Search results for: equation error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3764

Search results for: equation error

2564 Modeling and Simulation of Multiphase Evaporation in High Torque Low Speed Diesel Engine

Authors: Ali Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi

Abstract:

Diesel engines are most efficient and reliable in terms of efficiency, reliability, and adaptability. Most of the research and development up till now have been directed towards High Speed Diesel Engine, for Commercial use. In these engines, objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low speed engines, the requirement is altogether different. These types of engines are mostly used in Maritime Industry, Agriculture Industry, Static Engines Compressors Engines, etc. On the contrary, high torque low speed engines are neglected quite often and are eminent for low efficiency and high soot emissions. One of the most effective ways to overcome these issues is by efficient combustion in an engine cylinder. Fuel spray dynamics play a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process in high torque low speed diesel engine is of great importance. Evaporation in the combustion chamber has a rigorous effect on the efficiency of the engine. In this paper, multiphase evaporation of fuel is modeled for high torque low speed engine using the CFD (computational fluid dynamics) codes. Two distinct phases of evaporation are modeled using modeling soft wares. The basic model equations are derived from the energy conservation equation and Naiver-Stokes equation. O’Rourke model is used to model the evaporation phases. The results obtained showed a generous effect on the efficiency of the engine. Evaporation rate of fuel droplet is increased with the increase in vapor pressure. An appreciable reduction in size of droplet is achieved by adding the convective heat effects in the combustion chamber. By and large, an overall increase in efficiency is observed by modeling distinct evaporation phases. This increase in efficiency is due to the fact that droplet size is reduced and vapor pressure is increased in the engine cylinder.

Keywords: diesel fuel, CFD, evaporation, multiphase

Procedia PDF Downloads 337
2563 Weakly Non-Linear Stability Analysis of Newtonian Liquids and Nanoliquids in Shallow, Square and Tall High-Porosity Enclosures

Authors: Pradeep G. Siddheshwar, K. M. Lakshmi

Abstract:

The present study deals with weakly non-linear stability analysis of Rayleigh-Benard-Brinkman convection in nanoliquid-saturated porous enclosures. The modified-Buongiorno-Brinkman model (MBBM) is used for the conservation of linear momentum in a nanoliquid-saturated-porous medium under the assumption of Boussinesq approximation. Thermal equilibrium is imposed between the base liquid and the nanoparticles. The thermophysical properties of nanoliquid are modeled using phenomenological laws and mixture theory. The fifth-order Lorenz model is derived for the problem and is then reduced to the first-order Ginzburg-Landau equation (GLE) using the multi-scale method. The analytical solution of the GLE for the amplitude is then used to quantify the heat transport in closed form, in terms of the Nusselt number. It is found that addition of dilute concentration of nanoparticles significantly enhances the heat transport and the dominant reason for the same is the high thermal conductivity of the nanoliquid in comparison to that of the base liquid. This aspect of nanoliquids helps in speedy removal of heat. The porous medium serves the purpose of retainment of energy in the system due to its low thermal conductivity. The present model helps in making a unified study for obtaining the results for base liquid, nanoliquid, base liquid-saturated porous medium and nanoliquid-saturated porous medium. Three different types of enclosures are considered for the study by taking different values of aspect ratio, and it is observed that heat transport in tall porous enclosure is maximum while that of shallow is the least. Detailed discussion is also made on estimating heat transport for different volume fractions of nanoparticles. Results of single-phase model are shown to be a limiting case of the present study. The study is made for three boundary combinations, viz., free-free, rigid-rigid and rigid-free.

Keywords: Boungiorno model, Ginzburg-Landau equation, Lorenz equations, porous medium

Procedia PDF Downloads 318
2562 Perfomance of PAPR Reduction in OFDM System for Wireless Communications

Authors: Alcardo Alex Barakabitze, Saddam Aziz, Muhammad Zubair

Abstract:

The Orthogonal Frequency Division Multiplexing (OFDM) is a special form of multicarrier transmission that splits the total transmission bandwidth into a number of orthogonal and non-overlapping subcarriers and transmit the collection of bits called symbols in parallel using these subcarriers. In this paper, we explore the Peak to Average Power Reduction (PAPR) problem in OFDM systems. We provide the performance analysis of CCDF and BER through MATLAB simulations.

