Search results for: likelihood estimation method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20547

Search results for: likelihood estimation method

19347 Finite Element and Split Bregman Methods for Solving a Family of Optimal Control Problem with Partial Differential Equation Constraint

Authors: Mahmoud Lot

Abstract:

In this article, we will discuss the solution of elliptic optimal control problem. First, by using the nite element method, we obtain the discrete form of the problem. The obtained discrete problem is actually a large scale constrained optimization problem. Solving this optimization problem with traditional methods is difficult and requires a lot of CPU time and memory. But split Bergman method converts the constrained problem to an unconstrained, and hence it saves time and memory requirement. Then we use the split Bregman method for solving this problem, and examples show the speed and accuracy of split Bregman methods for solving these types of problems. We also use the SQP method for solving the examples and compare with the split Bregman method.

Keywords: Split Bregman Method, optimal control with elliptic partial differential equation constraint, finite element method

Procedia PDF Downloads 152
19346 Surveillance Video Summarization Based on Histogram Differencing and Sum Conditional Variance

Authors: Nada Jasim Habeeb, Rana Saad Mohammed, Muntaha Khudair Abbass

Abstract:

For more efficient and fast video summarization, this paper presents a surveillance video summarization method. The presented method works to improve video summarization technique. This method depends on temporal differencing to extract most important data from large video stream. This method uses histogram differencing and Sum Conditional Variance which is robust against to illumination variations in order to extract motion objects. The experimental results showed that the presented method gives better output compared with temporal differencing based summarization techniques.

Keywords: temporal differencing, video summarization, histogram differencing, sum conditional variance

Procedia PDF Downloads 349
19345 Continuous Improvement Programme as a Strategy for Technological Innovation in Developing Nations. Nigeria as a Case Study

Authors: Sefiu Adebowale Adewumi

Abstract:

Continuous improvement programme (CIP) adopts an approach to improve organizational performance with small incremental steps over time. In this approach, it is not the size of each step that is important, but the likelihood that the improvements will be ongoing. Many companies in developing nations are now complementing continuous improvement with innovation, which is the successful exploitation of new ideas. Focus area of CIP in the organization was in relation to the size of the organizations and also in relation to the generic classification of these organizations. Product quality was prevalent in the manufacturing industry while manpower training and retraining and marketing strategy were emphasized for improvement to be made in the service, transport and supply industries. However, focus on innovation in raw materials, process and methods are needed because these are the critical factors that influence product quality in the manufacturing industries.

Keywords: continuous improvement programme, developing countries, generic classfications, technological innovation

Procedia PDF Downloads 190
19344 A Multistep Broyden’s-Type Method for Solving Systems of Nonlinear Equations

Authors: M. Y. Waziri, M. A. Aliyu

Abstract:

The paper proposes an approach to improve the performance of Broyden’s method for solving systems of nonlinear equations. In this work, we consider the information from two preceding iterates rather than a single preceding iterate to update the Broyden’s matrix that will produce a better approximation of the Jacobian matrix in each iteration. The numerical results verify that the proposed method has clearly enhanced the numerical performance of Broyden’s Method.

Keywords: mulit-step Broyden, nonlinear systems of equations, computational efficiency, iterate

Procedia PDF Downloads 640
19343 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP for Israel: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), carbon dioxide (CO2) emissions and gross domestic product (GDP) for Israel using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Phillips–Perron (PP) test for stationarity, Johansen maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests significant positive impacts of coal and natural gas consumptions on GDP in Israel. In the short run, GDP positively affects coal consumption. While there exists a positive unidirectional causality running from coal consumption to consumption of petroleum products and the direct combustion of crude oil, there exists a negative unidirectional causality running from natural gas consumption to consumption of petroleum products and the direct combustion of crude oil in the short run. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output but the associations can to be differed by the sources of energy in the case of Israel over of period 1980-2010.

Keywords: CO2 emissions, energy consumption, GDP, Israel, time series analysis

Procedia PDF Downloads 652
19342 MP-SMC-I Method for Slip Suppression of Electric Vehicles under Braking

Authors: Tohru Kawabe

Abstract:

In this paper, a new SMC (Sliding Mode Control) method with MP (Model Predictive Control) integral action for the slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method introduce the integral term with standard SMC gain , where the integral gain is optimized for each control period by the MPC algorithms. The aim of this method is to improve the safety and the stability of EVs under braking by controlling the wheel slip ratio. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: sliding mode control, model predictive control, integral action, electric vehicle, slip suppression

Procedia PDF Downloads 561
19341 Automatic Extraction of Water Bodies Using Whole-R Method

Authors: Nikhat Nawaz, S. Srinivasulu, P. Kesava Rao

Abstract:

Feature extraction plays an important role in many remote sensing applications. Automatic extraction of water bodies is of great significance in many remote sensing applications like change detection, image retrieval etc. This paper presents a procedure for automatic extraction of water information from remote sensing images. The algorithm uses the relative location of R-colour component of the chromaticity diagram. This method is then integrated with the effectiveness of the spatial scale transformation of whole method. The whole method is based on water index fitted from spectral library. Experimental results demonstrate the improved accuracy and effectiveness of the integrated method for automatic extraction of water bodies.

