclimatic conditions. Chloroacetamides are correlated to each other, to agricultural areas and to typical agricultural tracers as nitrates. They are present in waters the whole year, especially during rainy periods, suggesting important stocks in soils. Also Chloroacetamides are negatively correlated with AMPA, the different forms of phosphorus, and organic matter. AMPA is ubiquitous but strongly correlated with urban areas despite the recent French regulation, restricting glyphosate to agricultural and private uses. This work helps to predict and understand metabolites present in the water resource used to craft drinking water. As the studied metabolites are difficult to remove, this project will be completed by a water treatment part.

Keywords: agricultural watershed, AMPA, metolachlor-ESA, water resource

Procedia PDF Downloads 145
1104 Experimental Design and Optimization of Diesel Oil Desulfurization Process by Adsorption Processes

Authors: M. Firoz Kalam, Wilfried Schuetz, Jan Hendrik Bredehoeft

Abstract:

Thiophene sulfur compounds' removal from diesel oil by batch adsorption process using commercial powdered activated carbon was designed and optimized in two-level factorial design method. This design analysis was used to find out the effects of operating parameters directing the adsorption process, such as amount of adsorbent, temperature and stirring time. The desulfurization efficiency was considered the response or output variable. Results showed that the stirring time had the largest effects on sulfur removal efficiency as compared with other operating parameters and their interactions under the experimental ranges studied. A regression model was generated to observe the closeness between predicted and experimental values. The three-dimensional plots and contour plots of main factors were generated according to the regression results to observe the optimal points.

Keywords: activated carbon, adsorptive desulfurization, factorial design, process optimization

Procedia PDF Downloads 150
1103 Production of Medicinal Bio-active Amino Acid Gamma-Aminobutyric Acid In Dairy Sludge Medium

Authors: Farideh Tabatabaee Yazdi, Fereshteh Falah, Alireza Vasiee

Abstract:

Introduction: Gamma-aminobutyric acid (GABA) is a non-protein amino acid that is widely present in organisms. GABA is a kind of pharmacological and biological component and its application is wide and useful. Several important physiological functions of GABA have been characterized, such as neurotransmission and induction of hypotension. GABA is also a strong secretagogue of insulin from the pancreas and effectively inhibits small airway-derived lung adenocarcinoma and tranquilizer. Many microorganisms can produce GABA, and lactic acid bacteria have been a focus of research in recent years because lactic acid bacteria possess special physiological activities and are generally regarded as safe. Among them, the Lb. Brevis produced the highest amount of GABA. The major factors affecting GABA production have been characterized, including carbon sources and glutamate concentration. The use of food industry waste to produce valuable products such as amino acids seems to be a good way to reduce production costs and prevent the waste of food resources. In a dairy factory, a high volume of sludge is produced from a separator that contains useful compounds such as growth factors, carbon, nitrogen, and organic matter that can be used by different microorganisms such as Lb.brevis as carbon and nitrogen sources. Therefore, it is a good source of GABA production. GABA is primarily formed by the irreversible α-decarboxylation reaction of L-glutamic acid or its salts, catalysed by the GAD enzyme. In the present study, this aim was achieved for the fast-growing of Lb.brevis and producing GABA, using the dairy industry sludge as a suitable growth medium. Lactobacillus Brevis strains obtained from Microbial Type Culture Collection (MTCC) were used as model strains. In order to prepare dairy sludge as a medium, sterilization should be done at 121 ° C for 15 minutes. Lb. Brevis was inoculated to the sludge media at pH=6 and incubated for 120 hours at 30 ° C. After fermentation, the supernatant solution is centrifuged and then, the GABA produced was analyzed by the Thin Layer chromatography (TLC) method qualitatively and by the high-performance liquid chromatography (HPLC) method quantitatively. By increasing the percentage of dairy sludge in the culture medium, the amount of GABA increased. Also, evaluated the growth of bacteria in this medium showed the positive effect of dairy sludge on the growth of Lb.brevis, which resulted in the production of more GABA. GABA-producing LAB offers the opportunity of developing naturally fermented health-oriented products. Although some GABA-producing LAB has been isolated to find strains suitable for different fermentations, further screening of various GABA-producing strains from LAB, especially high-yielding strains, is necessary. The production of lactic acid, bacterial gamma-aminobutyric acid, is safe and eco-friendly. The use of dairy industry waste causes enhanced environmental safety. Also provides the possibility of producing valuable compounds such as GABA. In general, dairy sludge is a suitable medium for the growth of Lactic Acid Bacteria and produce this amino acid that can reduce the final cost of it by providing carbon and nitrogen source.