Keywords: bit error ratio (BER), OFDM, peak to average power reduction (PAPR), sub-carriers

Procedia PDF Downloads 536
2561 The Influence of Wildlife Watching Experience on Tourists’ Connection to Wildlife Conservation Caring and Awareness

Authors: Fiffy Hanisdah Saikim, Bruce Prideaux

Abstract:

One of the aims of wildlife tourism is to educate visitors about the threats facing wildlife, in general, and the actions needed to protect the environment and maintain biodiversity. Annually, millions of tourists visit natural areas and zoos primarily to view flagship species such as rhinos and elephants. Venues rely on the inherent charisma of these species to increase visitation and anchor conservation efforts. Expected visitor outcomes from the use of flagships include raised levels of awareness and pro-conservation behaviors. However, the role of flagships in wildlife tourism has been criticized for not delivering conservation benefits for species of interest or biodiversity and producing negative site impacts. Furthermore, little is known about how the connection to a species influences conservation behaviors. This paper addresses this gap in knowledge by extending previous work exploring wildlife tourism to include the emotional connection formed with wildlife species and pro-conservation behaviors for individual species and biodiversity. This paper represents a substantial contribution to the field because (a) it incorporates the role of the experience in understanding how tourists connect with a species and how this connection influences pro-conservation behaviors; and (b) is the first attempt to operationalize Conservation Caring as a measure of tourists’ connection with a species. Existing studies have investigated how specific elements, such as interpretation or species’ morphology may influence programmatic goals or awareness. However, awareness is a poor measure of an emotional connection with an animal. Furthermore, there has not been work done to address the holistic nature of the wildlife viewing experience, and its subsequent influence on behaviors. Results based on the structural equation modelling, support the validity of Conservation Caring as a factor; the ability of wildlife tourism to influence Conservation Caring; and that this connection is a strong predictor of conservation awareness behaviors. These findings suggest wildlife tourism can deliver conservation outcomes. The studies in this paper also provide a valuable framework for structuring wildlife tourism experiences to align with flagship related conservation outcomes, and exploring a wider assemblage of species as potential flagships.

Keywords: wildlife tourism, conservation caring, conservation awareness, structural equation modelling

Procedia PDF Downloads 283
2560 The Study of Cost Accounting in S Company Based on TDABC

Authors: Heng Ma

Abstract:

Third-party warehousing logistics has an important role in the development of external logistics. At present, the third-party logistics in our country is still a new industry, the accounting system has not yet been established, the current financial accounting system of third-party warehousing logistics is mainly in the traditional way of thinking, and only able to provide the total cost information of the entire enterprise during the accounting period, unable to reflect operating indirect cost information. In order to solve the problem of third-party logistics industry cost information distortion, improve the level of logistics cost management, the paper combines theoretical research and case analysis method to reflect cost allocation by building third-party logistics costing model using Time-Driven Activity-Based Costing(TDABC), and takes S company as an example to account and control the warehousing logistics cost. Based on the idea of “Products consume activities and activities consume resources”, TDABC put time into the main cost driver and use time-consuming equation resources assigned to cost objects. In S company, the objects focuses on three warehouse, engaged with warehousing and transportation (the second warehouse, transport point) service. These three warehouse respectively including five departments, Business Unit, Production Unit, Settlement Center, Security Department and Equipment Division, the activities in these departments are classified by in-out of storage forecast, in-out of storage or transit and safekeeping work. By computing capacity cost rate, building the time-consuming equation, the paper calculates the final operation cost so as to reveal the real cost. The numerical analysis results show that the TDABC can accurately reflect the cost allocation of service customers and reveal the spare capacity cost of resource center, verifies the feasibility and validity of TDABC in third-party logistics industry cost accounting. It inspires enterprises focus on customer relationship management and reduces idle cost to strengthen the cost management of third-party logistics enterprises.

Keywords: third-party logistics enterprises, TDABC, cost management, S company

Procedia PDF Downloads 355
2559 Static Properties of Ge and Sr Isotopes in the Cluster Model

Authors: Mohammad Reza Shojaei, Mahdeih Mirzaeinia

Abstract:

We have studied the cluster structure of even-even stable isotopes of Ge and Sr. The Schrodinger equation has been solved using the generalized parametric Nikiforov-Uvarov method with a phenomenological potential. This potential is the sum of the attractive Yukawa-like potential, a Manning-Rosen-type potential, and the repulsive Yukawa potential for interaction between the cluster and the core. We have shown that the available experimental data of the first rotational band energies can be well described by assuming a binary system of the α cluster and the core and using an analytical solution. Our results were consistent with experimental values. Hence, this model can be applied to study the other even-even isotopes

Keywords: cluser model, NU method, ge and Sr, potential central

Procedia PDF Downloads 70
2558 Age Estimation and Sex Determination by CT-Scan Analysis of the Hyoid Bone: Application on a Tunisian Population

Authors: N. Haj Salem, M. Belhadj, S. Ben Jomâa, R. Dhouieb, S. Saadi, M. A. Mesrati, A. Chadly

Abstract:

Introduction: The hyoid bone is considered as one of many bones used to identify a missed person. There is a specificity of each population group in human identifications. Objective: To analyze the relationship between age, sex and metric parameters of hyoid bone in Tunisian population sample, using CT-scan. Materials and Methods: A prospective study was conducted in the Department of Forensic Medicine of FattoumaBourguiba Hospital of Monastir-Tunisia during 4 years. A total of 240 samples of hyoid bone were studied. The age of cases ranged from 18 days to 81 years. The specimens were collected only from the deceased of known age. Once dried, each hyoid bone was scanned using CT scan. For each specimen, 10 measurements were taken using a computer program. The measurements consisted of 6 lengths and 4 widths. A regression analysis was used to estimate the relationship between age, sex, and different measurements. For age estimation, a multiple logistic regression was carried out for samples ≤ 35 years. For sex determination, ROC curve was performed. Discriminant value finally retained was based on the best specificity with the best sensitivity. Results: The correlation between real age and estimated age was good (r²=0.72) for samples aged 35 years or less. The unstandardised canonical function equation was estimated using three variables: maximum length of the right greater cornua, length from the middle of the left joint space to the middle of the right joint space and perpendicular length from the centre point of a line between the distal ends of the right and left greater cornua to the centre point of the anterior view of the body of the hyoid bone. For sex determination, the ROC curve analysis reveals that the area under curve was at 81.8%. Discriminant value was 0.451 with a specificity of 73% and sensibility of 79%. The equation function was estimated based on two variables: maximum length of the greater cornua and maximum length of the hyoid bone. Conclusion: The findings of the current study suggest that metric analysis of the hyoid bone may predict the age ≤ 35 years. Sex estimation seems to be more reliable. Further studies dealing with the fusion of the hyoid bone and the current study could help to achieve more accurate age estimation rates.

Keywords: anthropology, age estimation, CT scan, sex determination, Tunisia

Procedia PDF Downloads 166
2557 Automatic Vowel and Consonant's Target Formant Frequency Detection

Authors: Othmane Bouferroum, Malika Boudraa

Abstract:

In this study, a dual exponential model for CV formant transition is derived from locus theory of speech perception. Then, an algorithm for automatic vowel and consonant’s target formant frequency detection is developed and tested on real speech. The results show that vowels and consonants are detected through transitions rather than their small stable portions. Also, vowel reduction is clearly observed in our data. These results are confirmed by the observations made in perceptual experiments in the literature.

Keywords: acoustic invariance, coarticulation, formant transition, locus equation

Procedia PDF Downloads 265
2556 Dynamic Response around Inclusions in Infinitely Inhomogeneous Media

Authors: Jinlai Bian, Zailin Yang, Guanxixi Jiang, Xinzhu Li

Abstract:

The problem of elastic wave propagation in inhomogeneous medium has always been a classic problem. Due to the frequent occurrence of earthquakes, many economic losses and casualties have been caused, therefore, to prevent earthquake damage to people and reduce damage, this paper studies the dynamic response around the circular inclusion in the whole space with inhomogeneous modulus, the inhomogeneity of the medium is reflected in the shear modulus of the medium with the spatial position, and the density is constant, this method can be used to solve the problem of the underground buried pipeline. Stress concentration phenomena are common in aerospace and earthquake engineering, and the dynamic stress concentration factor (DSCF) is one of the main factors leading to material damage, one of the important applications of the theory of elastic dynamics is to determine the stress concentration in the body with discontinuities such as cracks, holes, and inclusions. At present, the methods include wave function expansion method, integral transformation method, integral equation method and so on. Based on the complex function method, the Helmholtz equation with variable coefficients is standardized by using conformal transformation method and wave function expansion method, the displacement and stress fields in the whole space with circular inclusions are solved in the complex coordinate system, the unknown coefficients are solved by using boundary conditions, by comparing with the existing results, the correctness of this method is verified, based on the superiority of the complex variable function theory to the conformal transformation, this method can be extended to study the inclusion problem of arbitrary shapes. By solving the dynamic stress concentration factor around the inclusions, the influence of the inhomogeneous parameters of the medium and the wavenumber ratio of the inclusions to the matrix on the dynamic stress concentration factor is analyzed. The research results can provide some reference value for the evaluation of nondestructive testing (NDT), oil exploration, seismic monitoring, and soil-structure interaction.