Keywords: feature extraction, remote sensing, image retrieval, chromaticity, water index, spectral library, integrated method

Procedia PDF Downloads 386
19340 Multi-Stage Optimization of Local Environmental Quality by Comprehensive Computer Simulated Person as Sensor for Air Conditioning Control

Authors: Sung-Jun Yoo, Kazuhide Ito

Abstract:

In this study, a comprehensive computer simulated person (CSP) that integrates computational human model (virtual manikin) and respiratory tract model (virtual airway), was applied for estimation of indoor environmental quality. Moreover, an inclusive prediction method was established by integrating computational fluid dynamics (CFD) analysis with advanced CSP which is combined with physiologically-based pharmacokinetic (PBPK) model, unsteady thermoregulation model for analysis targeting micro-climate around human body and respiratory area with high accuracy. This comprehensive method can estimate not only the contaminant inhalation but also constant interaction in the contaminant transfer between indoor spaces, i.e., a target area for indoor air quality (IAQ) assessment, and respiratory zone for health risk assessment. This study focused on the usage of the CSP as an air/thermal quality sensor in indoors, which means the application of comprehensive model for assessment of IAQ and thermal environmental quality. Demonstrative analysis was performed in order to examine the applicability of the comprehensive model to the heating, ventilation, air conditioning (HVAC) control scheme. CSP was located at the center of the simple model room which has dimension of 3m×3m×3m. Formaldehyde which is generated from floor material was assumed as a target contaminant, and flow field, sensible/latent heat and contaminant transfer analysis in indoor space were conducted by using CFD simulation coupled with CSP. In this analysis, thermal comfort was evaluated by thermoregulatory analysis, and respiratory exposure risks represented by adsorption flux/concentration at airway wall surface were estimated by PBPK-CFD hybrid analysis. These Analysis results concerning IAQ and thermal comfort will be fed back to the HVAC control and could be used to find a suitable ventilation rate and energy requirement for air conditioning system.

Keywords: CFD simulation, computer simulated person, HVAC control, indoor environmental quality

Procedia PDF Downloads 361
19339 Calculation of A Sustainable Quota Harvesting of Long-tailed Macaque (Macaca fascicularis Raffles) in Their Natural Habitats

Authors: Yanto Santosa, Dede Aulia Rahman, Cory Wulan, Abdul Haris Mustari

Abstract:

The global demand for long-tailed macaques for medical experimentation has continued to increase. Fulfillment of Indonesian export demands has been mostly from natural habitats, based on a harvesting quota. This quota has been determined according to the total catch for a given year, and not based on consideration of any demographic parameters or physical environmental factors with regard to the animal; hence threatening the sustainability of the various populations. It is therefore necessary to formulate a method for calculating a sustainable harvesting quota, based on population parameters in natural habitats. Considering the possibility of variations in habitat characteristics and population parameters, a time series observation of demographic and physical/biotic parameters, in various habitats, was performed on 13 groups of long-tailed macaques, distributed throughout the West Java, Lampung and Yogyakarta areas of Indonesia. These provinces were selected for comparison of the influence of human/tourism activities. Data on population parameters that was collected included data on life expectancy according to age class, numbers of individuals by sex and age class, and ‘ratio of infants to reproductive females’. The estimation of population growth was based on a population dynamic growth model: the Leslie matrix. The harvesting quota was calculated as being the difference between the actual population size and the MVP (minimum viable population) for each sex and age class. Observation indicated that there were variations within group size (24 – 106 individuals), gender (sex) ratio (1:1 to 1:1.3), life expectancy value (0.30 to 0.93), and ‘ratio of infants to reproductive females’ (0.23 to 1.56). Results of subsequent calculations showed that sustainable harvesting quotas for each studied group of long-tailed macaques, ranged from 29 to 110 individuals. An estimation model of the MVP for each age class was formulated as Log Y = 0.315 + 0.884 Log Ni (number of individual on ith age class). This study also found that life expectancy for the juvenile age class was affected by the humidity under tree stands, and dietary plants’ density at sapling, pole and tree stages (equation: Y= 2.296 – 1.535 RH + 0.002 Kpcg – 0.002 Ktg – 0.001 Kphn, R2 = 89.6% with a significance value of 0.001). By contrast, for the sub-adult-adult age class, life expectancy was significantly affected by slope (equation: Y=0.377 = 0.012 Kml, R2 = 50.4%, with significance level of 0.007). The infant to reproductive female ratio was affected by humidity under tree stands, and dietary plant density at sapling and pole stages (equation: Y = -1.432 + 2.172 RH – 0.004 Kpcg + 0.003 Ktg, R2 = 82.0% with significance level of 0.001). This research confirmed the importance of population parameters in determining the minimum viable population, and that MVP varied according to habitat characteristics (especially food availability). It would be difficult therefore, to formulate a general mathematical equation model for determining a harvesting quota for the species as a whole.