Keywords: GABA, Lactobacillus, HPLC, dairy sludge

Procedia PDF Downloads 119
1102 Removal of Phenol from Aqueous Solutions by Ferrite Catalysts

Authors: Bayan Alqasem, Israa Othman, Mohammad Abu Haija, Fawzi Banat

Abstract:

The large-scale production of wastewater containing highly toxic pollutants made it necessary to find efficient water treatment technologies. Phenolic compounds, which are known to be persistent and hazardous, are highly presented in wastewater. In this study, different ferrite catalysts CrFe₂O₄, CuFe₂O₄, MgFe₂O₄, MnFe₂O₄, NiFe₂O₄, and ZnFe₂O₄ were employed to study the catalytic degradation of phenol aqueous solutions. The catalysts were prepared via sol-gel and co-precipitation methods. All of the prepared catalysts were characterized using infrared spectroscopy (IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The ferrites catalytic activities were tested towards phenol degradation using high-performance liquid chromatography (HPLC). The photocatalytic properties of the ferrites were also investigated. The experimental results suggested that CuFe₂O₄ is an effective catalyst for the removal of phenol from wastewater. Additionally, different CuFe₂O₄composites were also prepared either by varying the metal ratios or incorporating chemically reduced graphene oxide in the ferrite cluster.

Keywords: phenol degradation, ferrite catalysts, ferrite composites, photocatalysis

Procedia PDF Downloads 183
1101 An Efficient Process Analysis and Control Method for Tire Mixing Operation

Authors: Hwang Ho Kim, Do Gyun Kim, Jin Young Choi, Sang Chul Park

Abstract:

Since tire production process is very complicated, company-wide management of it is very difficult, necessitating considerable amounts of capital and labors. Thus, productivity should be enhanced and maintained competitive by developing and applying effective production plans. Among major processes for tire manufacturing, consisting of mixing component preparation, building and curing, the mixing process is an essential and important step because the main component of tire, called compound, is formed at this step. Compound as a rubber synthesis with various characteristics plays its own role required for a tire as a finished product. Meanwhile, scheduling tire mixing process is similar to flexible job shop scheduling problem (FJSSP) because various kinds of compounds have their unique orders of operations, and a set of alternative machines can be used to process each operation. In addition, setup time required for different operations may differ due to alteration of additives. In other words, each operation of mixing processes requires different setup time depending on the previous one, and this kind of feature, called sequence dependent setup time (SDST), is a very important issue in traditional scheduling problems such as flexible job shop scheduling problems. However, despite of its importance, there exist few research works dealing with the tire mixing process. Thus, in this paper, we consider the scheduling problem for tire mixing process and suggest an efficient particle swarm optimization (PSO) algorithm to minimize the makespan for completing all the required jobs belonging to the process. Specifically, we design a particle encoding scheme for the considered scheduling problem, including a processing sequence for compounds and machine allocation information for each job operation, and a method for generating a tire mixing schedule from a given particle. At each iteration, the coordination and velocity of particles are updated, and the current solution is compared with new solution. This procedure is repeated until a stopping condition is satisfied. The performance of the proposed algorithm is validated through a numerical experiment by using some small-sized problem instances expressing the tire mixing process. Furthermore, we compare the solution of the proposed algorithm with it obtained by solving a mixed integer linear programming (MILP) model developed in previous research work. As for performance measure, we define an error rate which can evaluate the difference between two solutions. As a result, we show that PSO algorithm proposed in this paper outperforms MILP model with respect to the effectiveness and efficiency. As the direction for future work, we plan to consider scheduling problems in other processes such as building, curing. We can also extend our current work by considering other performance measures such as weighted makespan or processing times affected by aging or learning effects.

