Search results for: optimized piled raft foundation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2950

Search results for: optimized piled raft foundation

1750 The Evolution of National Technological Capability Roles From the Perspective of Researcher’s Transfer: A Case Study of Artificial Intelligence

Authors: Yating Yang, Xue Zhang, Chengli Zhao

Abstract:

Technology capability refers to the comprehensive ability that influences all factors of technological development. Among them, researchers’ resources serve as the foundation and driving force for technology capability, representing a significant manifestation of a country/region's technological capability. Therefore, the cross-border transfer behavior of researchers to some extent reflects changes in technological capability between countries/regions, providing a unique research perspective for technological capability assessment. This paper proposes a technological capability assessment model based on personnel transfer networks, which consists of a researchers' transfer network model and a country/region role evolution model. It evaluates the changes in a country/region's technological capability roles from the perspective of researcher transfers and conducts an analysis using artificial intelligence as a case study based on literature data. The study reveals that the United States, China, and the European Union are core nodes, and identifies the role evolution characteristics of several major countries/regions.

Keywords: transfer network, technological capability assessment, central-peripheral structure, role evolution

Procedia PDF Downloads 94
1749 Application of Heuristic Integration Ant Colony Optimization in Path Planning

Authors: Zeyu Zhang, Guisheng Yin, Ziying Zhang, Liguo Zhang

Abstract:

This paper mainly studies the path planning method based on ant colony optimization (ACO), and proposes heuristic integration ant colony optimization (HIACO). This paper not only analyzes and optimizes the principle, but also simulates and analyzes the parameters related to the application of HIACO in path planning. Compared with the original algorithm, the improved algorithm optimizes probability formula, tabu table mechanism and updating mechanism, and introduces more reasonable heuristic factors. The optimized HIACO not only draws on the excellent ideas of the original algorithm, but also solves the problems of premature convergence, convergence to the sub optimal solution and improper exploration to some extent. HIACO can be used to achieve better simulation results and achieve the desired optimization. Combined with the probability formula and update formula, several parameters of HIACO are tested. This paper proves the principle of the HIACO and gives the best parameter range in the research of path planning.

Keywords: ant colony optimization, heuristic integration, path planning, probability formula

Procedia PDF Downloads 251
1748 A Versatile Algorithm to Propose Optimized Solutions to the Dengue Disease Problem

Authors: Fernando L. P. Santos, Luiz G. Lyra, Helenice O. Florentino, Daniela R. Cantane

Abstract:

Dengue is a febrile infectious disease caused by a virus of the family Flaviridae. It is transmitted by the bite of mosquitoes, usually of the genus Aedes aegypti. It occurs in tropical and subtropical areas of the world. This disease has been a major public health problem worldwide, especially in tropical countries such as Brazil, and its incidence has increased in recent years. Dengue is a subject of intense research. Efficient forms of mosquito control must be considered. In this work, the mono-objective optimal control problem was solved for analysing the dengue disease problem. Chemical and biological controls were considered in the mathematical aspect. This model describes the dynamics of mosquitoes in water and winged phases. We applied the genetic algorithms (GA) to obtain optimal strategies for the control of dengue. Numerical simulations have been performed to verify the versatility and the applicability of this algorithm. On the basis of the present results we may recommend the GA to solve optimal control problem with a large region of feasibility.

Keywords: genetic algorithm, dengue, Aedes aegypti, biological control, chemical control

Procedia PDF Downloads 352
1747 Production Line Layout Planning Based on Complexity Measurement

Authors: Guoliang Fan, Aiping Li, Nan Xie, Liyun Xu, Xuemei Liu

Abstract:

Mass customization production increases the difficulty of the production line layout planning. The material distribution process for variety of parts is very complex, which greatly increases the cost of material handling and logistics. In response to this problem, this paper presents an approach of production line layout planning based on complexity measurement. Firstly, by analyzing the influencing factors of equipment layout, the complexity model of production line is established by using information entropy theory. Then, the cost of the part logistics is derived considering different variety of parts. Furthermore, the function of optimization including two objectives of the lowest cost, and the least configuration complexity is built. Finally, the validity of the function is verified in a case study. The results show that the proposed approach may find the layout scheme with the lowest logistics cost and the least complexity. Optimized production line layout planning can effectively improve production efficiency and equipment utilization with lowest cost and complexity.