Keywords: harvesting, long-tailed macaque, population, quota

Procedia PDF Downloads 426
19338 Assessment of Hargreaves Equation for Estimating Monthly Reference Evapotranspiration in the South of Iran

Authors: Ali Dehgan Moroozeh, B. Farhadi Bansouleh

Abstract:

Evapotranspiration is one of the most important components of the hydrological cycle. Evapotranspiration (ETo) is an important variable in water and energy balances on the earth’s surface, and knowledge of the distribution of ET is a key factor in hydrology, climatology, agronomy and ecology studies. Many researchers have a valid relationship, which is a function of climate factors, to estimate the potential evapotranspiration presented to the plant water stress or water loss, prevent. The FAO-Penman method (PM) had been recommended as a standard method. This method requires many data and these data are not available in every area of world. So, other methods should be evaluated for these conditions. When sufficient or reliable data to solve the PM equation are not available then Hargreaves equation can be used. The Hargreaves equation (HG) requires only daily mean, maximum and minimum air temperature extraterrestrial radiation .In this study, Hargreaves method (HG) were evaluated in 12 stations in the North West region of Iran. Results of HG and M.HG methods were compared with results of PM method. Statistical analysis of this comparison showed that calibration process has had significant effect on efficiency of Hargreaves method.

Keywords: evapotranspiration, hargreaves, equation, FAO-Penman method

Procedia PDF Downloads 395
19337 Precise Identification of Clustered Regularly Interspaced Short Palindromic Repeats-Induced Mutations via Hidden Markov Model-Based Sequence Alignment

Authors: Jingyuan Hu, Zhandong Liu

Abstract:

CRISPR genome editing technology has transformed molecular biology by accurately targeting and altering an organism’s DNA. Despite the state-of-art precision of CRISPR genome editing, the imprecise mutation outcome and off-target effects present considerable risk, potentially leading to unintended genetic changes. Targeted deep sequencing, combined with bioinformatics sequence alignment, can detect such unwanted mutations. Nevertheless, the classical method, Needleman-Wunsch (NW) algorithm may produce false alignment outcomes, resulting in inaccurate mutation identification. The key to precisely identifying CRISPR-induced mutations lies in determining optimal parameters for the sequence alignment algorithm. Hidden Markov models (HMM) are ideally suited for this task, offering flexibility across CRISPR systems by leveraging forward-backward algorithms for parameter estimation. In this study, we introduce CRISPR-HMM, a statistical software to precisely call CRISPR-induced mutations. We demonstrate that the software significantly improves precision in identifying CRISPR-induced mutations compared to NW-based alignment, thereby enhancing the overall understanding of the CRISPR gene-editing process.

Keywords: CRISPR, HMM, sequence alignment, gene editing

Procedia PDF Downloads 54
19336 The Impact of Family Involvement in Management on Firm’s Innovation: Evidence From Chinese Family Firms

Authors: Chen Jun

Abstract:

This study investigates the impact of family involvement, a pivotal factor shaping the management structure of family firms, on the firm’s innovation outputs. The independent variable focuses on the percentage number of family members serving as directors, supervisors and senior management. Our hypothesis suggests that family involvement tends to make management more conservative, thereby increasing the likelihood of impeding innovation investments and resulting in adverse effects on innovation output. Our findings reveal that Chinese family firms with high family involvement exhibit poorer innovation outputs compared to those with lower family involvement. Subsample analyses indicate that this negative influence of family involvement on innovation output is strengthened as the firm faces higher industry competition and a low marketization context. The findings of our paper contribute to the literature on family involvement by empirically illustrating how family involvement hinders innovation efforts and performance in Chinese family firms.