Keywords: compound, error rate, flexible job shop scheduling problem, makespan, particle encoding scheme, particle swarm optimization, sequence dependent setup time, tire mixing process

Procedia PDF Downloads 245
1100 Study of the Antimicrobial Activity of Aminoreductone against Pathogenic Bacteria in Comparison with Other Antibiotics

Authors: Vu Thu Trang, Lam Xuan Thanh, Samira Sarter, Tomoko Shimamura, Hiroaki Takeuchi  

Abstract:

Antimicrobial activities of aminoreductone (AR), a product formed in the initial stage of Maillard reaction, were screened against pathogenic bacteria. A significant growth inhibition of AR against all 7 isolates (Staphylococcus aureus ATCC® 25923™, Salmonella Typhimurium ATCC® 14028™, Bacillus cereus ATCC® 13061™, Bacillus subtilis ATCC® 11774™, Escherichia coli ATCC® 25922™, Enterococcus faecalis ATCC® 29212™, Listeria innocua ATCC® 33090™) were observed by the standard disc diffusion methods. The inhibition zone for each isolate by AR (2.5 mg) ranged from 15±0 mm to 28.3±0.4 mm in diameter. The minimum inhibitory concentration (MIC) of AR ranging from 20 mM to 26 mM was proven in the seven isolates tested. AR also showed the similar effect of growth inhibition in comparison with antibiotics frequently used for the treatment of infections bacteria, such as amikacin, ciprofloxacin, meropennem, and levofloxacin. The results indicated that foods containing AR are valuable sources of bioactive compounds towards pathogenic bacteria.

Keywords: pathogenic bacteria, aminoreductone, Maillard reaction, antimicrobial activity

Procedia PDF Downloads 359
1099 Biosynthesis of Titanium Dioxide Nanoparticles and Their Antibacterial Property

Authors: Prachi Singh

Abstract:

This paper presents a low-cost, eco-friendly and reproducible microbe mediated biosynthesis of TiO2 nanoparticles. TiO2 nanoparticles synthesized using the bacterium, Bacillus subtilis, from titanium as a precursor, were confirmed by TEM analysis. The morphological characteristics state spherical shape, with the size of individual or aggregate nanoparticles, around 30-40 nm. Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. Here, the antibacterial effect of TiO2 nanoparticles on Escherichia coli was investigated, which was confirmed by CFU (Colony-forming unit). Further, growth curve study of E. coli Hb101 in the presence and absence of TiO2 nanoparticles was done. Optical density decrease was observed with the increase in the concentration of TiO2. It could be attributed to the inactivation of cellular enzymes and DNA by binding to electron-donating groups such as carboxylates, amides, indoles, hydroxyls, thiols, etc. which cause little pores in bacterial cell walls, leading to increased permeability and cell death. This justifies that TiO2 nanoparticles have efficient antibacterial effect and have potential to be used as an antibacterial agent for different purposes.

Keywords: antibacterial effect, CFU, Escherichia coli Hb101, growth curve, TEM, TiO2 nanoparticle, Toxicity, UV-Vis

Procedia PDF Downloads 274
1098 Physical Characteristics of Cookies Enriched with Microencapsulated Cherry Pomace Extract

Authors: Jovana Petrović, Ivana Lončarević, Vesna Tumbas Šaponjac, Biljana Pajin, Danica Zarić

Abstract:

Pomace, a by-product from fruit processing industry is the potential source of valuable bioactive. Cookies are popular, ready to eat and low price foods; therefore, enrichment of these products is of great importance. In this work, bioactive compounds extracted from cherry pomace, encapsulated in soy and whey proteins, have been incorporated in cookies, replacing 10 (SP10 and WP10) and 15% of wheat flour (SP15 and WP15). Cookie geometry (diameter (D), thickness (T) and spread ratio (D/T)), cookie weight, cookie hardness and cookie surface colour were measured. Sensory characteristics are also examined. The results show that encapsulated cherry pomace bioactives have positively influenced the cookie mass. Diameter, redness (a* value) and cookie hardness increased. Sensory evaluation of cookies, revealed that up to 15% substitution of wheat flour with WP encapsulate produced acceptable cookies similar to the control (100% wheat flour) cookies.