Keywords: production line, layout planning, complexity measurement, optimization, mass customization

Procedia PDF Downloads 394
1746 Modified Design of Flyer with Reduced Weight for Use in Textile Machinery

Authors: Payal Patel

Abstract:

Textile machinery is one of the fastest evolving areas which has an application of mechanical engineering. The modular approach towards the processing right from the stage of cotton to the fabric, allows us to observe the result of each process on its input. Cost and space being the major constraints. The flyer is a component of roving machine, which is used as a part of spinning process. In the present work using the application of Hyper Works, the flyer arm has been modified which saves the material used for manufacturing the flyer. The size optimization of the flyer is carried out with the objective of reduction in weight under the constraints of standard operating conditions. The new design of the flyer is proposed and validated using the module of HyperWorks which is equally strong, but light weighted compared to the existing design. Dynamic balancing of the optimized model is carried out to align a principal inertia axis with the geometric axis of rotation. For the balanced geometry of flyer, air resistance is obtained theoretically and with Gambit and Fluent. Static analysis of the balanced geometry has been done to verify the constraint of operating condition. Comparison of weight, deflection, and factor of safety has been made for different aluminum alloys.

Keywords: flyer, size optimization, textile, weight

Procedia PDF Downloads 217
1745 Heuristic Classification of Hydrophone Recordings

Authors: Daniel M. Wolff, Patricia Gray, Rafael de la Parra Venegas

Abstract:

An unsupervised machine listening system is constructed and applied to a dataset of 17,195 30-second marine hydrophone recordings. The system is then heuristically supplemented with anecdotal listening, contextual recording information, and supervised learning techniques to reduce the number of false positives. Features for classification are assembled by extracting the following data from each of the audio files: the spectral centroid, root-mean-squared values for each frequency band of a 10-octave filter bank, and mel-frequency cepstral coefficients in 5-second frames. In this way both time- and frequency-domain information are contained in the features to be passed to a clustering algorithm. Classification is performed using the k-means algorithm and then a k-nearest neighbors search. Different values of k are experimented with, in addition to different combinations of the available feature sets. Hypothesized class labels are 'primarily anthrophony' and 'primarily biophony', where the best class result conforming to the former label has 104 members after heuristic pruning. This demonstrates how a large audio dataset has been made more tractable with machine learning techniques, forming the foundation of a framework designed to acoustically monitor and gauge biological and anthropogenic activity in a marine environment.

Keywords: anthrophony, hydrophone, k-means, machine learning

Procedia PDF Downloads 170
1744 Tuning Fractional Order Proportional-Integral-Derivative Controller Using Hybrid Genetic Algorithm Particle Swarm and Differential Evolution Optimization Methods for Automatic Voltage Regulator System

Authors: Fouzi Aboura

Abstract:

The fractional order proportional-integral-derivative (FOPID) controller or fractional order (PIλDµ) is a proportional-integral-derivative (PID) controller where integral order (λ) and derivative order (µ) are fractional, one of the important application of classical PID is the Automatic Voltage Regulator (AVR).The FOPID controller needs five parameters optimization while the design of conventional PID controller needs only three parameters to be optimized. In our paper we have proposed a comparison between algorithms Differential Evolution (DE) and Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) ,we have studied theirs characteristics and performance analysis to find an optimum parameters of the FOPID controller, a new objective function is also proposed to take into account the relation between the performance criteria’s.

Keywords: FOPID controller, fractional order, AVR system, objective function, optimization, GA, PSO, HGAPSO

Procedia PDF Downloads 92
1743 Dynamic Degradation Mechanism of SiC VDMOS under Proton Irradiation

Authors: Junhong Feng, Wenyu Lu, Xinhong Cheng, Li Zheng, Yuehui Yu

Abstract:

The effects of proton irradiation on the properties of gate oxide were evaluated by monitoring the static parameters (such as threshold voltage and on-resistance) and dynamic parameters (Miller plateau time) of 1700V SiC VDMOS before and after proton irradiation. The incident proton energy was 3MeV, and the doses were 5 × 10¹² P / cm², 1 × 10¹³ P / cm², respectively. The results show that the threshold voltage of MOS exhibits negative drift under proton irradiation, and the near-interface traps in the gate oxide layer are occupied by holes generated by the ionization effect of irradiation, thus forming more positive charges. The basis for selecting TMiller is that the change time of Vgs is the time when Vds just shows an upward trend until it rises to a stable value. The degradation of the turn-off time of the Miller platform verifies that the capacitance Cgd becomes larger, reflecting that the gate oxide layer is introduced into the trap by the displacement effect caused by proton irradiation, and the interface state deteriorates. As a more sensitive area in the irradiation process, the gate oxide layer will be optimized for its parameters (such as thickness, type, etc.) in subsequent studies.

