Search results for: geothermal energy production
2471 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building
Authors: Yazan Al-Kofahi, Jamal Alqawasmi.
Abstract:
In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.Keywords: machine learning, deep learning, artificial intelligence, sustainable building
Procedia PDF Downloads 652470 Biaxial Fatigue Specimen Design and Testing Rig Development
Authors: Ahmed H. Elkholy
Abstract:
An elastic analysis is developed to obtain the distribution of stresses, strains, bending moment and deformation for a thin hollow, variable thickness cylindrical specimen when subjected to different biaxial loadings. The specimen was subjected to a combination of internal pressure, axial tensile loading and external pressure. Several axial to circumferential stress ratios were investigated in detail. The analytical model was then validated using experimental results obtained from a test rig using several biaxial loadings. Based on the preliminary results obtained, the specimen was then modified geometrically to ensure uniform strain distribution through its wall thickness and along its gauge length. The new design of the specimen has a higher buckling strength and a maximum value of equivalent stress according to the maximum distortion energy theory. A cyclic function generator of the standard servo-controlled, electro-hydraulic testing machine is used to generate a specific signal shape (sine, square,…) at a certain frequency. The two independent controllers of the electronic circuit cause an independent movement to each servo-valve piston. The movement of each piston pressurizes the upper and lower sides of the actuators alternately. So, the specimen will be subjected to axial and diametral loads independent of each other. The hydraulic system has two different pressures: one pressure will be responsible for axial stress produced in the specimen and the other will be responsible for the tangential stress. Changing the two pressure ratios will change the stress ratios accordingly. The only restriction on the maximum stress obtained is the capacity of the testing system and specimen instability due to buckling.Keywords: biaxial, fatigue, stress, testing
Procedia PDF Downloads 1272469 The Performance Improvement of Solar Aided Power Generation System by Introducing the Second Solar Field
Authors: Junjie Wu, Hongjuan Hou, Eric Hu, Yongping Yang
Abstract:
Solar aided power generation (SAPG) technology has been proven as an efficient way to make use of solar energy for power generation purpose. In an SAPG plant, a solar field consisting of parabolic solar collectors is normally used to supply the solar heat in order to displace the high pressure/temperature extraction steam. To understand the performance of such a SAPG plant, a new simulation model was developed by the authors recently, in which the boiler was treated, as a series of heat exchangers unlike other previous models. Through the simulations using the new model, it was found the outlet properties of reheated steam, e.g. temperature, would decrease due to the introduction of the solar heat. The changes make the (lower stage) turbines work under off-design condition. As a result, the whole plant’s performance may not be optimal. In this paper, the second solar filed was proposed to increase the inlet temperature of steam to be reheated, in order to bring the outlet temperature of reheated steam back to the designed condition. A 600MW SAPG plant was simulated as a case study using the new model to understand the impact of the second solar field on the plant performance. It was found in the study, the 2nd solar field would improve the plant’s performance in terms of cycle efficiency and solar-to-electricity efficiency by 1.91% and 6.01%. The solar-generated electricity produced by per aperture area under the design condition was 187.96W/m2, which was 26.14% higher than the previous design.Keywords: solar-aided power generation system, off-design performance, coal-saving performance, boiler modelling, integration schemes
Procedia PDF Downloads 2892468 The Control of Wall Thickness Tolerance during Pipe Purchase Stage Based on Reliability Approach
Authors: Weichao Yu, Kai Wen, Weihe Huang, Yang Yang, Jing Gong
Abstract:
Metal-loss corrosion is a major threat to the safety and integrity of gas pipelines as it may result in the burst failures which can cause severe consequences that may include enormous economic losses as well as the personnel casualties. Therefore, it is important to ensure the corroding pipeline integrity and efficiency, considering the value of wall thickness, which plays an important role in the failure probability of corroding pipeline. Actually, the wall thickness is controlled during pipe purchase stage. For example, the API_SPEC_5L standard regulates the allowable tolerance of the wall thickness from the specified value during the pipe purchase. The allowable wall thickness tolerance will be used to determine the wall thickness distribution characteristic such as the mean value, standard deviation and distribution. Taking the uncertainties of the input variables in the burst limit-state function into account, the reliability approach rather than the deterministic approach will be used to evaluate the failure probability. Moreover, the cost of pipe purchase will be influenced by the allowable wall thickness tolerance. More strict control of the wall thickness usually corresponds to a higher pipe purchase cost. Therefore changing the wall thickness tolerance will vary both the probability of a burst failure and the cost of the pipe. This paper describes an approach to optimize the wall thickness tolerance considering both the safety and economy of corroding pipelines. In this paper, the corrosion burst limit-state function in Annex O of CSAZ662-7 is employed to evaluate the failure probability using the Monte Carlo simulation technique. By changing the allowable wall thickness tolerance, the parameters of the wall thickness distribution in the limit-state function will be changed. Using the reliability approach, the corresponding variations in the burst failure probability will be shown. On the other hand, changing the wall thickness tolerance will lead to a change in cost in pipe purchase. Using the variation of the failure probability and pipe cost caused by changing wall thickness tolerance specification, the optimal allowable tolerance can be obtained, and used to define pipe purchase specifications.Keywords: allowable tolerance, corroding pipeline segment, operation cost, production cost, reliability approach
Procedia PDF Downloads 3942467 Numerical Study on Response of Polymer Electrolyte Fuel Cell (PEFCs) with Defects under Different Load Conditions
Authors: Muhammad Faizan Chinannai, Jaeseung Lee, Mohamed Hassan Gundu, Hyunchul Ju
Abstract:
Fuel cell is known to be an effective renewable energy resource which is commercializing in the present era. It is really important to know about the improvement in performance even when the system faces some defects. This study was carried out to analyze the performance of the Polymer electrolyte fuel cell (PEFCs) under different operating conditions such as current density, relative humidity and Pt loadings considering defects with load changes. The purpose of this study is to analyze the response of the fuel cell system with defects in Balance of Plants (BOPs) and catalyst layer (CL) degradation by maintaining the coolant flow rate as such to preserve the cell temperature at the required level. Multi-Scale Simulation of 3D two-phase PEFC model with coolant was carried out under different load conditions. For detailed analysis and performance comparison, extensive contours of temperature, current density, water content, and relative humidity are provided. The simulation results of the different cases are compared with the reference data. Hence the response of the fuel cell stack with defects in BOP and CL degradations can be analyzed by the temperature difference between the coolant outlet and membrane electrode assembly. The results showed that the Failure of the humidifier increases High-Frequency Resistance (HFR), air flow defects and CL degradation results in the non-uniformity of current density distribution and high cathode activation overpotential, respectively.Keywords: PEM fuel cell, fuel cell modeling, performance analysis, BOP components, current density distribution, degradation
Procedia PDF Downloads 2122466 Biomolecules Based Microarray for Screening Human Endothelial Cells Behavior
Authors: Adel Dalilottojari, Bahman Delalat, Frances J. Harding, Michaelia P. Cockshell, Claudine S. Bonder, Nicolas H. Voelcker
Abstract:
Endothelial Progenitor Cell (EPC) based therapies continue to be of interest to treat ischemic events based on their proven role to promote blood vessel formation and thus tissue re-vascularisation. Current strategies for the production of clinical-grade EPCs requires the in vitro isolation of EPCs from peripheral blood followed by cell expansion to provide sufficient quantities EPCs for cell therapy. This study aims to examine the use of different biomolecules to significantly improve the current strategy of EPC capture and expansion on collagen type I (Col I). In this study, four different biomolecules were immobilised on a surface and then investigated for their capacity to support EPC capture and proliferation. First, a cell microarray platform was fabricated by coating a glass surface with epoxy functional allyl glycidyl ether plasma polymer (AGEpp) to mediate biomolecule binding. The four candidate biomolecules tested were Col I, collagen type II (Col II), collagen type IV (Col IV) and vascular endothelial growth factor A (VEGF-A), which were arrayed on the epoxy-functionalised surface using a non-contact printer. The surrounding area between the printed biomolecules was passivated with polyethylene glycol-bisamine (A-PEG) to prevent non-specific cell attachment. EPCs were seeded onto the microarray platform and cell numbers quantified after 1 h (to determine capture) and 72 h (to determine proliferation). All of the extracellular matrix (ECM) biomolecules printed demonstrated an ability to capture EPCs within 1 h of cell seeding with Col II exhibiting the highest level of attachment when compared to the other biomolecules. Interestingly, Col IV exhibited the highest increase in EPC expansion after 72 h when compared to Col I, Col II and VEGF-A. These results provide information for significant improvement in the capture and expansion of human EPC for further application.Keywords: biomolecules, cell microarray platform, cell therapy, endothelial progenitor cells, high throughput screening
Procedia PDF Downloads 2882465 Medical Nutritional Therapy in Human Immunodeficiency Virus Infection with Tuberculosis and Severe Malnutrition: A Case Report
Authors: Lista Andriyati, Nurpudji A Taslim
Abstract:
The human immunodeficiency virus (HIV) patients have potential nutritional and metabolic problems. HIV is a virus that attacks cells T helper and impairs the function of immune cells. Infected individuals gradually become immunodeficient, results in increased susceptibility to a wide range of infections such as tuberculosis (TB). Malnutrition has destructive effects on the immune system and host defense mechanisms. Effective and proper nutritional therapies are important to improve medical outcomes and quality of life, which is associated with functional improvement. A case of 38-years old man admitted to hospital with loss of consciousness and was diagnosed HIV infection and relapse lung TB with severe malnutrition, fever, oral candidiasis, anemia (6.3 g/dL), severe hypoalbuminemia (1.9 g/dL), severe hypokalemia (2.2 mmol/L), immune depletion (1085 /µL) and elevated liver enzyme (ALT 1198/AST 375 U/L). Nutritional intervention by giving 2300 kcal of energy, protein 2 g/IBW/day, carbohydrate 350 g, fat 104 g through enteral and parenteral nutrition. Supplementations administered are zinc, vitamin A, vitamin B1, vitamin B6, vitamin B12, vitamin C, vitamin D, and snakehead fish extract high content of protein albumin (Pujimin®). After 46 days, there are clinical and metabolic improvement in Hb (6.3 to 11.2 g/dL), potassium (2.2 to 3.4 mmol/L), albumin (1.9 to 2.3 g/dL), ALT 1198 to 47/AST 375 to 68 U/L) and improved awareness. In conclusion, nutritional therapy in HIV infection with adequate macronutrients and micronutrients fulfillment and immunonutrition is very important to avoid cachexia and to improve nutritional status and immune disfunction.Keywords: HIV, hypoalbuminemia, malnutrition, tuberculosis
Procedia PDF Downloads 1272464 Drastic Increase of Wave Dissipation within Metastructures Having Negative Stiffness Inclusions
Authors: D. Chronopoulos, I. Antoniadis, V. Spitas, D. Koulocheris, V. Polenta
Abstract:
A concept of a simple linear oscillator, incorporating a negative stiffness element is demonstrated to exhibit extraordinary damping properties. This oscillator shares the same overall (static) stiffness, the same mass and the same damping element with a reference classical linear SDOF oscillator. However, it differs from the original SDOF oscillator by appropriately redistributing the component spring stiffness elements and by re-allocating the damping element. Despite the fact that the proposed oscillator incorporates a negative stiffness element, it is designed to be both statically and dynamically stable. Once such an oscillator is optimally designed, it is shown to exhibit an extraordinary apparent damping ratio, which is even several orders of magnitude higher than that of the original SDOF system, especially in cases where the original damping of the SDOF system is low. This damping behavior is not a result of a novel additional extraordinary energy dissipation mechanism, but a result of the phase difference between the positive and the negative stiffness elastic forces, which is in turn a consequence of the proper re-distribution of the stiffness and the damper elements. This fact ensures that an adequate level of elastic forces exists throughout the entire frequency range, able to counteract the inertial and the excitation forces. Next, Acoustic or Phononic Meta-materials are considered, in which one atom is replaced by the concept of the above simple linear oscillator. The results indicate that not only the damping of the meta-material verifies and exceeds the one expected from the so-called "meta-damping" behavior, but also that the band gap of the meta-material can be significantly increased.Keywords: wave propagation, periodic structures, wave damping, mechanical engineering
Procedia PDF Downloads 3542463 The DAQ Debugger for iFDAQ of the COMPASS Experiment
Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius
Abstract:
In general, state-of-the-art Data Acquisition Systems (DAQ) in high energy physics experiments must satisfy high requirements in terms of reliability, efficiency and data rate capability. This paper presents the development and deployment of a debugging tool named DAQ Debugger for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. Utilizing a hardware event builder, the iFDAQ is designed to be able to readout data at the average maximum rate of 1.5 GB/s of the experiment. In complex softwares, such as the iFDAQ, having thousands of lines of code, the debugging process is absolutely essential to reveal all software issues. Unfortunately, conventional debugging of the iFDAQ is not possible during the real data taking. The DAQ Debugger is a tool for identifying a problem, isolating the source of the problem, and then either correcting the problem or determining a way to work around it. It provides the layer for an easy integration to any process and has no impact on the process performance. Based on handling of system signals, the DAQ Debugger represents an alternative to conventional debuggers provided by most integrated development environments. Whenever problem occurs, it generates reports containing all necessary information important for a deeper investigation and analysis. The DAQ Debugger was fully incorporated to all processes in the iFDAQ during the run 2016. It helped to reveal remaining software issues and improved significantly the stability of the system in comparison with the previous run. In the paper, we present the DAQ Debugger from several insights and discuss it in a detailed way.Keywords: DAQ Debugger, data acquisition system, FPGA, system signals, Qt framework
Procedia PDF Downloads 2832462 Molecular-Dynamics Study of H₂-C₃H₈-Hydrate Dissociation: Non-Equilibrium Analysis
Authors: Mohammad Reza Ghaani, Niall English
Abstract:
Hydrogen is looked upon as the next-generation clean-energy carrier; the search for an efficient material and method for storing hydrogen has been, and is, pursued relentlessly. Clathrate hydrates are inclusion compounds wherein guest gas molecules like hydrogen are trapped in a host water-lattice framework. These types of materials can be categorised as potentially attractive hosting environments for physical hydrogen storage (i.e., no chemical reaction upon storage). Non-equilibrium molecular dynamics (NEMD) simulations have been performed to investigate thermal-driven break-up of propane-hydrate interfaces with liquid water at 270-300 K, with the propane hydrate containing either one or no hydrogen molecule in each of its small cavities. In addition, two types of hydrate-surface water-lattice molecular termination were adopted, at the hydrate edge with water: a 001-direct surface cleavage and one with completed cages. The geometric hydrate-ice-liquid distinction criteria of Báez and Clancy were employed to distinguish between the hydrate, ice lattices, and liquid-phase. Consequently, the melting temperatures of interface were estimated, and dissociation rates were observed to be strongly dependent on temperature, with higher dissociation rates at larger over-temperatures vis-à-vis melting. The different hydrate-edge terminations for the hydrate-water interface led to statistically-significant differences in the observed melting point and dissociation profile: it was found that the clathrate with the planar interface melts at around 280 K, whilst the melting temperature of the cage-completed interface was determined to be circa 270 K.Keywords: hydrogen storage, clathrate hydrate, molecular dynamics, thermal dissociation
Procedia PDF Downloads 2722461 Super-Exchange Coupling in Oxygen Rich Rare-Earth Based Sm₂MnRuO₆₊δ Double Perovskite
Authors: S. Nqayi, B. Sondezi
Abstract:
A rare-earth-based Sm₂MnRuO₆₊δ (SMRO) double perovskite was prepared using a high-temperature solid-state reaction. The structural, morphological, chemical, thermodynamic, and magnetic properties were measured with X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), X-ray photoemission spectroscopy (XPS), and vibrating sample magnetometer (VSM), respectively. The XRD revealed a tetragonal structure belonging to the I4/mmm space group, number 139, with linear Mn−O−Ru bonds. Replacing the well-studied alkaline earth metal with a rare-earth element increased the Mn-O bond length difference between the shorter equatorial (Mn-Oab) and the axial (Mn-Oc) bonds by approximately 6.3%. The elemental composition showed an O-rich double perovskite with a Ru deficit, which encourages the formation of a Ru⁶⁺ (d²) state. XPS spectra of Sm-3d, Ru-3d, and Mn-2p revealed the coexistence of a double oxidation state for each cation; Sm²⁺, Sm³⁺, Ru³⁺, Ru⁶⁺, Mn²⁺ , and Mn³⁺, in varying proportions. Entropy studies showed drastic ordering of spins at low temperatures (up to 12.4 K), whilst increasing temperatures above this point resulted in a drastic increase of disorder of the spins (up to 43.26 K), beyond which a constant slope of entropy is observed. Magnetic measurements revealed two magnetic ground states at TN = 12.4 K and TC = 43.3 K ordering antiferromagnetically (AFM) and ferromagnetically (FM), respectively. Kneller fit further showed that the materials become completely paramagnetic at TB = 88.1 K, (the blocking temperature). The existence of ferromagnetic (FM) super-exchange coupling in this work originating from Mn³⁺ (t³₂𝓰e¹𝓰)−O−Ru³⁺ (t⁵₂𝓰e⁰𝓰) and Mn²⁺ (t³₂𝓰e²𝓰−O−Ru⁶⁺ (t²₂𝓰e⁰𝓰) which plays an important role in suppressing the Mn/Ru−O−Mn/Ru antiferromagnetic (AFM) interactions.Keywords: solid-state reaction, super-exchange coupling, ferromagnetic, Kneller’s law, entropy
Procedia PDF Downloads 182460 Usage of Biosorbent Material for the Removal of Nitrate from Wastewater
Authors: M. Abouleish, R. Umer, Z. Sara
Abstract:
Nitrate can cause serious environmental and human health problems. Effluent from different industries and excessive use of fertilizers have increased the level of nitrate in ground and surface water. Nitrate can convert to nitrite in the body, and as a result, can lead to Methemoglobinemia and cancer. Therefore, different organizations have set standard limits for nitrate and nitrite. The United States Environmental Protection Agency (USEPA) has set a Maximum Contaminant Level Goal (MCLG) of 10 mg N/L for nitrate and 1 mg N/L for nitrite. The removal of nitrate from water and wastewater is very important to ensure the availability of clean water. Different plant materials such as banana peel, rice hull, coconut and bamboo shells, have been studied as biosorbents for the removal of nitrates from water. The use of abundantly existing plant material as an adsorbent material and the lack of energy requirement for the adsorption process makes biosorption a sustainable approach. Therefore, in this research, the fruit of the plant was investigated for its ability to act as a biosorbent to remove the nitrate from wastewater. The effect of pH on nitrate removal was studied using both the raw and chemically activated fruit (adsorbent). Results demonstrated that the adsorbent needs to be chemically activated before usage to remove the nitrate from wastewater. pH did not have a significant effect on the adsorption process, with maximum adsorption of nitrate occurring at pH 4. SEM/EDX results demonstrated that there is no change in the surface of the adsorbent as a result of the chemical activation. Chemical activation of the adsorbent using NaOH increased the removal of nitrate by 6%; therefore, various methods of activation of the adsorbent will be investigated to increase the removal of nitrate.Keywords: biosorption, nitrates, plant material, water, and wastewater treatment