Keywords: cherry pomace, polyphenols, microencapsulation, cookies, physical characteristics

Procedia PDF Downloads 450
1097 Specialized Phytochemical Properties of Stachys inflata Eco-Types in Different Ecological Circumstances of Southern Iran

Authors: Ghasem Khodahami, Vahid Rowshan, Mojtaba Pakparvar

Abstract:

Stachys forms one of the largest genera in the flowering plant family Lamiaceae. The number of species in the genus is estimated from about 300 to about 450 and comprises some 34 species in Iran. This genus is one of the richest sources of diterpenes which are particularly interesting because of their ecological role as antifeedants against different species of insects and for their role as the medicinal properties of the plants. The ecological distribution of Stachys inflata was studied and the resulted eco-types were sampled from four regions ranging 230-340 mm of rainfall and 1690-2125 m a.s.l of height In Fars Province Southern Iran. The essential oils of air-dried samples were obtained by hydrodistillation and analyzed by gas chromatography and gas chromatography/mass spectrometry. The number of secondary metabolites varied from 25 to 50 depending to ecological conditions. The main compounds in these areas were: Germacrene D, Bicyclogermacrene, spathulenol, δ-cadinene. Statistical analysis of photochemical resulted in recognizing 3 distinct groups that show internal variety in these herbs.

Keywords: eco-type, phytochemistry, secondary metabolites, Stachys inflata

Procedia PDF Downloads 205
1096 Capture of Co₂ From Natural Gas Using Modified Imidazolium Ionic Liquids

Authors: Alaa A. Ghanem, S. E. M. Desouky

Abstract:

Natural gas (NG) is considered one of the most essential global energy sources. NG fields are often far away from the market, and a long-distance transporting pipeline usually is required. Production of NG with high content of CO₂ leads to severe problems such as equipment corrosion along with the production line until refinery.in addition to a high level of toxicity and decreasing in calorific value of the NG. So it is recommended to remove or decrease the CO₂ percent to meet transport specifications. This can be reached using different removal techniques such as physical and chemical absorption, pressure swing adsorption, membrane separation, or low-temperature separation. Many solvents and chemicals are being used to capture carbon dioxide on a large scale; among them, Ionic liquids have great potential due to their tunable properties; low vapour pressure, low melting point, and sensible thermal stability. In this research, three modifiedimidazolium ionic liquids will be synthesized and characterized using different tools of analysis such as FT-IR, 1H NMR. Thermal stability and surface activity will be studied. The synthesized compounds will be evaluated as selective solvents for CO₂ removal from natural gas using PVT cell.

Keywords: natural gas, CO₂ capture, imidazolium ionic liquid, PVT cell

Procedia PDF Downloads 157
1095 Kinetics of Growth Rate of Microalga: The Effect of Carbon Dioxide Concentration

Authors: Retno Ambarwati Sigit Lestari

Abstract:

Microalga is one of the organisms that can be considered ideal and potential for raw material of bioenergy production, because the content of lipids in microalga is relatively high. Microalga is an aquatic organism that produces complex organic compounds from inorganic molecules using carbon dioxide as a carbon source, and sunlight for energy supply. Microalga-CO₂ fixation has potential advantages over other carbon captures and storage approaches, such as wide distribution, high photosynthetic rate, good environmental adaptability, and ease of operation. The rates of growth and CO₂ capture of microalga are influenced by CO₂ concentration and light intensity. This study quantitatively investigates the effects of CO₂ concentration on the rates of growth and CO₂ capture of a type of microalga, cultivated in bioreactors. The works include laboratory experiments as well as mathematical modelling. The mathematical models were solved numerically and the accuracy of the model was tested by the experimental data. It turned out that the mathematical model proposed can well quantitatively describe the growth and CO₂ capture of microalga, in which the effects of CO₂ concentration can be observed.

Keywords: Microalga, CO2 concentration, photobioreactor, mathematical model

Procedia PDF Downloads 109
1094 Analysis of Sulphur-Oxidizing Bacteria Attack on Concrete Based on Waste Materials

Authors: A. Eštoková, M. Kovalčíková, A. Luptáková, A. Sičáková, M. Ondová

Abstract:

Concrete durability as an important engineering property of concrete, determining the service life of concrete structures very significantly, can be threatened and even lost due to the interactions of concrete with external environment. Bio-corrosion process caused by presence and activities of microorganisms producing sulphuric acid is a special type of sulphate deterioration of concrete materials. The effects of sulphur-oxidizing bacteria Acidithiobacillus thiooxidans on various concrete samples, based on silica fume and zeolite, were investigated in laboratory during 180 days. A laboratory study was conducted to compare the performance of concrete samples in terms of the concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon in both solid samples and liquid leachates were measured by using X – ray fluorescence method. Experimental studies confirmed the silica fume based concrete samples were found out to have the best performance in terms of both silicon and calcium ions leaching.