Keywords: SiC VDMOS, proton radiation, Miller time, gate oxide

Procedia PDF Downloads 92
1742 Optimized Processing of Neural Sensory Information with Unwanted Artifacts

Authors: John Lachapelle

Abstract:

Introduction: Neural stimulation is increasingly targeted toward treatment of back pain, PTSD, Parkinson’s disease, and for sensory perception. Sensory recording during stimulation is important in order to examine neural response to stimulation. Most neural amplifiers (headstages) focus on noise efficiency factor (NEF). Conversely, neural headstages need to handle artifacts from several sources including power lines, movement (EMG), and neural stimulation itself. In this work a layered approach to artifact rejection is used to reduce corruption of the neural ENG signal by 60dBv, resulting in recovery of sensory signals in rats and primates that would previously not be possible. Methods: The approach combines analog techniques to reduce and handle unwanted signal amplitudes. The methods include optimized (1) sensory electrode placement, (2) amplifier configuration, and (3) artifact blanking when necessary. The techniques together are like concentric moats protecting a castle; only the wanted neural signal can penetrate. There are two conditions in which the headstage operates: unwanted artifact < 50mV, linear operation, and artifact > 50mV, fast-settle gain reduction signal limiting (covered in more detail in a separate paper). Unwanted Signals at the headstage input: Consider: (a) EMG signals are by nature < 10mV. (b) 60 Hz power line signals may be > 50mV with poor electrode cable conditions; with careful routing much of the signal is common to both reference and active electrode and rejected in the differential amplifier with <50mV remaining. (c) An unwanted (to the neural recorder) stimulation signal is attenuated from stimulation to sensory electrode. The voltage seen at the sensory electrode can be modeled Φ_m=I_o/4πσr. For a 1 mA stimulation signal, with 1 cm spacing between electrodes, the signal is <20mV at the headstage. Headstage ASIC design: The front end ASIC design is designed to produce < 1% THD at 50mV input; 50 times higher than typical headstage ASICs, with no increase in noise floor. This requires careful balance of amplifier stages in the headstage ASIC, as well as consideration of the electrodes effect on noise. The ASIC is designed to allow extremely small signal extraction on low impedance (< 10kohm) electrodes with configuration of the headstage ASIC noise floor to < 700nV/rt-Hz. Smaller high impedance electrodes (> 100kohm) are typically located closer to neural sources and transduce higher amplitude signals (> 10uV); the ASIC low-power mode conserves power with 2uV/rt-Hz noise. Findings: The enhanced neural processing ASIC has been compared with a commercial neural recording amplifier IC. Chronically implanted primates at MGH demonstrated the presence of commercial neural amplifier saturation as a result of large environmental artifacts. The enhanced artifact suppression headstage ASIC, in the same setup, was able to recover and process the wanted neural signal separately from the suppressed unwanted artifacts. Separately, the enhanced artifact suppression headstage ASIC was able to separate sensory neural signals from unwanted artifacts in mouse-implanted peripheral intrafascicular electrodes. Conclusion: Optimizing headstage ASICs allow observation of neural signals in the presence of large artifacts that will be present in real-life implanted applications, and are targeted toward human implantation in the DARPA HAPTIX program.

Keywords: ASIC, biosensors, biomedical signal processing, biomedical sensors

Procedia PDF Downloads 330
1741 Determination of Inactivation and Recovery of Saccharomyces cerevisiae Cells after the Gas-Phase Plasma Treatment

Authors: Z. Herceg, V. Stulic, T. Vukusic, A. Rezek Jambrak

Abstract:

Gas phase plasma treatment is a new nonthermal technology used for food and water decontamination. In this study, we have investigated influence of the gas phase plasma treatment on yeast cells of S. cerevisiae. Sample was composed of 10 mL of yeast suspension and 190 mL of 0.01 M NaNO₃ with a medium conductivity of 100 µS/cm. Samples were treated in a glass reactor with a point- to-plate electrode configuration (high voltage electrode-titanium wire in the gas phase and grounded electrode in the liquid phase). Air or argon were injected into the headspace of the reactor at the gas flow of 5 L/min. Frequency of 60, 90 and 120 Hz, time of 5 and 10 min and positive polarity were defined parameters. Inactivation was higher with the applied higher frequency, longer treatment time and injected argon. Inactivation was not complete which resulted in complete recovery. Cellular leakage (260 nm and 280 nm) was higher with a longer treatment time and higher frequency. Leakage at 280 nm which defines a leakage of proteins was higher than leakage at 260 nm which defines a leakage of nucleic acids. The authors would like to acknowledge the support by Croatian Science Foundation and research project 'Application of electrical discharge plasma for preservation of liquid foods'.

