Search results for: threshold detecting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1542

Search results for: threshold detecting

372 Characterization of Bovine SERPIN- Alpha-1 Antitrypsin (AAT)

Authors: Sharique Ahmed, Khushtar Anwar Salman

Abstract:

Alpha-1-antitrypsin (AAT) is a major plasma serine protease inhibitor (SERPIN). Hereditary AAT deficiency is one of the common diseases in some part of the world. AAT is mainly produced in the liver and functions to protect the lung against proteolytic damage (e.g., from neutrophil elastase) acting as the major inhibitor for neutrophil elastase. α (1)-Antitrypsin (AAT) deficiency is an under recognized genetic condition that affects approximately 1 in 2,000 to 1 in 5,000 individuals and predisposes to liver disease and early-onset emphysema. Not only does α-1-antitrypsin deficiency lead to disabling syndrome of pulmonary emphysema, there are other disorders too which include ANCA (antineutrophilic cytoplasmic antibody) positive Wegener's granulomatosis, diffuse bronchiectasis, necrotizing panniculitis in α-1-antitrypsin phenotype (S), idiopathic pulmonary fibrosis and steroid dependent asthma. Augmentation therapy with alpha-1 antitrypsin (AAT) from human plasma has been available for specific treatment of emphysema due to AAT deficiency. Apart from this several observations have also suggested a role for endogenous suppressors of HIV-1, alpha-1 antitrypsin (AAT) has been identified to be one of those. In view of its varied important role in humans, serum from a mammalian source was chosen for the isolation and purification. Studies were performed on the homogeneous fraction. This study suggests that the buffalo serum α-1-antritrypsin has characteristics close to ovine, dog, horse and more importantly to human α-1-antritrypsin in terms of its hydrodynamic properties such as molecular weight, carbohydrate content, etc. The similarities in the hydrodynamic properties of buffalo serum α-1-antitrypsin with other sources of mammalian α-1-antitrypsin mean that it can be further studied and be a potential source for "augmentation therapy", as well as a source of AAT replacement therapy to raise serum levels above the protective threshold. Other parameters like the amino acid sequence, the effect of denaturants, and the thermolability or thermostability of the inhibitor will be the interesting basis of future studies on buffalo serum alpha-1 antitrypsin (AAT).

Keywords: α-1-antitrypsin, augmentation therapy , hydrodynamic properties, serine protease inhibitor

Procedia PDF Downloads 489
371 Detecting Hate Speech And Cyberbullying Using Natural Language Processing

Authors: Nádia Pereira, Paula Ferreira, Sofia Francisco, Sofia Oliveira, Sidclay Souza, Paula Paulino, Ana Margarida Veiga Simão

Abstract:

Social media has progressed into a platform for hate speech among its users, and thus, there is an increasing need to develop automatic detection classifiers of offense and conflicts to help decrease the prevalence of such incidents. Online communication can be used to intentionally harm someone, which is why such classifiers could be essential in social networks. A possible application of these classifiers is the automatic detection of cyberbullying. Even though identifying the aggressive language used in online interactions could be important to build cyberbullying datasets, there are other criteria that must be considered. Being able to capture the language, which is indicative of the intent to harm others in a specific context of online interaction is fundamental. Offense and hate speech may be the foundation of online conflicts, which have become commonly used in social media and are an emergent research focus in machine learning and natural language processing. This study presents two Portuguese language offense-related datasets which serve as examples for future research and extend the study of the topic. The first is similar to other offense detection related datasets and is entitled Aggressiveness dataset. The second is a novelty because of the use of the history of the interaction between users and is entitled the Conflicts/Attacks dataset. Both datasets were developed in different phases. Firstly, we performed a content analysis of verbal aggression witnessed by adolescents in situations of cyberbullying. Secondly, we computed frequency analyses from the previous phase to gather lexical and linguistic cues used to identify potentially aggressive conflicts and attacks which were posted on Twitter. Thirdly, thorough annotation of real tweets was performed byindependent postgraduate educational psychologists with experience in cyberbullying research. Lastly, we benchmarked these datasets with other machine learning classifiers.