Procedia PDF Downloads 1512459 Local Governments Supporting Environmentally Sustainable Meals to Protect the Planet and People
Authors: Magdy Danial Riad
Abstract:
Introduction: The ability of our world to support the expanding population after 2050 is at risk due to the food system's global role in poor health, climate change, and resource depletion. Healthy, equitable, and sustainable food systems must be achieved from the point of production through consumption in order to meet several of the sustainable development goals (SDG) targets. There is evidence that changing the local food environment can effectively change dietary habits in a community. The purpose of this article is to outline the policy initiatives taken by local governments to support environmentally friendly eating habits. Methods: Five databases were searched for peer-reviewed articles that described local government authorities' implementation of environmentally sustainable eating habits, were located in cities that had signed the Milan Urban Food Policy Pact, were published after 2015, were available in English, and described policy interventions. Data extraction was a two-step approach that started with extracting information from the included study and ended with locating information unique to policies in the grey literature. Results: 45 papers that described a variety of policy initiatives from low-, middle-, and high-income countries met the inclusion criteria. A variety of desired dietary behaviors were the focus of policy action, including reducing food waste, procuring food locally and in season, boosting breastfeeding, avoiding overconsumption, and consuming more plant-based meals and fewer items derived from animals. Conclusions: In order to achieve SDG targets, local governments are under pressure to implement evidence-based interventions. This study can help direct local governments toward evidence-based policy measures to improve regional food systems and support ecologically friendly eating habits.Keywords: meals, planet, poor health, eating habits
Procedia PDF Downloads 512458 Developing Indicators in System Mapping Process Through Science-Based Visual Tools
Authors: Cristian Matti, Valerie Fowles, Eva Enyedi, Piotr Pogorzelski
Abstract:
The system mapping process can be defined as a knowledge service where a team of facilitators, experts and practitioners facilitate a guided conversation, enable the exchange of information and support an iterative curation process. System mapping processes rely on science-based tools to introduce and simplify a variety of components and concepts of socio-technical systems through metaphors while facilitating an interactive dialogue process to enable the design of co-created maps. System maps work then as “artifacts” to provide information and focus the conversation into specific areas around the defined challenge and related decision-making process. Knowledge management facilitates the curation of that data gathered during the system mapping sessions through practices of documentation and subsequent knowledge co-production for which common practices from data science are applied to identify new patterns, hidden insights, recurrent loops and unexpected elements. This study presents empirical evidence on the application of these techniques to explore mechanisms by which visual tools provide guiding principles to portray system components, key variables and types of data through the lens of climate change. In addition, data science facilitates the structuring of elements that allow the analysis of layers of information through affinity and clustering analysis and, therefore, develop simple indicators for supporting the decision-making process. This paper addresses methodological and empirical elements on the horizontal learning process that integrate system mapping through visual tools, interpretation, cognitive transformation and analysis. The process is designed to introduce practitioners to simple iterative and inclusive processes that create actionable knowledge and enable a shared understanding of the system in which they are embedded.Keywords: indicators, knowledge management, system mapping, visual tools
Procedia PDF Downloads 1932457 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process
Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke
Abstract:
In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.Keywords: composite, dynamic mechanical analysis, long fibre reinforced thermoplastics, mechanical properties, time temperature superposition
Procedia PDF Downloads 1972456 Interaction Evaluation of Silver Ion and Silver Nanoparticles with Dithizone Complexes Using DFT Calculations and NMR Analysis
Authors: W. Nootcharin, S. Sujittra, K. Mayuso, K. Kornphimol, M. Rawiwan
Abstract:
Silver has distinct antibacterial properties and has been used as a component of commercial products with many applications. An increasing number of commercial products cause risks of silver effects for human and environment such as the symptoms of Argyria and the release of silver to the environment. Therefore, the detection of silver in the aquatic environment is important. The colorimetric chemosensor is designed by the basic of ligand interactions with a metal ion, leading to the change of signals for the naked-eyes which are very useful method to this application. Dithizone ligand is considered as one of the effective chelating reagents for metal ions due to its high selectivity and sensitivity of a photochromic reaction for silver as well as the linear backbone of dithizone affords the rotation of various isomeric forms. The present study is focused on the conformation and interaction of silver ion and silver nanoparticles (AgNPs) with dithizone using density functional theory (DFT). The interaction parameters were determined in term of binding energy of complexes and the geometry optimization, frequency of the structures and calculation of binding energies using density functional approaches B3LYP and the 6-31G(d,p) basis set. Moreover, the interaction of silver–dithizone complexes was supported by UV–Vis spectroscopy, FT-IR spectrum that was simulated by using B3LYP/6-31G(d,p) and 1H NMR spectra calculation using B3LYP/6-311+G(2d,p) method compared with the experimental data. The results showed the ion exchange interaction between hydrogen of dithizone and silver atom, with minimized binding energies of silver–dithizone interaction. However, the result of AgNPs in the form of complexes with dithizone. Moreover, the AgNPs-dithizone complexes were confirmed by using transmission electron microscope (TEM). Therefore, the results can be the useful information for determination of complex interaction using the analysis of computer simulations.Keywords: silver nanoparticles, dithizone, DFT, NMR
Procedia PDF Downloads 2072455 A Multi-Family Offline SPE LC-MS/MS Analytical Method for Anionic, Cationic and Non-ionic Surfactants in Surface Water