Keywords: Saccharomyces cerevisiae, inactivation, gas-phase plasma treatment, cellular leakage

Procedia PDF Downloads 202
1740 A Review of Serious Games Characteristics: Common and Specific Aspects

Authors: B. Ben Amara, H. Mhiri Sellami

Abstract:

Serious games adoption is increasing in multiple fields, including health, education, and business. In the same way, many research studied serious games (SGs) for various purposes such as classification, positive impacts, or learning outcomes. Although most of these research examine SG characteristics (SGCs) for conducting their studies, to author’s best knowledge, there is no consensus about features neither in number not in the description. In this paper, we conduct a literature review to collect essential game attributes regardless of the application areas and the study objectives. Firstly, we aimed to define Common SGCs (CSGCs) that characterize the game aspect, by gathering features having the same meanings. Secondly, we tried to identify specific features related to the application area or to the study purpose as a serious aspect. The findings suggest that any type of SG can be defined by a number of CSGCs depicting the gaming side, such as adaptability and rules. In addition, we outlined a number of specific SGCs describing the 'serious' aspect, including specific needs of the domain and indented outcomes. In conclusion, our review showed that it is possible to bridge the research gap due to the lack of consensus by using CSGCs. Moreover, these features facilitate the design and development of successful serious games in any domain and provide a foundation for further research in this area.

Keywords: serious game characteristics, serious games common aspects, serious games features, serious games outcomes

Procedia PDF Downloads 136
1739 Rare Earth Doped Alkali Halide Crystals for Thermoluminescence Dosimetry Application

Authors: Pooja Seth, Shruti Aggarwal

Abstract:

The Europium (Eu) doped (0.02-0.1 wt %) lithium fluoride (LiF) crystal in the form of multicrystalline sheet was gown by the edge defined film fed growth (EFG) technique. Crystals were grown in argon gas atmosphere using graphite crucible and stainless steel die. The systematic incorporation of Eu inside the host LiF lattice was confirmed by X-ray diffractometry. Thermoluminescence (TL) glow curve was recorded on annealed (AN) crystals after irradiation with a gamma dose of 15 Gy. The effect of different concentration of Eu in enhancing the thermoluminescence (TL) intensity of LiF was studied. The normalized peak height of the Eu-doped LiF crystal was nearly 12 times that of the LiF crystals. The optimized concentration of Eu in LiF was found to be 0.05wt% at which maximum TL intensity was observed with main TL peak positioned at 185 °C. At higher concentration TL intensity decreases due to the formation of precipitates in the form of clusters or aggregates. The nature of the energy traps in Eu doped LiF was analysed through glow curve deconvolution. The trap depth was found to be in the range of 0.2 – 0.5 eV. These results showed that doping with Eu enhances the TL intensity by creating more defect sites for capturing of electron and holes during irradiation which might be useful for dosimetry application.

Keywords: thermoluminescence, defects, gamma radiation, crystals

Procedia PDF Downloads 330
1738 Analysis of Economics and Value Addition of Optimized Blend with Petrodiesel of Nanocomposite Oil Methyl Esters

Authors: Chandrashekara Krishnappa, Yogish Huchaiah

Abstract:

The present work considers the importance of economic feasibility and financial viability of biodiesel production, and its use in the present context of prevailing Indian scenario. For this, costs involved in production of one litre of biodiesel from non-edible Jatropha and Pongamia oils Nano mix are considered. Biodiesel derived from the mix is blended with petrodiesel in various proportions and used in Compression Ignition (CI) Direct Injection (DI) engine. Performance and Emission characteristics were investigated. Optimization of the blends considering experimental results was carried out. To validate the experimental results and optimization, Multi-Functional Criteria Technique (MFCT) is used. Further, value additions in terms of INR due to increase in performance and reduction in emissions are investigated. Cost component of subsidy on petrodiesel is taken into consideration in the calculation of cost of one litre of it. Comparison of costs is with respect to the unit of power generated per litre of COME and petrodiesel. By the analysis it has been concluded that the amount saved with subsidy is INR 1.45 Lakh Crores per year and it is INR1.60 Lakh Crores per year without subsidy for petrodiesel.

Keywords: cap value addition, economic analysis, MFCT, NACOME, subsidy

Procedia PDF Downloads 241
1737 Theoretical Studies on the Formation Constant, Geometry, Vibrational Frequencies and Electronic Properties Dinuclear Molybdenum Complexes

Authors: Mahboobeh Mohadeszadeh, Behzad Padidaran Moghaddam

Abstract:

In order to measuring dinuclear molybdenum complexes formation constant First,the reactants and the products were optimized separately and then, their frequencies were measured. In next level , with using Hartree-fock (HF) and density functional theory (DFT) methods ,Theoretical studies on the geometrical parameters, electronic properties and vibrational frequencies of dinuclear molybdenum complexes [C40H44Mo2N2O20] were investigated . These calculations were performed with the B3LYP, BPV86, B3PW91 and HF theoretical method using the LANL2DZ (for Mo’s) + 6-311G (for others) basis sets. To estimate the error rate between theoretical data and experimental data, RSquare , SError and RMS values that according with the theoretical and experimental parameters found out DFT methods has more integration with experimental data compare to HF methods. In addition, through electron specification of compounds, the percentage of atomic orbital’s attendance in making molecular orbital’s, atoms electrical charge, the sustainable energy resulting and also HOMO and LUMO orbital’s energy achieved.