Keywords: biocorrosion, concrete, leaching, bacteria

Procedia PDF Downloads 430
1093 Effect of Two Cooking Methods on Kinetics of Polyphenol Content, Flavonoid Content and Color of a Tunisian Meal: Molokheiya (Corchorus olitorius)

Authors: S. Njoumi, L. Ben Haj Said, M. J. Amiot, S. Bellagha

Abstract:

The main objective of this research was to establish the kinetics of variation of total polyphenol content (TPC) and total flavonoid content (TFC) in Tunisian Corchorus olitorius powder and in a traditional home cooked-meal (Molokheiya) when using stewing and stir-frying as cooking methods, but also to compare the effect of these two common cooking practices on water content, TPC, TFC and color. The L*, a* and b* coordinates values of the Molokheiya varied from 24.955±0.039 to 21.301±0.036, from -1.556±0.048 to 0.23±0.026 and from 5.675±0.052 to 6.313±0.103 when using stewing and from 21.328±0.025 to 20.56±0.021, from -1.093± 0.011to 0.121±0.007 and from 5.708±0.020 to 6.263±0.007 when using stir-frying, respectively. TPC and TFC increased during cooking. TPC of Molokheiya varied from 29.852±0.866 mg GAE/100 g to 220.416±0.519 mg GAE/100 g after 150 min of stewing and from 25.257±0.259 mg GAE/100 g to 208.897 ±0.173 mg GAE/100 g using stir-frying method during 150 min. TFC of Molokheiya varied from 48.229±1.47 mg QE/100 g to 843.802±1.841 mg QE/100 g when using stewing and from 37.031± 0.368 mg QE/100 g to 775.312±0.736 mg QE/100 g when using stir-frying. Kinetics followed similar curves in all cases but resulted in different final TPC and TFC. The shape of the kinetics curves suggests zero-order kinetics. The mathematical relations and the numerical approach used to model the kinetics of polyphenol and flavonoid contents in Molokheiya are described.

Keywords: Corchorus olitorius, Molokheiya, phenolic compounds, kinetic

Procedia PDF Downloads 335
1092 Formulation Assay Of An Aloe Vera-based Oral Gel And Its Effect On Probiotics

Authors: Serier Bouchenak NORA, Bouguerni ABDELMADJID

Abstract:

Algeria is a Mediterranean country which provides an ideal habitat for a wide range of species of medicinal plants. The objective of this current work is to extract the gel contained in the leaves of Aloe vera in order to formulate an oral gel as a prebiotic and see its effects on probiotics (lactic and pseudo lactic bacteria and bifido bacterium). Aloe vera polysaccharid extract is a matrix mainly composed of non-digestible oligosaccharids or slow-fermentation polysaccharids, as this produces a lower pH. The behavior of Aloe vera during in vitro fermentation of the colon was similar to that of lactulose, indicating the possibility of using Aloe vera and its polysaccharids extracts as a prebiotic. The microbiological control of the two kinds of bacteria (bifidobacteria and staphylococci) has demonstrated the gel capacity to stimulate them by these bioactive compounds. The generation time of Bifidobacteria in fermented milk with added prebiotic Aloe vera gel is 80.408 min with a µ growth rate equal to 0.012 min -1. The doubling time is 61.459 min with a growth rate µ equal to 0.016 min -1 for the Streptococcus sp. species.