Keywords: circular inclusions, complex variable function, dynamic stress concentration factor (DSCF), inhomogeneous medium

Procedia PDF Downloads 133
2555 Feasibility of Voluntary Deep Inspiration Breath-Hold Radiotherapy Technique Implementation without Deep Inspiration Breath-Hold-Assisting Device

Authors: Auwal Abubakar, Shazril Imran Shaukat, Noor Khairiah A. Karim, Mohammed Zakir Kassim, Gokula Kumar Appalanaido, Hafiz Mohd Zin

Abstract:

Background: Voluntary deep inspiration breath-hold radiotherapy (vDIBH-RT) is an effective cardiac dose reduction technique during left breast radiotherapy. This study aimed to assess the accuracy of the implementation of the vDIBH technique among left breast cancer patients without the use of a special device such as a surface-guided imaging system. Methods: The vDIBH-RT technique was implemented among thirteen (13) left breast cancer patients at the Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia. Breath-hold monitoring was performed based on breath-hold skin marks and laser light congruence observed on zoomed CCTV images from the control console during each delivery. The initial setup was verified using cone beam computed tomography (CBCT) during breath-hold. Each field was delivered using multiple beam segments to allow a delivery time of 20 seconds, which can be tolerated by patients in breath-hold. The data were analysed using an in-house developed MATLAB algorithm. PTV margin was computed based on van Herk's margin recipe. Results: The setup error analysed from CBCT shows that the population systematic error in lateral (x), longitudinal (y), and vertical (z) axes was 2.28 mm, 3.35 mm, and 3.10 mm, respectively. Based on the CBCT image guidance, the Planning target volume (PTV) margin that would be required for vDIBH-RT using CCTV/Laser monitoring technique is 7.77 mm, 10.85 mm, and 10.93 mm in x, y, and z axes, respectively. Conclusion: It is feasible to safely implement vDIBH-RT among left breast cancer patients without special equipment. The breath-hold monitoring technique is cost-effective, radiation-free, easy to implement, and allows real-time breath-hold monitoring.

Keywords: vDIBH, cone beam computed tomography, radiotherapy, left breast cancer

Procedia PDF Downloads 47
2554 Multivalued Behavior for a Two-Level System Using Homotopy Analysis Method

Authors: Angelo I. Aquino, Luis Ma. T. Bo-ot

Abstract:

We use the Homotopy Analysis Method (HAM) to solve the system of equations modeling the two-level system and extract results which will pinpoint to turbulent behavior. We look at multi-valued solutions as indicative of turbulence or turbulent-like behavior. We take di erent speci c cases which result in multi-valued velocities. The solutions are in series form and application of HAM ensures convergence in some region.

Keywords: multivalued solutions, homotopy analysis method, two-level system, equation

Procedia PDF Downloads 591
2553 Mathematical Modelling of Spatial Distribution of Covid-19 Outbreak Using Diffusion Equation

Authors: Kayode Oshinubi, Brice Kammegne, Jacques Demongeot

Abstract:

The use of mathematical tools like Partial Differential Equations and Ordinary Differential Equations have become very important to predict the evolution of a viral disease in a population in order to take preventive and curative measures. In December 2019, a novel variety of Coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China causing a severe and potentially fatal respiratory syndrome, i.e., COVID-19. Since then, it has become a pandemic declared by World Health Organization (WHO) on March 11, 2020 which has spread around the globe. A reaction-diffusion system is a mathematical model that describes the evolution of a phenomenon subjected to two processes: a reaction process in which different substances are transformed, and a diffusion process that causes a distribution in space. This article provides a mathematical study of the Susceptible, Exposed, Infected, Recovered, and Vaccinated population model of the COVID-19 pandemic by the bias of reaction-diffusion equations. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined using the Lyapunov function are considered and the endemic equilibrium point exists and is stable if it satisfies Routh–Hurwitz criteria. Also, adequate conditions for the existence and uniqueness of the solution of the model have been proved. We showed the spatial distribution of the model compartments when the basic reproduction rate $\mathcal{R}_0 < 1$ and $\mathcal{R}_0 > 1$ and sensitivity analysis is performed in order to determine the most sensitive parameters in the proposed model. We demonstrate the model's effectiveness by performing numerical simulations. We investigate the impact of vaccination and the significance of spatial distribution parameters in the spread of COVID-19. The findings indicate that reducing contact with an infected person and increasing the proportion of susceptible people who receive high-efficacy vaccination will lessen the burden of COVID-19 in the population. To the public health policymakers, we offered a better understanding of the COVID-19 management.

Keywords: COVID-19, SEIRV epidemic model, reaction-diffusion equation, basic reproduction number, vaccination, spatial distribution

Procedia PDF Downloads 116
2552 Virtual Approach to Simulating Geotechnical Problems under Both Static and Dynamic Conditions

Authors: Varvara Roubtsova, Mohamed Chekired

Abstract:

Recent studies on the numerical simulation of geotechnical problems show the importance of considering the soil micro-structure. At this scale, soil is a discrete particle medium where the particles can interact with each other and with water flow under external forces, structure loads or natural events. This paper presents research conducted in a virtual laboratory named SiGran, developed at IREQ (Institut de recherche d’Hydro-Quebec) for the purpose of investigating a broad range of problems encountered in geotechnics. Using Discrete Element Method (DEM), SiGran simulated granular materials directly by applying Newton’s laws to each particle. The water flow was simulated by using Marker and Cell method (MAC) to solve the full form of Navier-Stokes’s equation for non-compressible viscous liquid. In this paper, examples of numerical simulation and their comparisons with real experiments have been selected to show the complexity of geotechnical research at the micro level. These examples describe transient flows into a porous medium, interaction of particles in a viscous flow, compacting of saturated and unsaturated soils and the phenomenon of liquefaction under seismic load. They also provide an opportunity to present SiGran’s capacity to compute the distribution and evolution of energy by type (particle kinetic energy, particle internal elastic energy, energy dissipated by friction or as a result of viscous interaction into flow, and so on). This work also includes the first attempts to apply micro discrete results on a macro continuum level where the Smoothed Particle Hydrodynamics (SPH) method was used to resolve the system of governing equations. The material behavior equation is based on the results of simulations carried out at a micro level. The possibility of combining three methods (DEM, MAC and SPH) is discussed.

Keywords: discrete element method, marker and cell method, numerical simulation, multi-scale simulations, smoothed particle hydrodynamics

Procedia PDF Downloads 298
2551 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest

Procedia PDF Downloads 117
2550 Dynamics of Chirped RZ Modulation Format in GEPON Fiber to the Home (FTTH) Network

Authors: Anurag Sharma, Manoj Kumar, Ashima, Sooraj Parkash

Abstract:

The work in this paper presents simulative comparison for different modulation formats such as NRZ, Manchester and CRZ in a 100 subscribers at 5 Gbps bit rate Gigabit Ethernet Passive Optical Network (GEPON) FTTH network. It is observed from the simulation results that the CRZ modulation format is best suited for the designed system. A link design for 1:100 splitter is used as Passive Optical Network (PON) element which creates communication between central offices to different users. The Bit Error Rate (BER) is found to be 2.8535e-10 at 5 Gbit/s systems for CRZ modulation format.

Keywords: PON , FTTH, OLT, ONU, CO, GEPON

Procedia PDF Downloads 700
2549 Exploring Error-Minimization Protocols for Upper-Limb Function During Activities of Daily Life in Chronic Stroke Patients

Authors: M. A. Riurean, S. Heijnen, C. A. Knott, J. Makinde, D. Gotti, J. VD. Kamp

Abstract:

Objectives: The current study is done in preparation for a randomized controlled study investigating the effects of an implicit motor learning protocol implemented using an extension-supporting glove. It will explore different protocols to find out which is preferred when studying motor learn-ing in the chronic stroke population that struggles with hand spasticity. Design: This exploratory study will follow 24 individuals who have a chronic stroke (> 6 months) during their usual care journey. We will record the results of two 9-Hole Peg Tests (9HPT) done during their therapy ses-sions with a physiotherapist or in their home before and after 4 weeks of them wearing an exten-sion-supporting glove used to employ the to-be-studied protocols. The participants will wear the glove 3 times/week for one hour while performing their activities of daily living and record the times they wore it in a diary. Their experience will be monitored through telecommunication once every week. Subjects: Individuals that have had a stroke at least 6 months prior to participation, hand spasticity measured on the modified Ashworth Scale of maximum 3, and finger flexion motor control measured on the Motricity Index of at least 19/33. Exclusion criteria: extreme hemi-neglect. Methods: The participants will be randomly divided into 3 groups: one group using the glove in a pre-set way of decreasing support (implicit motor learning), one group using the glove in a self-controlled way of decreasing support (autonomous motor learning), and the third using the glove with constant support (as control). Before and after the 4-week period, there will be an intake session and a post-assessment session. Analysis: We will compare the results of the two 9HPTs to check whether the protocols were effective. Furthermore, we will compare the results between the three groups to find the preferred one. A qualitative analysis will be run of the experience of participants throughout the 4-week period. Expected results: We expect that the group using the implicit learning protocol will show superior results.

Keywords: implicit learning, hand spasticity, stroke, error minimization, motor task

Procedia PDF Downloads 53
2548 Effect of Fabrication Errors on High Frequency Filter Circuits

Authors: Wesam Ali

Abstract:

This paper provides useful guidelines to the circuit designers on the magnitude of fabrication errors in multilayer millimeter-wave components that are acceptable and presents data not previously reported in the literature. A particularly significant error that was quantified was that of skew between conductors on different layers, where it was found that a skew angle of only 0.1° resulted in very significant changes in bandwidth and insertion loss. The work was supported by a detailed investigation on a 35GHz, multilayer edge-coupled band-pass filter, which was fabricated on alumina substrates using photoimageable thick film process.