Keywords: geometrical parameters, hydrogen bonding, electronic properties, vibrational frequencies

Procedia PDF Downloads 275
1736 Estimation of Human Absorbed Dose Using Compartmental Model

Authors: M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani, S. Zolghadri

Abstract:

Dosimetry is an indispensable and precious factor in patient treatment planning to minimize the absorbed dose in vital tissues. In this study, compartmental model was used in order to estimate the human absorbed dose of 177Lu-DOTATOC from the biodistribution data in wild type rats. For this purpose, 177Lu-DOTATOC was prepared under optimized conditions and its biodistribution was studied in male Syrian rats up to 168 h. Compartmental model was applied to mathematical description of the drug behaviour in tissue at different times. Dosimetric estimation of the complex was performed using radiation absorbed dose assessment resource (RADAR). The biodistribution data showed high accumulation in the adrenal and pancreas as the major expression sites for somatostatin receptor (SSTR). While kidneys as the major route of excretion receive 0.037 mSv/MBq, pancreas and adrenal also obtain 0.039 and 0.028 mSv/MBq. Due to the usage of this method, the points of accumulated activity data were enhanced, and further information of tissues uptake was collected that it will be followed by high (or improved) precision in dosimetric calculations.

Keywords: compartmental modeling, human absorbed dose, ¹⁷⁷Lu-DOTATOC, Syrian rats

Procedia PDF Downloads 196
1735 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 61
1734 Predicting Consolidation Coefficient of Busan Clay by Time-Displacement-Velocity Methods

Authors: Thang Minh Le, Hadi Khabbaz

Abstract:

The coefficient of consolidation is a parameter governing the rate at which saturated soil particularly clay undergoes consolidation when subjected to an increase in pressure. The rate and amount of compression in soil varies with the rate that pore water is lost; and hence depends on soil permeability. Over many years, various methods have been proposed to determine the coefficient of consolidation, cv, which is an indication of the rate of foundation settlement on soft ground. However, defining this parameter is often problematic and heavily relies on graphical techniques, which are subject to some uncertainties. This paper initially presents an overview of many well-established methods to determine the vertical coefficient of consolidation from the incremental loading consolidation tests. An array of consolidation tests was conducted on the undisturbed clay samples, collected at various depths from a site in Nakdong river delta, Busan, South Korea. The consolidation test results on these soft sensitive clay samples were employed to evaluate the targeted methods to predict the settlement rate of Busan clay. In relationship of time-displacement-velocity, a total of 3 method groups from 10 common procedures were classified and compared together. Discussions on study results will be also provided.

Keywords: Busan clay, coefficient of consolidation, constant rate of strain, incremental loading

Procedia PDF Downloads 186
1733 ARCS Model for Enhancing Intrinsic Motivation in Learning Biodiversity Subjects: A Case Study of Tertiary Level Students in Malaysia

Authors: Nadia Nisha Musa, Nur Atirah Hasmi, Hasnun Nita Ismail, Zulfadli Mahfodz

Abstract:

In Malaysian Education System, subject related to biodiversity has started in the curriculum from Foundation Study until tertiary education. Biodiversity become the focus of attention due to awareness on global warming which potentially leads to a loss of biodiversity. A loss in biodiversity means a loss in medicinal discoveries and reduces food supply. It is of great important to ensure that young generations become aware of biodiversity conservation. The more interactive approaches are needed to build society with a high awareness for biodiversity conservation. To address this challenge, the goal of this study is to enhance intrinsic motivation of biological students via ARCS model of instruction. Self-access learning materials such as tutorial, module and fieldwork were designed with ARCS elements to a sample size of 70 university students from the beginning of the semester. Both paper and online surveys were used to collect data from the respondents. The results showed that elements of attention, relevance, confidence and satisfaction have a positive impact on intrinsic motivation of students and their academic performance.

Keywords: intrinsic motivation, ARCS model of instruction, biodiversity, self-access learning

Procedia PDF Downloads 222
1732 Optimization of Diluted Organic Acid Pretreatment on Rice Straw Using Response Surface Methodology

Authors: Rotchanaphan Hengaroonprasan, Malinee Sriariyanun, Prapakorn Tantayotai, Supacharee Roddecha, Kraipat Cheenkachorn

Abstract:

Lignocellolusic material is a substance that is resistant to be degraded by microorganisms or hydrolysis enzymes. To be used as materials for biofuel production, it needs pretreatment process to improve efficiency of hydrolysis. In this work, chemical pretreatments on rice straw using three diluted organic acids, including acetic acid, citric acid, oxalic acid, were optimized. Using Response Surface Methodology (RSM), the effect of three pretreatment parameters, acid concentration, treatment time, and reaction temperature, on pretreatment efficiency were statistically evaluated. The results indicated that dilute oxalic acid pretreatment led to the highest enhancement of enzymatic saccharification by commercial cellulase and yielded sugar up to 10.67 mg/ml when using 5.04% oxalic acid at 137.11 oC for 30.01 min. Compared to other acid pretreatment by acetic acid, citric acid, and hydrochloric acid, the maximum sugar yields are 7.07, 6.30, and 8.53 mg/ml, respectively. Here, it was demonstrated that organic acids can be used for pretreatment of lignocellulosic materials to enhance of hydrolysis process, which could be integrated to other applications for various biorefinery processes.