Keywords: aloe vera, probiotics, prebiotics, growth rate, bifidobacteria

Procedia PDF Downloads 53
1091 Chemical Composition and Antimicrobial Activity of the Essential Oil of Mentha piperita Endemic in Khorasan-Iran

Authors: V. Hakimzadeh, M. Noori, M. maleki

Abstract:

The aim of this study was to determine the composition and antimicrobial effect of Mentha piperita essential oil in "in-vitro" condition. The chemical composition of the essential oil obtained by hydro-distillation was examined by GC/MS and the antimicrobial effect was studied on the growth of seven microbial species including Bacillus cereus, Pseudomonas aeruginosa and Proteus vulgaris using micro-dilution method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. Chemical composition analysis identified a total of 28 compounds in which the main components were menthol (32%), mentone (13.4), menthyl acetate (12%), 1,8-cineole (8.2%) and neomenthol (4%) representing 69.6 % of the total oil. Other separated components accounted for less than 30.4% of the oil. Results of antimicrobial analysis showed that the MIC values for Bacillus cereus, Pseudomonas aeruginosa and Proteus vulgaris was respectively 50, 200 and 100 µg/ml and the MBC was determined at 200, 400 and 200 µg/ml respectively. The results of the present study indicated that Mentha piperita essential oil had significant antimicrobial activity.

Keywords: antimicrobial activity, essential oil composition, Mentha piperita

Procedia PDF Downloads 502
1090 Screening of New Antimicrobial Agents from Heterocyclic Derivatives

Authors: W. Mazari, K. Boucherit, Z. Boucherit-Otmani, M. N. Rahmoun, M. Benabdallah

Abstract:

The hospital or any other establishment of care can be considered as an ecosystem where the patient comes into contact with a frightening microbial universe and a risk to contract infection that is referred to as nosocomial or health care-associated. In these last years, the incidence of these infections has risen sharply. Several microorganisms are the cause of these nosocomial infections and the emergence of resistance of the microbial strains against antibiotics creates a danger to public health. The search for new antimicrobial agents to overcome this problem has produced interesting compounds through chemical synthesis, which plays a very important role in the research and discovery of new drugs. It is in this framework that our study was conducted at our laboratory and it involves evaluating the antibacterial activity of thirteen 2-pyridone derivatives synthesized by two methods, the diffusion disc method and the dilution method against eight Gram negative bacterial strains. The results seem interesting especially for two products that have shown the best activities against Escherichia coli ATCC 25922 and Enterobacter cloacae ATCC 13047 with CMI of 512µg/ml.

Keywords: heterocyclic derivatives, chemical synthesis, antimicrobial activity, biotechnology

Procedia PDF Downloads 342
1089 Biodegradation Effects onto Source Identification of Diesel Fuel Contaminated Soils

Authors: Colin S. Chen, Chien-Jung Tien, Hsin-Jan Huang

Abstract:

For weathering studies, the change of chemical constituents by biodegradation effect in diesel-contaminated soils are important factors to be considered, especially when there is a prolonged period of weathering processes. The objective was to evaluate biodegradation effects onto hydrocarbon fingerprinting and distribution patterns of diesel fuels, fuel source screening and differentiation, source-specific marker compounds, and diagnostic ratios of diesel fuel constituents by laboratory and field studies. Biodegradation processes of diesel contaminated soils were evaluated by experiments lasting for 15 and 12 months, respectively. The degradation of diesel fuel in top soils was affected by organic carbon content and biomass of microorganisms in soils. Higher depletion of total petroleum hydrocarbon (TPH), n-alkanes, and polynuclear aromatic hydrocarbons (PAHs) and their alkyl homologues was observed in soils containing higher organic carbon content and biomass. Decreased ratio of selected isoprenoids (i.e., pristane (Pr) and phytane (Ph)) including n-C17/pristane and n-C18/phytane was observed. The ratio of pristane/phytane was remained consistent for a longer period of time. At the end of the experimental period, a decrease of pristane/phytane was observed. Biomarker compounds of bicyclic sesquiterpanes (BS) were less susceptible to the effects of biodegradation. The ratios of characteristic factors such as C15 sesquiterpane/ 8β(H)-drimane (BS3/BS5), C15 sesquiterpane/ 8β(H)-drimane (BS4/BS5), 8β(H)-drimane/8β(H)-homodrimane (BS5/BS10), and C15 sesquiterpane/8β(H)-homodrimane (BS3/BS10) could be adopted for source identification of diesel fuels in top soil. However, for biodegradation processes lasted for six months but shorter than nine months, only BS3/BS5 and BS3/BS10 could be distinguished in two diesel fuels. In subsoil experiments (contaminated soil located 50 cm below), the ratios of characteristic factors including BS3/BS5, BS4/BS5, and BS5/BS10 were valid for source identification of two diesel fuels for nine month biodegradation. At the early stage of contamination, biomass of soil decreased significantly. However, 6 and 7 dominant species were found in soils in top soil experiments, respectively. With less oxygen and nutrients in subsoil, less biomass of microorganisms was observed in subsoils. Only 2 and 4 diesel-degrading species of microorganisms were identified in two soils, respectively. Parameters of double ratio such as fluorene/C1-fluorene: C2-phenanthrene/C3-phenanthrene (C0F/C1F:C2P/C3P) in both top and subsoil, C2-naphthalene/C2-phenanthrene: C1-phenanthrene/C3-phenanthrene (C2N/C2P:C1P/C3P), and C1-phenanthrene/C1-fluorene: C3-naphthalene/C3-phenanthrene (C1P/C1F:C3N/C3P) in subsoil could serve as forensic indicators in diesel contaminated sites. BS3/BS10:BS4/BS5 could be used in 6 to 9 months of biodegradation processes. Results of principal component analysis (PCA) indicated that source identification of diesel fuels in top soil could only be perofrmed for weathering process less than 6 months. For subsoil, identification can be conducted for weathering process less than 9 months. Ratio of isoprenoids (pristane and phytane) and PAHs might be affected by biodegradation in spilled sites. The ratios of bicyclic sesquiterpanes could serve as forensic indicators in diesel-contaminated soils. Finally, source identification was attemped for samples collected from different fuel contaminated sites by using the unique pattern of sesquiterpanes. It was anticipated that the information generated from this study would be adopted by decision makers to evaluate the liability of cleanup in diesel contaminated sites.