Keywords: family firm, family involvement, firm innovation, Chinese family firm

Procedia PDF Downloads 65
19335 Limit-Cycles Method for the Navigation and Avoidance of Any Form of Obstacles for Mobile Robots in Cluttered Environment

Authors: F. Boufera, F. Debbat

Abstract:

This paper deals with an approach based on limit-cycles method for the problem of obstacle avoidance of mobile robots in unknown environments for any form of obstacles. The purpose of this approach is the improvement of limit-cycles method in order to obtain safe and flexible navigation. The proposed algorithm has been successfully tested in different configuration on simulation.

Keywords: mobile robot, navigation, avoidance of obstacles, limit-cycles method

Procedia PDF Downloads 429
19334 Seroprevalence and Determinants of Toxoplasmosis in Pregnant Women Attending Antenatal Clinic at the University Teaching Hospital, Lusaka, Zambia: A Cross-Sectional Study

Authors: Christiana Frimpong, Mpundu Makasa, Lungowe Sitali, Charles Michelo

Abstract:

Background: Toxoplasmosis is a neglected zoonotic disease which is prevalent among pregnant women especially in Africa. This study aimed to determine the seroprevalence and determinants of the disease among pregnant women attending the antenatal clinic at the University Teaching Hospital (UTH). Method: A cross-sectional study was employed where 411 pregnant women attending the antenatal clinic at UTH were interviewed using closed-ended questionnaires. Their blood was also tested for Toxoplasma gondii IgG and IgM antibodies using the OnSite Toxo IgG/IgM Combo Rapid Test cassettes by CTK Biotech, Inc, USA. Result: The overall seroprevalence of the infection (IgG) was 5.87%. There was no seropositive IgM result. Contact with cats showed 7.81 times the risk of contracting the infection in the pregnant women and being a farmer/being involved in construction work showed 15.5 times likelihood of contracting the infection. Socio-economic status of the pregnant women also presented an inverse relationship (showed association) with the infection graphically. However, though there were indications of the association between contact with cats, employment type as well as the socioeconomic status of the pregnant women with the infection, there was not enough evidence to suggest these factors as significant determining factors of Toxoplasma gondii infection in our study population. Conclusion: There is a low prevalence of Toxoplasma gondii infection among pregnant women in Lusaka, Zambia. Screening for the infection among pregnant women can be done once or twice during pregnancy to help protect both mother and child from the disease. Health promotion among women of child bearing age on the subject is of immense importance in order to help curb the situation. Further studies especially that of case-control and cohort studies should be carried out in the country in order to better ascertain the extent of the condition nationwide.

Keywords: determinants, pregnant women, seroprevalence, toxoplasmosis, University Teaching Hospital (UTH), Zambia

Procedia PDF Downloads 234
19333 Advanced Statistical Approaches for Identifying Predictors of Poor Blood Pressure Control: A Comprehensive Analysis Using Multivariable Logistic Regression and Generalized Estimating Equations (GEE)

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Effective management of hypertension remains a critical public health challenge, particularly among racially and ethnically diverse populations. This study employs sophisticated statistical models to rigorously investigate the predictors of poor blood pressure (BP) control, with a specific focus on demographic, socioeconomic, and clinical risk factors. Leveraging a large sample of 19,253 adults drawn from the National Health and Nutrition Examination Survey (NHANES) across three distinct time periods (2013-2014, 2015-2016, and 2017-2020), we applied multivariable logistic regression and generalized estimating equations (GEE) to account for the clustered structure of the data and potential within-subject correlations. Our multivariable models identified significant associations between poor BP control and several key predictors, including race/ethnicity, age, gender, body mass index (BMI), prevalent diabetes, and chronic kidney disease (CKD). Non-Hispanic Black individuals consistently exhibited higher odds of poor BP control across all periods (OR = 1.99; 95% CI: 1.69, 2.36 for the overall sample; OR = 2.33; 95% CI: 1.79, 3.02 for 2017-2020). Younger age groups demonstrated substantially lower odds of poor BP control compared to individuals aged 75 and older (OR = 0.15; 95% CI: 0.11, 0.20 for ages 18-44). Men also had a higher likelihood of poor BP control relative to women (OR = 1.55; 95% CI: 1.31, 1.82), while BMI ≥35 kg/m² (OR = 1.76; 95% CI: 1.40, 2.20) and the presence of diabetes (OR = 2.20; 95% CI: 1.80, 2.68) were associated with increased odds of poor BP management. Further analysis using GEE models, accounting for temporal correlations and repeated measures, confirmed the robustness of these findings. Notably, individuals with chronic kidney disease displayed markedly elevated odds of poor BP control (OR = 3.72; 95% CI: 3.09, 4.48), with significant differences across the survey periods. Additionally, higher education levels and better self-reported diet quality were associated with improved BP control. College graduates exhibited a reduced likelihood of poor BP control (OR = 0.64; 95% CI: 0.46, 0.89), particularly in the 2015-2016 period (OR = 0.48; 95% CI: 0.28, 0.84). Similarly, excellent dietary habits were associated with significantly lower odds of poor BP control (OR = 0.64; 95% CI: 0.44, 0.94), underscoring the importance of lifestyle factors in hypertension management. In conclusion, our findings provide compelling evidence of the complex interplay between demographic, clinical, and socioeconomic factors in predicting poor BP control. The application of advanced statistical techniques such as GEE enhances the reliability of these results by addressing the correlated nature of repeated observations. This study highlights the need for targeted interventions that consider racial/ethnic disparities, clinical comorbidities, and lifestyle modifications in improving BP control outcomes.