Keywords: fabrication errors, multilayer, high frequency band, photoimagable technology

Procedia PDF Downloads 467
2547 Analysis of the Inverse Kinematics for 5 DOF Robot Arm Using D-H Parameters

Authors: Apurva Patil, Maithilee Kulkarni, Ashay Aswale

Abstract:

This paper proposes an algorithm to develop the kinematic model of a 5 DOF robot arm. The formulation of the problem is based on finding the D-H parameters of the arm. Brute Force iterative method is employed to solve the system of non linear equations. The focus of the paper is to obtain the accurate solutions by reducing the root mean square error. The result obtained will be implemented to grip the objects. The trajectories followed by the end effector for the required workspace coordinates are plotted. The methodology used here can be used in solving the problem for any other kinematic chain of up to six DOF.

Keywords: 5 DOF robot arm, D-H parameters, inverse kinematics, iterative method, trajectories

Procedia PDF Downloads 198
2546 Nonlinear Observer Canonical Form for Genetic Regulation Process

Authors: Bououden Soraya

Abstract:

This paper aims to study the existence of the change of coordinates which permits to transform a class of nonlinear dynamical systems into the so-called nonlinear observer canonical form (NOCF). Moreover, an algorithm to construct such a change of coordinates is given. Based on this form, we can design an observer with a linear error dynamic. This enables us to estimate the state of a nonlinear dynamical system. A concrete example (biological model) is provided to illustrate the feasibility of the proposed results.

Keywords: nonlinear observer canonical form, observer, design, gene regulation, gene expression

Procedia PDF Downloads 428
2545 Human Factors Issues and Measures in Advanced NPPs

Authors: Jun Su Ha

Abstract:

Various advanced technologies will be adopted in Advanced Control Rooms (ACRs) of advanced Nuclear Power Plants (NPPs), which is thought to increase operators’ performance. However, potential human factors issues coupled with digital technologies might be troublesome. Human factors issues in ACRs are identified and strategies (or countermeasures) for evaluating and analyzing each of issues are addressed in this study.

Keywords: advanced control room, human factor issues, human performance, human error, nuclear power plant

Procedia PDF Downloads 464
2544 Reduced General Dispersion Model in Cylindrical Coordinates and Isotope Transient Kinetic Analysis in Laminar Flow

Authors: Masood Otarod, Ronald M. Supkowski

Abstract:

This abstract discusses a method that reduces the general dispersion model in cylindrical coordinates to a second order linear ordinary differential equation with constant coefficients so that it can be utilized to conduct kinetic studies in packed bed tubular catalytic reactors at a broad range of Reynolds numbers. The model was tested by 13CO isotope transient tracing of the CO adsorption of Boudouard reaction in a differential reactor at an average Reynolds number of 0.2 over Pd-Al2O3 catalyst. Detailed experimental results have provided evidence for the validity of the theoretical framing of the model and the estimated parameters are consistent with the literature. The solution of the general dispersion model requires the knowledge of the radial distribution of axial velocity. This is not always known. Hence, up until now, the implementation of the dispersion model has been largely restricted to the plug-flow regime. But, ideal plug-flow is impossible to achieve and flow regimes approximating plug-flow leave much room for debate as to the validity of the results. The reduction of the general dispersion model transpires as a result of the application of a factorization theorem. Factorization theorem is derived from the observation that a cross section of a catalytic bed consists of a solid phase across which the reaction takes place and a void or porous phase across which no significant measure of reaction occurs. The disparity in flow and the heterogeneity of the catalytic bed cause the concentration of reacting compounds to fluctuate radially. These variabilities signify the existence of radial positions at which the radial gradient of concentration is zero. Succinctly, factorization theorem states that a concentration function of axial and radial coordinates in a catalytic bed is factorable as the product of the mean radial cup-mixing function and a contingent dimensionless function. The concentration of adsorbed compounds are also factorable since they are piecewise continuous functions and suffer the same variability but in the reverse order of the concentration of mobile phase compounds. Factorability is a property of packed beds which transforms the general dispersion model to an equation in terms of the measurable mean radial cup-mixing concentration of the mobile phase compounds and mean cross-sectional concentration of adsorbed species. The reduced model does not require the knowledge of the radial distribution of the axial velocity. Instead, it is characterized by new transport parameters so denoted by Ωc, Ωa, Ωc, and which are respectively denominated convection coefficient cofactor, axial dispersion coefficient cofactor, and radial dispersion coefficient cofactor. These cofactors adjust the dispersion equation as compensation for the unavailability of the radial distribution of the axial velocity. Together with the rest of the kinetic parameters they can be determined from experimental data via an optimization procedure. Our data showed that the estimated parameters Ωc, Ωa Ωr, are monotonically correlated with the Reynolds number. This is expected to be the case based on the theoretical construct of the model. Computer generated simulations of methanation reaction on nickel provide additional support for the utility of the newly conceptualized dispersion model.