Authors: Laure Wiest, Barbara Giroud, Azziz Assoumani, Francois Lestremau, Emmanuelle Vulliet
Abstract:
Due to their production at high tonnages and their extensive use, surfactants are contaminants among those determined at the highest concentrations in wastewater. However, analytical methods and data regarding their occurrence in river water are scarce and concern only a few families, mainly anionic surfactants. The objective of this study was to develop an analytical method to extract and analyze a wide variety of surfactants in a minimum of steps, with a sensitivity compatible with the detection of ultra-traces in surface waters. 27 substances, from 12 families of surfactants, anionic, cationic and non-ionic were selected for method optimization. Different retention mechanisms for the extraction by solid phase extraction (SPE) were tested and compared in order to improve their detection by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The best results were finally obtained with a C18 grafted silica LC column and a polymer cartridge with hydrophilic lipophilic balance (HLB), and the method developed allows the extraction of the three types of surfactants with satisfactory recoveries. The final analytical method comprised only one extraction and two LC injections. It was validated and applied for the quantification of surfactants in 36 river samples. The method's limits of quantification (LQ), intra- and inter-day precision and accuracy were evaluated, and good performances were obtained for the 27 substances. As these compounds have many areas of application, contaminations of instrument and method blanks were observed and considered for the determination of LQ. Nevertheless, with LQ between 15 and 485 ng/L, and accuracy of over 80%, this method was suitable for monitoring surfactants in surface waters. Application on French river samples revealed the presence of anionic, cationic and non-ionic surfactants with median concentrations ranging from 24 ng/L for octylphenol ethoxylates (OPEO) to 4.6 µg/L for linear alkylbenzenesulfonates (LAS). The analytical method developed in this work will therefore be useful for future monitoring of surfactants in waters. Moreover, this method, which shows good performances for anionic, non-ionic and cationic surfactants, may be easily adapted to other surfactants.Keywords: anionic surfactant, cationic surfactant, LC-MS/MS, non-ionic surfactant, SPE, surface water
Procedia PDF Downloads 1442454 A Review of Farmer Participation in Information and Communication Technology through Mobile Banking and Mobile Marketing in Rural Agricultural Systems
Authors: J. Cadby, K. Miyazawa
Abstract:
Information and Communication Technology (ICT) has been widely adopted into the agricultural landscape with advancements of mobile connectivity and data accessibility. In developed nations, mobile-technology is well integrated into marketing transactions, and also plays a crucial role in making data-driven decisions on-farm. In developing nations, mobile banking and access to agricultural extension services allow for informed decision-making and smoother transactions. In addition, the availability of updated and readily available market and climate data provides a negotiation platform, reducing economic risks for farmers worldwide. The total usage of mobile technology has risen over the past 20 years, and almost three-quarters of the world’s population subscribes to mobile technology. This study reviewed mobile technology integration into agricultural systems in developing and developed nations. Data from secondary sources were collected and investigated. The objectives of the study include a review of the success of mobile banking transactions in developing nations, and a review of application and SMS based services for direct marketing in both developed and developing nations. Rural farmers in developing countries with access to diverse m-banking options experienced increased access to farm investment resources with the use of mobile banking technology. Rural farmers involved in perishable crop production were also more likely to benefit from mobile platform sales participation. ICT programs reached through mobile application and SMS increased access to agricultural extension materials and marketing tools for demographics that faced literacy-challenges and isolated markets. As mobile technology becomes more ubiquitous in the global agricultural system, training and market opportunities to facilitate mobile usage in developing agricultural systems are necessary. Digital skills training programs are necessary in order to improve equal global adoption of ICT in agriculture.Keywords: market participation, mobile banking, mobile technology, rural farming
Procedia PDF Downloads 2522453 Emulsified Oil Removal in Produced Water by Graphite-Based Adsorbents Using Adsorption Coupled with Electrochemical Regeneration
Authors: Zohreh Fallah, Edward P. L. Roberts
Abstract:
One of the big challenges for produced water treatment is removing oil from water in the form of emulsified droplets which are not easily separated. An attractive approach is adsorption, as it is a simple and effective process. However, adsorbents must be regenerated in order to make the process cost effective. Several sorbents have been tested for treating oily wastewater. However, some issues such as high energy consumption for activated carbon thermal regeneration have been reported. Due to their significant electrical conductivity, Graphite Intercalation Compounds (GIC) were found to be suitable to be regenerated electrochemically. They are non-porous materials with low surface area and fast adsorptive capacity which are useful for removal of low concentration of organics. An innovative adsorption/regeneration process has been developed at the University of Manchester in which adsorption of organics are done by using a patented GIC adsorbent coupled with subsequent electrochemical regeneration. The oxidation of adsorbed organics enables 100% regeneration so that the adsorbent can be reused over multiple adsorption cycles. GIC adsorbents are capable of removing a wide range of organics and pollutants; however, no comparable report is available for removal of emulsified oil in produced water using abovementioned process. In this study the performance of this technology for the removal of emulsified oil in wastewater was evaluated. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for both real produced water and model emulsions. The amount of oil in wastewater was measured by using the toluene extraction/fluorescence analysis before and after adsorption and electrochemical regeneration cycles. It was found that oil in water emulsion could be successfully treated by the treatment process and More than 70% of oil was removed.Keywords: adsorption, electrochemical regeneration, emulsified oil, produced water
Procedia PDF Downloads 5802452 Genetically Modified Organisms
Authors: Mudrika Singhal
Abstract:
The research paper is basically about how the genetically modified organisms evolved and their significance in today’s world. It also highlights about the various pros and cons of the genetically modified organisms and the progress of India in this field. A genetically modified organism is the one whose genetic material has been altered using genetic engineering techniques. They have a wide range of uses such as transgenic plants, genetically modified mammals such as mouse and also in insects and aquatic life. Their use is rooted back to the time around 12,000 B.C. when humans domesticated plants and animals. At that humans used genetically modified organisms produced by the procedure of selective breeding and not by genetic engineering techniques. Selective breeding is the procedure in which selective traits are bred in plants and animals and then are domesticated. Domestication of wild plants into a suitable cultigen is a well known example of this technique. GMOs have uses in varied fields ranging from biological and medical research, production of pharmaceutical drugs to agricultural fields. The first organisms to be genetically modified were the microbes because of their simpler genetics. At present the genetically modified protein insulin is used to treat diabetes. In the case of plants transgenic plants, genetically modified crops and cisgenic plants are the examples of genetic modification. In the case of mammals, transgenic animals such as mice, rats etc. serve various purposes such as researching human diseases, improvement in animal health etc. Now coming upon the pros and cons related to the genetically modified organisms, pros include crops with higher yield, less growth time and more predictable in comparison to traditional breeding. Cons include that they are dangerous to mammals such as rats, these products contain protein which would trigger allergic reactions. In India presently, group of GMOs include GM microorganisms, transgenic crops and animals. There are varied applications in the field of healthcare and agriculture. In the nutshell, the research paper is about the progress in the field of genetic modification, taking along the effects in today’s world.Keywords: applications, mammals, transgenic, engineering and technology
Procedia PDF Downloads 5962451 Relationship between Conjugated Linoleic Acid Intake, Biochemical Parameters and Body Fat among Adults and Elderly
Authors: Marcela Menah de Sousa Lima, Victor Ushijima Leone, Natasha Aparecida Grande de Franca, Barbara Santarosa Emo Peters, Ligia Araujo Martini
Abstract:
Conjugated linoleic acid (CLA) intake has been constantly related to benefits to human health since having a positive effect on reducing body fat. The aim of the present study was to investigate the association between CLA intake and biochemical measurements and body composition of adults and the elderly. Subjects/Methods: 287 adults and elderly participants in an epidemiological study in Sao Paulo Brazil, were included in the present study. Participants had their dietary data obtained by two non-consecutive 24HR, a body composition assessed by dual-energy absorptiometry exam (DXA), and a blood collection. Mean differences and a correlation test was performed. For all statistical tests, a significance of 5% was considered. Results: CLA intake showed a positive correlation with HDL-c levels (r = 0.149; p = 0.011) and negative with VLDL-c levels (r = -0.134; p = 0.023), triglycerides (r = -0.135; p = 0.023) and glycemia (r = -0.171; p = 0.004), as well as negative correlation with visceral adipose tissue (VAT) (r = -0.124, p = 0.036). Evaluating individuals in two groups according to VAT values, a significant difference in CLA intake was observed (p = 0.041), being the group with the highest VAT values, the one with the lowest fatty acid intake. Conclusions: This study suggests that CLA intake is associated with a better lipid profile and lower visceral adipose tissue volume, which contributes to the investigation of the effects of CLA on obesity parameters. However, it is necessary to investigate the effects of CLA from milk and dairy products in the control adiposity.Keywords: adiposity, dairy products, diet, fatty acids
Procedia PDF Downloads 1392450 Effective Budget Utilization for the Production of Better Health Professionals
Authors: Tesfahiwot Abay Weldearegay
Abstract:
Ethiopian Federal ministry of health, in collaboration with different partners, provides financial support from sustainable development grants and global fund budget sources to Regional health science colleges through the regional health bureau to improve the quality of training and avail professionals based on the regional health bureau demand from the year of 2012 to 2019EC. It was mainly focused on health extension workers (HEW) Level III&IV, Health Information technicians (HIT), Emergency Medical technicians (EMT), laboratory technicians, Pharmacy technicians, Anesthesia Level V, Radiography, midwifery, Environmental health and biomedical equipment technician. Laboratory technician, Radiography and Pharmacy technician, was retooling program. The study aims at assessing the Utilization and outcome of budgets transferred through regional health bureau to regional health science colleges. The study used both quantitative and qualitative approaches to develop sufficient data to explain the utilization of the budget, and outcomes obtained from the transferred budget and to identify the gaps. The data for the study were obtained through structured questionnaires and interviews was conducted to increase the reliability of the data. Nationally, students enrolled in different disciplines at RHSC through budget support for RHB to improve the quality of training were 87 840 students and the total Budget transferred, according to MOU was 895,752,038 Ethiopian birr. Among the students enrolled nationally in different disciplines at RHSC through budget support only 72% of students have graduated from different disciplines. In Hareri and Addis Ababa, all enrolled students were graduated (100%). At the same time, Oromia 69%, Amara 77%, SNNP 58% students graduated, respectively. The demand of the regional health bureau and the enrollment capacity of health science colleges increased from year to year. The financial support added great value to the HSCs to cop with problems related to student fees, skill lab materials and renovation.Keywords: emergency medical technician, radiography, Biomedical, health extension
Procedia PDF Downloads 842449 Comparative Study of Mechanical and Physiological Gait Efficiency Following Anterior Cruciate Ligament Reconstruction
Authors: Radwa E. Sweif, Amira A. A. Abdallah
Abstract:
Background: Evaluation of gait efficiency is used to examine energy consumption especially in patients with movement disorders. Hypothesis/Purpose: This study compared the physiological and mechanical measures of gait efficiency between patients with ACL reconstruction (ACLR) and healthy controls and correlated among these measures. Methods: Seventeen patients with ACLR and sixteen healthy controls with mean ± SD age 23.06±4.76 vs 24.85±6.47 years, height 173.93±6.54 vs 175.64±7.37cm, and weight 74.25±12.1 vs 76.52±10.14 kg, respectively, participated in the study. The patients were operated on six months prior to testing. They should have completed their accelerated rehabilitation program during this period. A 3D motion analysis system was used for collecting the mechanical measures (Biomechanical Efficiency Quotient (BEQ), the maximum degree of knee internal rotation during stance phase and speed of walking). The physiological measures (Physiological Cost Index (PCI) and Rate of Perceived Exertion (RPE)) were collected after performing the 6- minute walking test. Results: MANOVA showed that the maximum degree of knee internal rotation, PCI, and RPE increased and the speed decreased significantly (p<0.05) in the patients compared with the controls with no significant difference for the BEQ. Finally, there were significant (p<0.05) positive correlations between each of the PCI & RPE and each of the BEQ, speed of walking and the maximum degree of knee internal rotation in each group. Conclusion: It was concluded that there are alterations in both mechanical and physiological measures of gait efficiency in patients with ACLR after being rehabilitated, clarifying the need for performing additional endurance as well as knee stability training programs. Moreover, the positive correlations indicate that using either of the mechanical or physiological measures for evaluating gait efficiency is acceptable.Keywords: ACL reconstruction, mechanical, physiological, gait efficiency