Keywords: hypertension, blood pressure, NHANES, generalized estimating equations

Procedia PDF Downloads 16
19332 Bayesian Approach for Moving Extremes Ranked Set Sampling

Authors: Said Ali Al-Hadhrami, Amer Ibrahim Al-Omari

Abstract:

In this paper, Bayesian estimation for the mean of exponential distribution is considered using Moving Extremes Ranked Set Sampling (MERSS). Three priors are used; Jeffery, conjugate and constant using MERSS and Simple Random Sampling (SRS). Some properties of the proposed estimators are investigated. It is found that the suggested estimators using MERSS are more efficient than its counterparts based on SRS.

Keywords: Bayesian, efficiency, moving extreme ranked set sampling, ranked set sampling

Procedia PDF Downloads 514
19331 Wavelet Method for Numerical Solution of Fourth Order Wave Equation

Authors: A. H. Choudhury

Abstract:

In this paper, a highly accurate numerical method for the solution of one-dimensional fourth-order wave equation is derived. This hyperbolic problem is solved by using semidiscrete approximations. The space direction is discretized by wavelet-Galerkin method, and the time variable is discretized by using Newmark schemes.

Keywords: hyperbolic problem, semidiscrete approximations, stability, Wavelet-Galerkin Method

Procedia PDF Downloads 316
19330 The Brain’s Attenuation Coefficient as a Potential Estimator of Temperature Elevation during Intracranial High Intensity Focused Ultrasound Procedures

Authors: Daniel Dahis, Haim Azhari

Abstract:

Noninvasive image-guided intracranial treatments using high intensity focused ultrasound (HIFU) are on the course of translation into clinical applications. They include, among others, tumor ablation, hyperthermia, and blood-brain-barrier (BBB) penetration. Since many of these procedures are associated with local temperature elevation, thermal monitoring is essential. MRI constitutes an imaging method with high spatial resolution and thermal mapping capacity. It is the currently leading modality for temperature guidance, commonly under the name MRgHIFU (magnetic-resonance guided HIFU). Nevertheless, MRI is a very expensive non-portable modality which jeopardizes its accessibility. Ultrasonic thermal monitoring, on the other hand, could provide a modular, cost-effective alternative with higher temporal resolution and accessibility. In order to assess the feasibility of ultrasonic brain thermal monitoring, this study investigated the usage of brain tissue attenuation coefficient (AC) temporal changes as potential estimators of thermal changes. Newton's law of cooling describes a temporal exponential decay behavior for the temperature of a heated object immersed in a relatively cold surrounding. Similarly, in the case of cerebral HIFU treatments, the temperature in the region of interest, i.e., focal zone, is suggested to follow the same law. Thus, it was hypothesized that the AC of the irradiated tissue may follow a temporal exponential behavior during cool down regime. Three ex-vivo bovine brain tissue specimens were inserted into plastic containers along with four thermocouple probes in each sample. The containers were placed inside a specially built ultrasonic tomograph and scanned at room temperature. The corresponding pixel-averaged AC was acquired for each specimen and used as a reference. Subsequently, the containers were placed in a beaker containing hot water and gradually heated to about 45ᵒC. They were then repeatedly rescanned during cool down using ultrasonic through-transmission raster trajectory until reaching about 30ᵒC. From the obtained images, the normalized AC and its temporal derivative as a function of temperature and time were registered. The results have demonstrated high correlation (R² > 0.92) between both the brain AC and its temporal derivative to temperature. This indicates the validity of the hypothesis and the possibility of obtaining brain tissue temperature estimation from the temporal AC thermal changes. It is important to note that each brain yielded different AC values and slopes. This implies that a calibration step is required for each specimen. Thus, for a practical acoustic monitoring of the brain, two steps are suggested. The first step consists of simply measuring the AC at normal body temperature. The second step entails measuring the AC after small temperature elevation. In face of the urging need for a more accessible thermal monitoring technique for brain treatments, the proposed methodology enables a cost-effective high temporal resolution acoustical temperature estimation during HIFU treatments.