Keywords: factorization, general dispersion model, isotope transient kinetic, partial differential equations

Procedia PDF Downloads 263
2543 Analysis of Delivery of Quad Play Services

Authors: Rahul Malhotra, Anurag Sharma

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: FTTH, quad play, play service, access networks, data rate

Procedia PDF Downloads 403
2542 Block Implicit Adams Type Algorithms for Solution of First Order Differential Equation

Authors: Asabe Ahmad Tijani, Y. A. Yahaya

Abstract:

The paper considers the derivation of implicit Adams-Moulton type method, with k=4 and 5. We adopted the method of interpolation and collocation of power series approximation to generate the continuous formula which was evaluated at off-grid and some grid points within the step length to generate the proposed block schemes, the schemes were investigated and found to be consistent and zero stable. Finally, the methods were tested with numerical experiments to ascertain their level of accuracy.

Keywords: Adam-Moulton Type (AMT), off-grid, block method, consistent and zero stable

Procedia PDF Downloads 477
2541 Predicting Child Attachment Style Based on Positive and Safe Parenting Components and Mediating Maternal Attachment Style in Children With ADHD

Authors: Alireza Monzavi Chaleshtari, Maryam Aliakbari

Abstract:

Objective: The aim of this study was to investigate the prediction of child attachment style based on a positive and safe combination parenting method mediated by maternal attachment styles in children with attention deficit hyperactivity disorder. Method: The design of the present study was descriptive of correlation and structural equations and applied in terms of purpose. The population of this study includes all children with attention deficit hyperactivity disorder living in Chaharmahal and Bakhtiari province and their mothers. The sample size of the above study includes 165children with attention deficit hyperactivity disorder in Chaharmahal and Bakhtiari province with their mothers, who were selected by purposive sampling method based on the inclusion criteria. The obtained data were analyzed in two sections of descriptive and inferential statistics. In the descriptive statistics section, statistical indices of mean, standard deviation, frequency distribution table and graph were used. In the inferential section, according to the nature of the hypotheses and objectives of the research, the data were analyzed using Pearson correlation coefficient tests, Bootstrap test and structural equation model. findings:The results of structural equation modeling showed that the research models fit and showed a positive and safe combination parenting style mediated by the mother attachment style has an indirect effect on the child attachment style. Also, a positive and safe combined parenting style has a direct relationship with child attachment style, and She has a mother attachment style. Conclusion:The results and findings of the present study show that there is a significant relationship between positive and safe combination parenting methods and attachment styles of children with attention deficit hyperactivity disorder with maternal attachment style mediation. Therefore, it can be expected that parents using a positive and safe combination232 parenting method can effectively lead to secure attachment in children with attention deficit hyperactivity disorder.

Keywords: child attachment style, positive and safe parenting, maternal attachment style, ADHD

Procedia PDF Downloads 58
2540 On the Volume of Ganglion Cell Stimulation in Visual Prostheses by Finite Element Discretization

Authors: Diego Luján Villarreal

Abstract:

Visual prostheses are designed to repair some eyesight in patients blinded by photoreceptor diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Electrode-to-cell proximity has drawn attention due to its implications on secure single-localized stimulation. Yet, few techniques are available for understanding the relationship between the number of cells activated and the current injection. We propose an answering technique by solving the governing equation for time-dependent electrical currents using finite element discretization to obtain the volume of stimulation.

Keywords: visual prosthetic devices, volume for stimulation, FEM discretization, 3D simulation

Procedia PDF Downloads 67
2539 Modelling Asymmetric Magnetic Recording Heads with an Underlayer Using Superposition

Authors: Ammar Edress Mohamed, Mustafa Aziz, David Wright

Abstract:

This paper analyses and calculates the head fields of asymmetrical 2D magnetic recording heads when the soft-underlayer is present using the appropriate Green's function to derive the surface potential/field by utilising the surface potential for asymmetrical head without underlayer. The results follow closely the corners, while the gap region shows a linear behaviour for d/g < 0.5 compared with the calculated fields from finite-element.

Keywords: magnetic recording, finite elements, asymmetrical magnetic heads, superposition, Laplace's equation

Procedia PDF Downloads 386
2538 3D Modeling for Frequency and Time-Domain Airborne EM Systems with Topography

Authors: C. Yin, B. Zhang, Y. Liu, J. Cai

Abstract:

Airborne EM (AEM) is an effective geophysical exploration tool, especially suitable for ridged mountain areas. In these areas, topography will have serious effects on AEM system responses. However, until now little study has been reported on topographic effect on airborne EM systems. In this paper, an edge-based unstructured finite-element (FE) method is developed for 3D topographic modeling for both frequency and time-domain airborne EM systems. Starting from the frequency-domain Maxwell equations, a vector Helmholtz equation is derived to obtain a stable and accurate solution. Considering that the AEM transmitter and receiver are both located in the air, the scattered field method is used in our modeling. The Galerkin method is applied to discretize the Helmholtz equation for the final FE equations. Solving the FE equations, the frequency-domain AEM responses are obtained. To accelerate the calculation speed, the response of source in free-space is used as the primary field and the PARDISO direct solver is used to deal with the problem with multiple transmitting sources. After calculating the frequency-domain AEM responses, a Hankel’s transform is applied to obtain the time-domain AEM responses. To check the accuracy of present algorithm and to analyze the characteristic of topographic effect on airborne EM systems, both the frequency- and time-domain AEM responses for 3 model groups are simulated: 1) a flat half-space model that has a semi-analytical solution of EM response; 2) a valley or hill earth model; 3) a valley or hill earth with an abnormal body embedded. Numerical experiments show that close to the node points of the topography, AEM responses demonstrate sharp changes. Special attentions need to be paid to the topographic effects when interpreting AEM survey data over rugged topographic areas. Besides, the profile of the AEM responses presents a mirror relation with the topographic earth surface. In comparison to the topographic effect that mainly occurs at the high-frequency end and early time channels, the EM responses of underground conductors mainly occur at low frequencies and later time channels. For the signal of the same time channel, the dB/dt field reflects the change of conductivity better than the B-field. The research of this paper will serve airborne EM in the identification and correction of the topographic effects.

Keywords: 3D, Airborne EM, forward modeling, topographic effect

Procedia PDF Downloads 312
2537 Effective Training System for Riding Posture Using Depth and Inertial Sensors

Authors: Sangseung Kang, Kyekyung Kim, Suyoung Chi

Abstract:

A good posture is the most important factor in riding. In this paper, we present an effective posture correction system for a riding simulator environment to provide position error detection and customized training functions. The proposed system detects and analyzes the rider's posture using depth data and inertial sensing data. Our experiments show that including these functions will help users improve their seat for a riding.

Keywords: posture correction, posture training, riding posture, riding simulator

Procedia PDF Downloads 471
2536 Comparative Study of Impedance Parameters for 42CrMo4 Steel Nitrided and Exposed at Electrochemical Corrosion

Authors: M. H. Belahssen, S. Benramache

Abstract:

This paper presents corrosion behavior of alloy 42CrMo4 steel nitrided by plasma. Different samples nitrided were tested. The corrosion behavior was evaluated by electrochemical impedance spectroscopy and the tests were carried out in acid chloride solution 1M. The best corrosion protection was observed for nitrided samples. The aim of this work is to compare equivalents circuits corresponding to Nyquist curves simulated and experimental and select who gives best results of impedance parameters with lowest error.

Keywords: pasma nitriding, steel, alloy 42CrMo4, elecrochemistry, corrosion behavior

Procedia PDF Downloads 361
2535 Rainwater Harvesting and Management of Ground Water (Case Study Weather Modification Project in Iran)

Authors: Samaneh Poormohammadi, Farid Golkar, Vahideh Khatibi Sarabi

Abstract:

Climate change and consecutive droughts have increased the importance of using rainwater harvesting methods. One of the methods of rainwater harvesting and, in other words, the management of atmospheric water resources is the use of weather modification technologies. Weather modification (also known as weather control) is the act of intentionally manipulating or altering the weather. The most common form of weather modification is cloud seeding, which increases rain or snow, usually for the purpose of increasing the local water supply. Cloud seeding operations in Iran have been married since 1999 in central Iran with the aim of harvesting rainwater and reducing the effects of drought. In this research, we analyze the results of cloud seeding operations in the Simindashtplain in northern Iran. Rainwater harvesting with the help of cloud seeding technology has been evaluated through its effects on surface water and underground water. For this purpose, two different methods have been used to estimate runoff. The first method is the US Soil Conservation Service (SCS) curve number method. Another method, known as the reasoning method, has also been used. In order to determine the infiltration rate of underground water, the balance reports of the comprehensive water plan of the country have been used. In this regard, the study areas located in the target area of each province have been extracted by drawing maps of the influence coefficients of each area in the GIS software. It should be mentioned that the infiltration coefficients were taken from the balance sheet reports of the country's comprehensive water plan. Then, based on the area of each study area, the weighted average of the infiltration coefficient of the study areas located in the target area of each province is considered as the infiltration coefficient of that province. Results show that the amount of water extracted from the rain with the help of cloud seeding projects in Simindasht is as follows: an increase in runoff 63.9 million cubic meters (with SCS equation) or 51.2 million cubic meters (with logical equation) and an increase in ground water resources: 40.5 million cubic meters.

Keywords: rainwater harvesting, ground water, atmospheric water resources, weather modification, cloud seeding

Procedia PDF Downloads 102