Procedia PDF Downloads 4362448 Eco-Hammam Initiative: Replicating the FSAC Model for Sustainable Wastewater Treatment and Resource Reuse in Dar Bouazza, Morocco
Authors: Nihad Chakri, Btissam El Amrani, Faouzi Berrada, Halima Jounaid, Fouad Amraoui
Abstract:
In the context of the increasing water resource scarcity in Morocco in recent years, the use of unconventional resources has become imperative. Although efforts have been made in the field of sanitation in urban areas, rural areas, due to their specificities, such as scattered dwellings and limited accessibility, suffer from a lack of basic infrastructure. This work focuses on replicating the Faculty of Sciences Ain Chock (FSAC) model for the treatment and reuse of wastewater from a peri-urban traditional hammam in Casablanca, specifically in the municipality of Dar Bouazza. This initiative is part of the Eco-Hammam project, which aims to minimize the negative impacts of traditional hammams in terms of irrational and uncontrolled consumption of water and wood energy resources. To achieve this, a comprehensive environmental diagnosis of all hammams in the municipality of Dar Bouazza, our study site, has been undertaken. Then, a feasibility study is also conducted to assess the possibility of replicating the FSAC mini-station to treat the wastewater of the selected pilot hammam, namely, My Yacoub II.Keywords: water resource scarcity, unconventional resources, sanitation, per-urban areas, rural areas, basic infrastructure, replication, reuse of wastewater, traditional hammam, Casablanca, Municipality of Dar Bouazza, negative impacts, environmental diagnosis, feasibility study, pilot hammam, My Yacoub II
Procedia PDF Downloads 632447 An Efficient Aptamer-Based Biosensor Developed via Irreversible Pi-Pi Functionalisation of Graphene/Zinc Oxide Nanocomposite
Authors: Sze Shin Low, Michelle T. T. Tan, Poi Sim Khiew, Hwei-San Loh
Abstract:
An efficient graphene/zinc oxide (PSE-G/ZnO) platform based on pi-pi stacking, non-covalent interactions for the development of aptamer-based biosensor was presented in this study. As a proof of concept, the DNA recognition capability of the as-developed PSE-G/ZnO enhanced aptamer-based biosensor was evaluated using Coconut Cadang-cadang viroid disease (CCCVd). The G/ZnO nanocomposite was synthesised via a simple, green and efficient approach. The pristine graphene was produced through a single step exfoliation of graphite in sonochemical alcohol-water treatment while the zinc nitrate hexahydrate was mixed with the graphene and subjected to low temperature hydrothermal growth. The developed facile, environmental friendly method provided safer synthesis procedure by eliminating the need of harsh reducing chemicals and high temperature. The as-prepared nanocomposite was characterised by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to evaluate its crystallinity, morphology and purity. Electrochemical impedance spectroscopy (EIS) was employed for the detection of CCCVd sequence with the use of potassium ferricyanide (K3[Fe(CN)6]). Recognition of the RNA analytes was achieved via the significant increase in resistivity for the double stranded DNA, as compared to single-stranded DNA. The PSE-G/ZnO enhanced aptamer-based biosensor exhibited higher sensitivity than the bare biosensor, attributing to the synergistic effect of high electrical conductivity of graphene and good electroactive property of ZnO.Keywords: aptamer-based biosensor, graphene/zinc oxide nanocomposite, green synthesis, screen printed carbon electrode
Procedia PDF Downloads 3682446 Construction of Genetic Recombinant Yeasts with High Environmental Tolerance by Accumulation of Trehalose and Detoxication of Aldehyde
Authors: Yun-Chin Chung, Nileema Divate, Gen-Hung Chen, Pei-Ru Huang, Rupesh Divate
Abstract:
Many environmental factors, such as glucose concentration, ethanol, temperature, osmotic pressure and pH, decrease the production rate of ethanol using yeast as a starter. Fermentation starters with high tolerance to various stresses are always demanded for brewing industry. Trehalose, a storage carbohydrate in cell wall of yeast, plays an important role in tolerance of environmental stress by preserving integrity of plasma membrane and stabilizing proteins. Furan aldehydes are toxic to yeast and the growth rate of yeast is significantly reduced if furan aldehydes were present in the fermentation medium. In yeast, aldehyde reductase is involved in the detoxification of reactive aldehydes and consequently the growth of yeast is improved. The aims of this study were to construct a genetic recombinant Saccharomyces cerevisiae or Pichia pastoris with furfural and HMF degrading and high ethanol tolerance capacities. Yeast strains were engineered by genetic recombination for overexpression of trehalose-6-phosphate synthase gene (tps1) and aldehyde reductase gene (ari1). TPS1 gene was cloned from S. cerevisiae by reverse transcription-polymerase chain reaction (RT-PCR) and then ligated with pGAPZαC vector. The constructed vector, pGAPZC-tps1, was transformed to recombinant yeasts strain with overexpression of ari1. The transformants with pGAPZC-tps1-ari1 were generated called STA (S. cerevisiae) and PTA (P. pastoris) with overexpression of tps1, ari1. PCR with tps1-specific primers and western blot with his-tag confirmed the gene insertion and protein expression of tps1 in the transformants, respectively. The neutral trehalase gene (nth1) of STA was successfully deleted and the novel strain STAΔN will be used for further study, including the measurement of trehalose concentration and ethanol, furfural tolerance assay.Keywords: genetic recombinant, yeast, ethanol tolerance, trehalase, aldehyde reductase
Procedia PDF Downloads 4202445 Quantification of Biomethane Potential from Anaerobic Digestion of Food Waste at Vaal University of Technology
Authors: Kgomotso Matobole, Pascal Mwenge, Tumisang Seodigeng
Abstract:
The global urbanisation and worldwide economic growth have caused a high rate of food waste generation, resulting in environmental pollution. Food waste disposed on landfills decomposes to produce methane (CH4), a greenhouse gas. Inadequate waste management practices contribute to food waste polluting the environment. Thus effective organic fraction of municipal solid waste (OFMSW) management and treatment are attracting widespread attention in many countries. This problem can be minimised by the employment of anaerobic digestion process, since food waste is rich in organic matter and highly biodegradable, resulting in energy generation and waste volume reduction. The current study investigated the Biomethane Potential (BMP) of the Vaal University of Technology canteen food waste using anaerobic digestion. Tests were performed on canteen food waste, as a substrate, with total solids (TS) of 22%, volatile solids (VS) of 21% and moisture content of 78%. The tests were performed in batch reactors, at a mesophilic temperature of 37 °C, with two different types of inoculum, primary and digested sludge. The resulting CH4 yields for both food waste with digested sludge and primary sludge were equal, being 357 Nml/g VS. This indicated that food waste form this canteen is rich in organic and highly biodegradable. Hence it can be used as a substrate for the anaerobic digestion process. The food waste with digested sludge and primary sludge both fitted the first order kinetic model with k for primary sludge inoculated food waste being 0.278 day-1 with R2 of 0.98, whereas k for digested sludge inoculated food waste being 0.034 day-1, with R2 of 0.847.Keywords: anaerobic digestion, biogas, bio-methane potential, food waste
Procedia PDF Downloads 2322444 Revealing the Genome Based Biosynthetic Potential of a Streptomyces sp. Isolate BR123 Presenting Broad Spectrum Antimicrobial Activities
Authors: Neelma Ashraf
Abstract:
Actinomycetes, particularly genus Streptomyces is of great importance due to their role in the discovery of new natural products, particularly antimicrobial secondary metabolites in the medicinal science and biotechnology industry. Different Streptomyces strains were isolated from Helianthus annuus plants and tested for antibacterial and antifungal activities. The most promising five strains were chosen for further investigation, and growth conditions for antibiotic synthesis were optimised. The supernatants were extracted in different solvents, and the extracted products were analyzed using liquid chromatography-mass spectrometry (LC-MS) and biological testing. From one of the potent strains Streptomyces globusus sp. BR123, a compound lavendamycin was identified using these analytical techniques. In addition, this potent strain also produces a strong antifungal polyene compound with a quasimolecular ion of 2072. Streptomyces sp. BR123 was genome sequenced because of its promising antimicrobial potential in order to identify the gene cluster responsible for analyzed compound “lavendamycin”. The genome analysis yielded candidate genes responsible for the production of this potent compound. The genome sequence of 8.15 Mb of Streptomyces sp. isolate BR123 with a GC content of 72.63% and 8103 protein coding genes was attained. Many antimicrobial, antiparasitic, and anticancerous compounds were detected through multiple biosynthetic gene clusters predicted by in-Silico analysis. Though, the novelty of metabolites was determined through the insignificant resemblance with known biosynthetic gene clusters. The current study gives insight into the bioactive potential of Streptomyces sp. isolate BR123 with respect to the synthesis of bioactive secondary metabolites through genomic and spectrometric analysis. Moreover, the comparative genome study revealed the connection of isolate BR123 with other Streptomyces strains, which could expand the knowledge of this genus and the mechanism involved in the discovery of new antimicrobial metabolites.Keywords: streptomyces, secondary metabolites, genome, biosynthetic gene clusters, high performance liquid chromatography, mass spectrometry
Procedia PDF Downloads 692443 Environmental and Safety Studies for Advanced Fuel Cycle Fusion Energy Systems: The ESSENTIAL Approach
Authors: Massimo Zucchetti
Abstract:
In the US, the SPARC-ARC projects of compact tokamaks are being developed: both are aimed at the technological demonstration of fusion power reactors with cutting-edge technology but following different design approaches. However, they show more similarities than differences in the fuel cycle, safety, radiation protection, environmental, waste and decommissioning aspects: all reactors, either experimental or demonstration ones, have to fulfill certain "essential" requirements to pass from virtual to real machines, to be built in the real world. The paper will discuss these "essential" requirements. Some of the relevant activities in these fields, carried out by our research group (ESSENTIAL group), will be briefly reported, with the aim of showing some methodology aspects that have been developed and might be of wider interest. Also, a non-competitive comparison between our results for different projects will be included when useful. The question of advanced D-He3 fuel cycles to be used for those machines will be addressed briefly. In the past, the IGNITOR project of a compact high-magnetic field D-T ignition experiment was found to be able to sustain limited D-He3 plasmas, while the Candor project was a more decisive step toward D-He3 fusion reactors. The following topics will be treated: Waste management and radioactive safety studies for advanced fusion power plants; development of compact high-field advanced fusion reactors; behavior of nuclear materials under irradiation: neutron-induced radioactivity due to side DT reactions, radiation damage; accident analysis; reactor siting.Keywords: advanced fuel fusion reactors, deuterium-helium3, high-field tokamaks, fusion safety
Procedia PDF Downloads 812442 The Influence of Different Green Roof Vegetation on Indoor Temperature in Semi-Arid Climate Cyprus
Authors: Sinem Yıldırım, Çimen Özburak, Özge Özden
Abstract:
Cities are facing a growing environmental issue as a result of the combined effect of urbanization and climate change. Climate change is the most conspicuousimpact on environmental issues. Nowadays, energy conservation is a very important subject for planners. It is known that green roofs can provide environmental benefits, which include building insulation and mitigating urban heat island effect within the cities. Some of the studies shown that green roofs regulate roof temperature and they have an effect on indoor temperatures of buildings. This research looks at the experimental investigation of different type green roof vegetation with control of no vegetation and their effect on indoor temperatures. The research has been carried out at Near East University Campus with the duration of four months in Nicosia, Cyprus. The experiment was consisting of four green roof types; three of them covered with vegetation, and one of them was not vegetated for control of the experiment. Each hut had 2.7 m2 roof areas, and the soil depth was 8 cm. Mediterranean climate drought resistant ground covers and shrubs were planted on the roof of the three huts. Three different vegetation type was used: 1-Low growing ground cover succulents 2-Mixture of low growing succulents and low shrubs 3-Mixture of low growing succulents, low shrubs, and high growing foliage plantsElitech RC-5 temperature data loggers were used in order to measure indoor temperatures of the huts. Research results were shown that the hut with a highly vegetated roof had the lowest temperatures during hot summer period in Cyprus.Keywords: green roofs, indoor temperature, vegetation, mediterranean, cyprus
Procedia PDF Downloads 206