Keywords: lignocellolusic biomass, pretreatment, organic acid response surface methodology, biorefinery

Procedia PDF Downloads 654
1731 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data

Authors: S. Nickolas, Shobha K.

Abstract:

The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.

Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing

Procedia PDF Downloads 275
1730 A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms

Authors: Divya Agarwal, Pushpendra S. Bharti

Abstract:

Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc.

Keywords: path planning, obstacle avoidance, autonomous mobile robots, algorithms

Procedia PDF Downloads 233
1729 Optimization of Dissolution of Chevreul’s Salt in Ammonium Chloride Solutions

Authors: Mustafa Sertçelik, Hacali Necefoğlu, Turan Çalban, Soner Kuşlu

Abstract:

In this study, Chevreul’s salt was dissolved in ammonium chloride solutions. All experiments were performed in a batch reactor. The obtained results were optimized. Parameters used in the experiments were the reaction temperature, the ammonium chloride concentration, the reaction time and the solid-to-liquid ratio. The optimum conditions were determined by 24 factorial experimental design method. The best values of four parameters were determined as based on the experiment results. After the evaluation of experiment results, all parameters were found as effective in experiment conditions selected. The optimum conditions on the maximum Chevreul’s salt dissolution were the ammonium chloride concentration 4.5 M, the reaction time 13.2 min., the reaction temperature 25 oC, and the solid-to-liquid ratio 9/80 g.mL-1. The best dissolution yield in these conditions was 96.20%.

Keywords: Chevreul's salt, factorial experimental design method, ammonium chloride, dissolution, optimization

Procedia PDF Downloads 246
1728 Australian Multiculturalism in Refugee Education

Authors: N. Coskun

Abstract:

Australia has received over 840,000 refugees since its establishment as a federation. Despite the long history of refugee intake, Australia appears to have prolonged problems in refugee education such as academic and social isolations of refugee background students (RBS), the discriminations towards RBS and the high number of RBS drop-outs. This paper examines the place of RBS in educational policies, which can help to identify the problems and set a foundation for solutions. This paper investigates the educational provisions for RBS in three stages. First, the paper identifies the needs of RBS through a comprehensive literature review, using the framework of Bronfenbrenner’s bio-ecological model. Second, the study explores the place of these needs in Australian national and state educational policies which are informed by multiculturalism. The findings conclude that social, academic and psychological needs of RBS hardly find a place in multicultural educational policies. The students and their specific needs are mostly invisible and are placed under a general category of newly arrived immigrants who learn English as a second language. Third, the study explores the possible reasons for the overlook on RBS and their needs with examining the general socio-political context surrounding refugees in Australia. The overall findings suggest that Australian multiculturalism policy in education are inadequate to address RBS' social, academic and psychological needs due to the disadvantaging socio-political context where refugees are placed.

Keywords: Australia, bio-ecological model, multiculturalism, refugee education

Procedia PDF Downloads 133
1727 Macroeconomic Measure of Projectification: An Empirical Study of Pakistani Economy

Authors: Shafaq Rana, Hina Ansar

Abstract:

Projectification is an emerging phenomenon in Western economies. The projects have become the key driver of the economic actions. The impact of projectification is understudy for over a decade. A methodology was developed to measure the degree of projectification at economical level, which was later adapted to measure the degree of projectification in Germany, Norway, and Iceland; and compared the differences in these project societies, considering their industrial structure, organizational size, and the share of project work. Using the same methodology, this study aims to provide empirical evidence of the project work in the context of Pakistan –a developing nation, keeping into consideration the macroeconomic measures, qualitative and quantitative measures of the project i/c GDP, monetary measures, and project success. The research includes a qualitative pre-study to define these macro-measures in the country-specific context and a quantitative study to measure the project work w.r.t hours working in the organizations on projects. The outcome of this study provides the key data on the projectification in a developing economy, which will help industry practitioners and decision-makers to examine the consequences of projectification and strategize, respectively. This study also provides a foundation for further research in individual sectors of the country while exploring different macroeconomic questions, including the effect of projectification on project productivity, income effects, and labor market.