Keywords: attenuation coefficient, brain, HIFU, image-guidance, temperature

Procedia PDF Downloads 165
19329 Evaluation of Genetic Fidelity and Phytochemical Profiling of Micropropagated Plants of Cephalantheropsis obcordata: An Endangered Medicinal Orchid

Authors: Gargi Prasad, Ashiho A. Mao, Deepu Vijayan, S. Mandal

Abstract:

The main objective of the present study was to optimize and develop an efficient protocol for in vitro propagation of a medicinally important orchid Cephalantheropsis obcordata (Lindl.) Ormerod along with genetic stability analysis of regenerated plants. This plant has been traditionally used in Chinese folk medicine and the decoction of whole plant is known to possess anticancer activity. Nodal segments used as explants were inoculated on Murashige and Skoog (MS) medium supplemented with various concentrations of isopentenyl adenine (2iP). The rooted plants were successfully acclimatized in the greenhouse with 100% survival rate. Inter-simple sequence repeats (ISSR) markers were used to assess the genetic fidelity of in vitro raised plants and the mother plant. It was revealed that monomorphic bands showing the absence of polymorphism in all in vitro raised plantlets analyzed, confirming the genetic uniformity among the regenerants. Phytochemical analysis was done to compare the antioxidant activities and HPLC fingerprinting assay of 80% aqueous ethanol extract of the leaves and stem of in vitro and in vivo grown C. obcordata. The extracts of the plants were examined for their antioxidant activities by using free radical 1, 1-diphenyl-2-picryl hydrazyl (DPPH) scavenging method, 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging ability, reducing power capacity, estimation of total phenolic content, flavonoid content and flavonol content. A simplified method for the detection of ascorbic acid, phenolic acids and flavonoids content was also developed by using reversed phase high-performance liquid chromatography (HPLC). This is the first report on the micropropagation, genetic integrity study and quantitative phytochemical analysis of in vitro regenerated plants of C. obcordata.

Keywords: Cephalantheropsis obcordata, genetic fidelity, ISSR markers, HPLC

Procedia PDF Downloads 157
19328 A New Method Presentation for Locating Fault in Power Distribution Feeders Considering DG

Authors: Rahman Dashti, Ehsan Gord

Abstract:

In this paper, an improved impedance based fault location method is proposed. In this method, online fault locating is performed using voltage and current information at the beginning of the feeder. Determining precise fault location in a short time increases reliability and efficiency of the system. The proposed method utilizes information about main component of voltage and current at the beginning of the feeder and distributed generation unit (DGU) in order to precisely locate different faults in acceptable time. To evaluate precision and accuracy of the proposed method, a 13-node is simulated and tested using MATLAB.

Keywords: distribution network, fault section determination, distributed generation units, distribution protection equipment

Procedia PDF Downloads 404
19327 Effect of Graded Levels of Detoxified Jatropha cursas on the Performance Characteristics of Cockerel Birds

Authors: W. S. Lawal, T. Akande

Abstract:

Abstract— Four (4) difference methods were employed to detoxify Jatropha carcas, they were physical method (it include soaking and sun drying) Chemical (the use of methylated sprit, hexane and methane). Biological (the use of Aspergillus niger and then sundry for 7days and then Bacillus lichiformis) and Combined method (the combination of chemical and biological methods). Phobol esther analysis was carried out after the detoxification methods and it was found that the combined method is better off (P<0.05). Detoxified Jatropha from each of this methods was sundry and grinded for easy inclusion into poultry feed, detoxified jatropha was included at 0%, 0.5%, 1%, 2%, 3%, 4%, and 5% but the combined method was increased up to 7% because the birds were able to tolerate it, the 0% was the control experiment. 405 day old broiler chicks was used to test the effect of detoxified Jatropha carcas on their performance, there are 5birds per treatment and there are 3 replicates, the experiment lasted for 8weeks,highest number of mortality was obtained in physical method, birds in chemical method tolerated up to 3% Jatropha carcas, biological method is better, as birds there were comfortable at 5% but the best of them is combined method the birds did very well at 7% as there were less mortality and highest weight gain was achieved here (P<0.05) and it was recommended.