Keywords: biodegradation, diagnostic ratio, diesel fuel, environmental forensics

Procedia PDF Downloads 201
1088 Study on the Treatment of Waste Water Containing Nitrogen Heterocyclic Aromatic Hydrocarbons by Phenol-Induced Microbial Communities

Authors: Zhichao Li

Abstract:

This project has treated the waste-water that contains the nitrogen heterocyclic aromatic hydrocarbons, by using the phenol-induced microbial communities. The treatment of nitrogen heterocyclic aromatic hydrocarbons is a difficult problem for coking waste-water treatment. Pyridine, quinoline and indole are three kinds of most common nitrogen heterocyclic compounds in the f, and treating these refractory organics biologically has always been a research focus. The phenol-degrading bacteria can be used in the enhanced biological treatment effectively, and has a good treatment effect. Therefore, using the phenol-induced microbial communities to treat the coking waste-water can remove multiple pollutants concurrently, and improve the treating efficiency of coking waste-water. Experiments have proved that the phenol-induced microbial communities can degrade the nitrogen heterocyclic ring aromatic hydrocarbon efficiently.

Keywords: phenol, nitrogen heterocyclic aromatic hydrocarbons, phenol-degrading bacteria, microbial communities, biological treatment technology

Procedia PDF Downloads 182
1087 A Step-by-Step Analytical Protocol For Detecting and Identifying Minor Differences In Like Materials and Polymers Using Pyrolysis -Gas Chromatography/Mass Spectrometry Technique

Authors: Athena Nguyen, Rojin Belganeh

Abstract:

Detecting and identifying differences in like polymer materials are key factors in failure and deformulation analysis, and reverse engineering. Pyrolysis-GC/MS is an easy solid sample introduction technique which expands the application areas of gas chromatography and mass spectrometry. The Micro furnace pyrolyzer is directly interfaced with the GC injector preventing any potential of cold spot, carryover, and cross contamination. In this presentation, the analysis of the differences in three polystyrene samples is demonstrated. Although the three samples look very similar by Evolve gas analysis (EGA) and Flash pyrolysis, there are indications of small levels of other materials. By performing Thermal desorption-GC/MS, the additive compounds between samples show the differences. EGA, flash pyrolysis, and thermal desorption analysis are the different modes of operations of the micro-furnace pyrolyzer enabling users to perform multiple analytical techniques.

Keywords: Gas chromatography/Mass spectrometry, pyrolysis, pyrolyzer, thermal desorption-GC/MS

Procedia PDF Downloads 165