Keywords: developing economy, Pakistan, project work, projectification

Procedia PDF Downloads 115
1726 Leveraging Business to Business Collaborations to Optimize Reverse Haul Logistics

Authors: Pallav Singh, Rajesh Yabaji, Rajesh Dhir, Chanakya Hridaya

Abstract:

Supply Chain Costs for the Indian Industries have been on an exponential trend due to steep inflation on fundamental cost factors – Fuel, Labour, Rents. In this changing context organizations have been focusing on adopting multiple approaches to keep logistics costs under control to protect the profit margins. The lever of ‘Business to Business (B2B) collaboration’ can be used by organizations to garner higher value. Given the context of Indian Logistics Industry the penetration of B2B Collaboration initiatives have been limited. This paper outlines a structured framework for adoption of B2B collaboration through discussion of a successful initiative between ITC’s Leaf Tobacco Business and a leading Indian Media House. Multiple barriers to such a collaborative process exist which need to be addressed through comprehensive structured approaches. This paper outlines a generic framework approach to B2B collaboration for the Indian Logistics Space, outlining the guidelines for arriving at potential opportunities, identification of collaborators, effective tie-up process, design of operations and sustenance factors. The generic methods outlined can be used in any other industry and also builds a foundation for further research on many topics.

Keywords: business to business collaboration, reverse haul logistics, transportation cost optimization, exports logistics

Procedia PDF Downloads 328
1725 Prevalence, Median Time, and Associated Factors with the Likelihood of Initial Antidepressant Change: A Cross-Sectional Study

Authors: Nervana Elbakary, Sami Ouanes, Sadaf Riaz, Oraib Abdallah, Islam Mahran, Noriya Al-Khuzaei, Yassin Eltorki

Abstract:

Major Depressive Disorder (MDD) requires therapeutic interventions during the initial month after being diagnosed for better disease outcomes. International guidelines recommend a duration of 4–12 weeks for an initial antidepressant (IAD) trial at an optimized dose to get a response. If depressive symptoms persist after this duration, guidelines recommend switching, augmenting, or combining strategies as the next step. Most patients with MDD in the mental health setting have been labeled incorrectly as treatment-resistant where in fact they have not been subjected to an adequate trial of guideline-recommended therapy. Premature discontinuation of IAD due to ineffectiveness can cause unfavorable consequences. Avoiding irrational practices such as subtherapeutic doses of IAD, premature switching between the ADs, and refraining from unjustified polypharmacy can help the disease to go into a remission phase We aimed to determine the prevalence and the patterns of strategies applied after an IAD was changed because of a suboptimal response as a primary outcome. Secondary outcomes included the median survival time on IAD before any change; and the predictors that were associated with IAD change. This was a retrospective cross- sectional study conducted in Mental Health Services in Qatar. A dataset between January 1, 2018, and December 31, 2019, was extracted from the electronic health records. Inclusion and exclusion criteria were defined and applied. The sample size was calculated to be at least 379 patients. Descriptive statistics were reported as frequencies and percentages, in addition, to mean and standard deviation. The median time of IAD to any change strategy was calculated using survival analysis. Associated predictors were examined using two unadjusted and adjusted cox regression models. A total of 487 patients met the inclusion criteria of the study. The average age for participants was 39.1 ± 12.3 years. Patients with first experience MDD episode 255 (52%) constituted a major part of our sample comparing to the relapse group 206(42%). About 431 (88%) of the patients had an occurrence of IAD change to any strategy before end of the study. Almost half of the sample (212 (49%); 95% CI [44–53%]) had their IAD changed less than or equal to 30 days. Switching was consistently more common than combination or augmentation at any timepoint. The median time to IAD change was 43 days with 95% CI [33.2–52.7]. Five independent variables (age, bothersome side effects, un-optimization of the dose before any change, comorbid anxiety, first onset episode) were significantly associated with the likelihood of IAD change in the unadjusted analysis. The factors statistically associated with higher hazard of IAD change in the adjusted analysis were: younger age, un-optimization of the IAD dose before any change, and comorbid anxiety. Because almost half of the patients in this study changed their IAD as early as within the first month, efforts to avoid treatment failure are needed to ensure patient-treatment targets are met. The findings of this study can have direct clinical guidance for health care professionals since an optimized, evidence-based use of AD medication can improve the clinical outcomes of patients with MDD; and also, to identify high-risk factors that could worsen the survival time on IAD such as young age and comorbid anxiety

Keywords: initial antidepressant, dose optimization, major depressive disorder, comorbid anxiety, combination, augmentation, switching, premature discontinuation

Procedia PDF Downloads 153
1724 Integrated Information System on Human Resource Management in Project-Based Organizations

Authors: Akbar Farahani, Afsaneh Hassani, Peyman M. Farkhondeh

Abstract:

Human Resource Management as one of the core processes of the project-based companies, despite its key role in the success and competitive advantage, is relatively unknown. In the project-based companies, due to the accelerated movement of knowledge in the work activities and the temporary nature of the project, the need to develop mechanisms for achieving optimal management of this issues is very challenging. Approach to human resource management in these companies evolves with goals, strategies, and operational processes. Therefore, the need for appropriate tools to facilitate implementation of the optimized human resource management in the project is more than before,Which currently with the development of information technology and modern communication, appropriate to address the optimal approach for dynamic management of human resources in the project have been provided.This is done by using the referral system implemented in Mahab GCE that provides 1: the ability to use humans in projects without geographic limitation and 2:information on the activities and outcomes of referrals.Furthermore, by using this system, recording the lessons learned after any particular activity on projects,accessing quantitative information, procedures, documentation of learned practices that have been stored in the data base as well as using them in future projects is provided.

Keywords: human resource management, project base company, ERP, referrals system

Procedia PDF Downloads 477
1723 Optimization of Moisture Content for Highest Tensile Strength of Instant Soluble Milk Tablet and Flowability of Milk Powder

Authors: Siddharth Vishwakarma, Danie Shajie A., Mishra H. N.

Abstract:

Milk powder becomes very useful in the low milk supply area but the exact amount to add for one glass of milk and the handling is difficult. So, the idea of instant soluble milk tablet comes into existence for its high solubility and easy handling. The moisture content of milk tablets is increased by the direct addition of water with no additives for binding. The variation of the tensile strength of instant soluble milk tablets and the flowability of milk powder with the moisture content is analyzed and optimized for the highest tensile strength of instant soluble milk tablets and flowability, above a particular value of milk powder using response surface methodology. The flowability value is necessary for ease in quantifying the milk powder, as a feed, in the designed tablet making machine. The instant soluble nature of milk tablets purely depends upon the disintegration characteristic of tablets in water whose study is under progress. Conclusions: The optimization results are very useful in the commercialization of milk tablets.

Keywords: flowability, milk powder, response surface methodology, tablet making machine, tensile strength

Procedia PDF Downloads 182
1722 Green Synthesis of Silver Nanoparticles from Citrus aurantium Aqueous Pollen Extract and Their Antibacterial Activity

Authors: Mohammad Ali Karimi, Hossein Tavallali, Abdolhamid Hatefi-Mehrjardi

Abstract:

Pollen extract of in vitro plants raised of Citrus aurantium as reducer and stabilizer was assessed for the green synthesis of silver nanoparticles (AgNPs). The synthesis of AgNPs was performed at room temperature assisting in solutions by reduction takes place rapidly for 10 min. Surface plasmon resonance (SPR) peaks in UV–Vis spectra indicated the formation of polydispersive AgNPs. Silver ions concentration, pH, temperature and reaction time were optimized in the synthesis of AgNPs. The nanoparticles obtained were characterized by UV-Vis spectrophotometer, transmission electron microscopy (TEM). X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy techniques. The synthesized AgNPs were mostly spherical in shape with an average size of 15 nm. XRD study shows that the AgNPs are crystalline in nature with face-centered cubic (fcc) geometry. It shows the significant antibacterial efficacy against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) by disk diffusion method using Mueller-Hinton Agar.

Keywords: green synthesis, Citrus aurantium, silver nanoparticles, antibacterial activity

Procedia PDF Downloads 287
1721 Optimization of Biodiesel Production from Palm Oil over Mg-Al Modified K-10 Clay Catalyst

Authors: Muhammad Ayoub, Abrar Inayat, Bhajan Lal, Sintayehu Mekuria Hailegiorgis

Abstract:

Biodiesel which comes from pure renewable resources provide an alternative fuel option for future because of limited fossil fuel resources as well as environmental concerns. The transesterification of vegetable oils for biodiesel production is a promising process to overcome this future crises of energy. The use of heterogeneous catalysts greatly simplifies the technological process by facilitating the separation of the post-reaction mixture. The purpose of the present work was to examine a heterogeneous catalyst, in particular, Mg-Al modified K-10 clay, to produce methyl esters of palm oil. The prepared catalyst was well characterized by different latest techniques. In this study, the transesterification of palm oil with methanol was studied in a heterogeneous system in the presence of Mg-Al modified K-10 clay as solid base catalyst and then optimized these results with the help of Design of Experiments software. The results showed that methanol is the best alcohol for this reaction condition. The best results was achieved for optimization of biodiesel process. The maximum conversion of triglyceride (88%) was noted after 8 h of reaction at 60 ̊C, with a 6:1 molar ratio of methanol to palm oil and 3 wt % of prepared catalyst.

Keywords: palm oil, transestrefication, clay, biodiesel, mesoporous clay, K-10

Procedia PDF Downloads 397