Keywords: phobol esther, inclusion level, tolerance level, Jatropha carcas

Procedia PDF Downloads 405
19326 The Influence of Operational Changes on Efficiency and Sustainability of Manufacturing Firms

Authors: Dimitrios Kafetzopoulos

Abstract:

Nowadays, companies are more concerned with adopting their own strategies for increased efficiency and sustainability. Dynamic environments are fertile fields for developing operational changes. For this purpose, organizations need to implement an advanced management philosophy that boosts changes to companies’ operation. Changes refer to new applications of knowledge, ideas, methods, and skills that can generate unique capabilities and leverage an organization’s competitiveness. So, in order to survive and compete in the global and niche markets, companies should incorporate the adoption of operational changes into their strategy with regard to their products and their processes. Creating the appropriate culture for changes in terms of products and processes helps companies to gain a sustainable competitive advantage in the market. Thus, the purpose of this study is to investigate the role of both incremental and radical changes into operations of a company, taking into consideration not only product changes but also process changes, and continues by measuring the impact of these two types of changes on business efficiency and sustainability of Greek manufacturing companies. The above discussion leads to the following hypotheses: H1: Radical operational changes have a positive impact on firm efficiency. H2: Incremental operational changes have a positive impact on firm efficiency. H3: Radical operational changes have a positive impact on firm sustainability. H4: Incremental operational changes have a positive impact on firm sustainability. In order to achieve the objectives of the present study, a research study was carried out in Greek manufacturing firms. A total of 380 valid questionnaires were received while a seven-point Likert scale was used to measure all the questionnaire items of the constructs (radical changes, incremental changes, efficiency and sustainability). The constructs of radical and incremental operational changes, each one as one variable, has been subdivided into product and process changes. Non-response bias, common method variance, multicollinearity, multivariate normal distribution and outliers have been checked. Moreover, the unidimensionality, reliability and validity of the latent factors were assessed. Exploratory Factor Analysis and Confirmatory Factor Analysis were applied to check the factorial structure of the constructs and the factor loadings of the items. In order to test the research hypotheses, the SEM technique was applied (maximum likelihood method). The goodness of fit of the basic structural model indicates an acceptable fit of the proposed model. According to the present study findings, radical operational changes and incremental operational changes significantly influence both efficiency and sustainability of Greek manufacturing firms. However, it is in the dimension of radical operational changes, meaning those in process and product, that the most significant contributors to firm efficiency are to be found, while its influence on sustainability is low albeit statistically significant. On the contrary, incremental operational changes influence sustainability more than firms’ efficiency. From the above, it is apparent that the embodiment of the concept of the changes into the products and processes operational practices of a firm has direct and positive consequences for what it achieves from efficiency and sustainability perspective.

Keywords: incremental operational changes, radical operational changes, efficiency, sustainability

Procedia PDF Downloads 136
19325 On the Derivation of Variable Step BBDF for Solving Second Order Stiff ODEs

Authors: S. A. M. Yatim, Z. B. Ibrahim, K. I. Othman, M. Suleiman

Abstract:

The method of solving second order stiff ordinary differential equation (ODEs) that is based on backward differentiation formula (BDF) is considered in this paper. We derived the method by increasing the order of the existing method using an improved strategy in choosing the step size. Numerical results are presented to compare the efficiency of the proposed method to the MATLAB’s suite of ODEs solvers namely ode15s and ode23s. The method was found to be efficient to solve second order ordinary differential equation.

Keywords: backward differentiation formulae, block backward differentiation formulae, stiff ordinary differential equation, variable step size

Procedia PDF Downloads 498
19324 Degree of Bending in Axially Loaded Tubular KT-Joints of Offshore Structures: Parametric Study and Formulation

Authors: Hamid Ahmadi, Shadi Asoodeh

Abstract:

The fatigue life of tubular joints commonly found in offshore industry is not only dependent on the value of hot-spot stress (HSS), but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The determination of DoB values in a tubular joint is essential for improving the accuracy of fatigue life estimation using the stress-life (S–N) method and particularly for predicting the fatigue crack growth based on the fracture mechanics (FM) approach. In the present paper, data extracted from finite element (FE) analyses of tubular KT-joints, verified against experimental data and parametric equations, was used to investigate the effects of geometrical parameters on DoB values at the crown 0˚, saddle, and crown 180˚ positions along the weld toe of central brace in tubular KT-joints subjected to axial loading. Parametric study was followed by a set of nonlinear regression analyses to derive DoB parametric formulas for the fatigue analysis of KT-joints under axial loads. The tubular KT-joint is a quite common joint type found in steel offshore structures. However, despite the crucial role of the DoB in evaluating the fatigue performance of tubular joints, this paper is the first attempt to study and formulate the DoB values in KT-joints.

Keywords: tubular KT-joint, fatigue, degree of bending (DoB), axial loading, parametric formula

Procedia PDF Downloads 363
19323 Predicting Shot Making in Basketball Learnt Fromadversarial Multiagent Trajectories

Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan

Abstract:

In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. Previous approaches to similar problems center on hand-crafting features to capture domain-specific knowledge. Although intuitive, recent work in deep learning has shown, this approach is prone to missing important predictive features. To circumvent this issue, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories, we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.

Keywords: basketball, computer vision, image processing, convolutional neural network

Procedia PDF Downloads 154
19322 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling

Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow

Abstract:

Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.

Keywords: dynamic modeling, missing data, mobility, multiple imputation

Procedia PDF Downloads 165
19321 Estimation of Transition and Emission Probabilities

Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi

Abstract:

Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.

Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics

Procedia PDF Downloads 482
19320 Flood Predicting in Karkheh River Basin Using Stochastic ARIMA Model

Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh

Abstract:

Floods have huge environmental and economic impact. Therefore, flood prediction is given a lot of attention due to its importance. This study analysed the annual maximum streamflow (discharge) (AMS or AMD) of Karkheh River in Karkheh River Basin for flood predicting using ARIMA model. For this purpose, we use the Box-Jenkins approach, which contains four-stage method model identification, parameter estimation, diagnostic checking and forecasting (predicting). The main tool used in ARIMA modelling was the SAS and SPSS software. Model identification was done by visual inspection on the ACF and PACF. SAS software computed the model parameters using the ML, CLS and ULS methods. The diagnostic checking tests, AIC criterion, RACF graph and RPACF graphs, were used for selected model verification. In this study, the best ARIMA models for Annual Maximum Discharge (AMD) time series was (4,1,1) with their AIC value of 88.87. The RACF and RPACF showed residuals’ independence. To forecast AMD for 10 future years, this model showed the ability of the model to predict floods of the river under study in the Karkheh River Basin. Model accuracy was checked by comparing the predicted and observation series by using coefficient of determination (R2).

Keywords: time series modelling, stochastic processes, ARIMA model, Karkheh river

Procedia PDF Downloads 288
19319 Determination of the Minimum Time and the Optimal Trajectory of a Moving Robot Using Picard's Method

Authors: Abbes Lounis, Kahina Louadj, Mohamed Aidene

Abstract:

This paper presents an optimal control problem applied to a robot; the problem is to determine a command which makes it possible to reach a final state from a given initial state in record time. The approach followed to solve this optimization problem with constraints on the control starts by presenting the equations of motion of the dynamic system then by applying Pontryagin's maximum principle (PMP) to determine the optimal control, and Picard's successive approximation method combined with the shooting method to solve the resulting differential system.

Keywords: robotics, Pontryagin's Maximum Principle, PMP, Picard's method, shooting method, non-linear differential systems

Procedia PDF Downloads 255
19318 An ANN-Based Predictive Model for Diagnosis and Forecasting of Hypertension

Authors: Obe Olumide Olayinka, Victor Balanica, Eugen Neagoe

Abstract:

The effects of hypertension are often lethal thus its early detection and prevention is very important for everybody. In this paper, a neural network (NN) model was developed and trained based on a dataset of hypertension causative parameters in order to forecast the likelihood of occurrence of hypertension in patients. Our research goal was to analyze the potential of the presented NN to predict, for a period of time, the risk of hypertension or the risk of developing this disease for patients that are or not currently hypertensive. The results of the analysis for a given patient can support doctors in taking pro-active measures for averting the occurrence of hypertension such as recommendations regarding the patient behavior in order to lower his hypertension risk. Moreover, the paper envisages a set of three example scenarios in order to determine the age when the patient becomes hypertensive, i.e. determine the threshold for hypertensive age, to analyze what happens if the threshold hypertensive age is set to a certain age and the weight of the patient if being varied, and, to set the ideal weight for the patient and analyze what happens with the threshold of hypertensive age.

Keywords: neural network, hypertension, data set, training set, supervised learning

Procedia PDF Downloads 394