Keywords: aggression, classifiers, cyberbullying, datasets, hate speech, machine learning

Procedia PDF Downloads 228
370 Detecting Local Clusters of Childhood Malnutrition in the Island Province of Marinduque, Philippines Using Spatial Scan Statistic

Authors: Novee Lor C. Leyso, Maylin C. Palatino

Abstract:

Under-five malnutrition continues to persist in the Philippines, particularly in the island Province of Marinduque, with prevalence of some forms of malnutrition even worsening in recent years. Local spatial cluster detection provides a spatial perspective in understanding this phenomenon as key in analyzing patterns of geographic variation, identification of community-appropriate programs and interventions, and focused targeting on high-risk areas. Using data from a province-wide household-based census conducted in 2014–2016, this study aimed to determine and evaluate spatial clusters of under-five malnutrition, across the province and within each municipality at the individual level using household location. Malnutrition was defined as weight-for-age z-score that fall outside the 2 standard deviations from the median of the WHO reference population. The Kulldorff’s elliptical spatial scan statistic in binomial model was used to locate clusters with high-risk of malnutrition, while adjusting for age and membership to government conditional cash transfer program as proxy for socio-economic status. One large significant cluster of under-five malnutrition was found southwest of the province, in which living in these areas at least doubles the risk of malnutrition. Additionally, at least one significant cluster were identified within each municipality—mostly located along the coastal areas. All these indicate apparent geographical variations across and within municipalities in the province. There were also similarities and disparities in the patterns of risk of malnutrition in each cluster across municipalities, and even within municipality, suggesting underlying causes at work that warrants further investigation. Therefore, community-appropriate programs and interventions should be identified and should be focused on high-risk areas to maximize limited government resources. Further studies are also recommended to determine factors affecting variations in childhood malnutrition considering the evidence of spatial clustering found in this study.

Keywords: Binomial model, Kulldorff’s elliptical spatial scan statistic, Philippines, under-five malnutrition

Procedia PDF Downloads 140
369 Effects of Different Thermal Processing Routes and Their Parameters on the Formation of Voids in PA6 Bonded Aluminum Joints

Authors: Muhammad Irfan, Guillermo Requena, Jan Haubrich

Abstract:

Adhesively bonded aluminum joints are common in automotive and aircraft industries and are one of the enablers of lightweight construction to minimize the carbon emissions during transportation for a sustainable life. This study is focused on the effects of two thermal processing routes, i.e., by direct and induction heating, and their parameters on void formation in PA6 bonded aluminum EN-AW6082 joints. The joints were characterized microanalytically as well as by lap shear experiments. The aging resistance of the joints was studied by accelerated aging tests at 80°C hot water. It was found that the processing of single lap joints by direct heating in a convection oven causes the formation of a large number of voids in the bond line. The formation of voids in the convection oven was due to longer processing times and was independent of any surface pretreatments of the metal as well as the processing temperature. However, when processing at low temperatures, a large number of small-sized voids were observed under the optical microscope, and they were larger in size but reduced in numbers at higher temperatures. An induction heating process was developed, which not only successfully reduced or eliminated the voids in PA6 bonded joints but also reduced the processing times for joining significantly. Consistent with the trend in direct heating, longer processing times and higher temperatures in induction heating also led to an increased formation of voids in the bond line. Subsequent single lap shear tests revealed that the increasing void contents led to a 21% reduction in lap shear strengths (i.e., from ~47 MPa for induction heating to ~37 MPa for direct heating). Also, there was a 17% reduction in lap shear strengths when the consolidation temperature was raised from 220˚C to 300˚C during induction heating. However, below a certain threshold of void contents, there was no observable effect on the lap shear strengths as well as on hydrothermal aging resistance of the joints consolidated by the induction heating process.

Keywords: adhesive, aluminium, convection oven, induction heating, mechanical properties, nylon6 (PA6), pretreatment, void

Procedia PDF Downloads 122
368 Ending Wars Over Water: Evaluating the Extent to Which Artificial Intelligence Can Be Used to Predict and Prevent Transboundary Water Conflicts

Authors: Akhila Potluru

Abstract:

Worldwide, more than 250 bodies of water are transboundary, meaning they cross the political boundaries of multiple countries. This creates a system of hydrological, economic, and social interdependence between communities reliant on these water sources. Transboundary water conflicts can occur as a result of this intense interdependence. Many factors contribute to the sparking of transboundary water conflicts, ranging from natural hydrological factors to hydro-political interactions. Previous attempts to predict transboundary water conflicts by analysing changes or trends in the contributing factors have typically failed because patterns in the data are hard to identify. However, there is potential for artificial intelligence and machine learning to fill this gap and identify future ‘hotspots’ up to a year in advance by identifying patterns in data where humans can’t. This research determines the extent to which AI can be used to predict and prevent transboundary water conflicts. This is done via a critical literature review of previous case studies and datasets where AI was deployed to predict water conflict. This research not only delivered a more nuanced understanding of previously undervalued factors that contribute toward transboundary water conflicts (in particular, culture and disinformation) but also by detecting conflict early, governance bodies can engage in processes to de-escalate conflict by providing pre-emptive solutions. Looking forward, this gives rise to significant policy implications and water-sharing agreements, which may be able to prevent water conflicts from developing into wide-scale disasters. Additionally, AI can be used to gain a fuller picture of water-based conflicts in areas where security concerns mean it is not possible to have staff on the ground. Therefore, AI enhances not only the depth of our knowledge about transboundary water conflicts but also the breadth of our knowledge. With demand for water constantly growing, competition between countries over shared water will increasingly lead to water conflict. There has never been a more significant time for us to be able to accurately predict and take precautions to prevent global water conflicts.

Keywords: artificial intelligence, machine learning, transboundary water conflict, water management

Procedia PDF Downloads 105
367 Cleaning of Scientific References in Large Patent Databases Using Rule-Based Scoring and Clustering

Authors: Emiel Caron

Abstract:

Patent databases contain patent related data, organized in a relational data model, and are used to produce various patent statistics. These databases store raw data about scientific references cited by patents. For example, Patstat holds references to tens of millions of scientific journal publications and conference proceedings. These references might be used to connect patent databases with bibliographic databases, e.g. to study to the relation between science, technology, and innovation in various domains. Problematic in such studies is the low data quality of the references, i.e. they are often ambiguous, unstructured, and incomplete. Moreover, a complete bibliographic reference is stored in only one attribute. Therefore, a computerized cleaning and disambiguation method for large patent databases is developed in this work. The method uses rule-based scoring and clustering. The rules are based on bibliographic metadata, retrieved from the raw data by regular expressions, and are transparent and adaptable. The rules in combination with string similarity measures are used to detect pairs of records that are potential duplicates. Due to the scoring, different rules can be combined, to join scientific references, i.e. the rules reinforce each other. The scores are based on expert knowledge and initial method evaluation. After the scoring, pairs of scientific references that are above a certain threshold, are clustered by means of single-linkage clustering algorithm to form connected components. The method is designed to disambiguate all the scientific references in the Patstat database. The performance evaluation of the clustering method, on a large golden set with highly cited papers, shows on average a 99% precision and a 95% recall. The method is therefore accurate but careful, i.e. it weighs precision over recall. Consequently, separate clusters of high precision are sometimes formed, when there is not enough evidence for connecting scientific references, e.g. in the case of missing year and journal information for a reference. The clusters produced by the method can be used to directly link the Patstat database with bibliographic databases as the Web of Science or Scopus.

Keywords: clustering, data cleaning, data disambiguation, data mining, patent analysis, scientometrics

Procedia PDF Downloads 194
366 The Use of Correlation Difference for the Prediction of Leakage in Pipeline Networks

Authors: Mabel Usunobun Olanipekun, Henry Ogbemudia Omoregbee

Abstract:

Anomalies such as water pipeline and hydraulic or petrochemical pipeline network leakages and bursts have significant implications for economic conditions and the environment. In order to ensure pipeline systems are reliable, they must be efficiently controlled. Wireless Sensor Networks (WSNs) have become a powerful network with critical infrastructure monitoring systems for water, oil and gas pipelines. The loss of water, oil and gas is inevitable and is strongly linked to financial costs and environmental problems, and its avoidance often leads to saving of economic resources. Substantial repair costs and the loss of precious natural resources are part of the financial impact of leaking pipes. Pipeline systems experts have implemented various methodologies in recent decades to identify and locate leakages in water, oil and gas supply networks. These methodologies include, among others, the use of acoustic sensors, measurements, abrupt statistical analysis etc. The issue of leak quantification is to estimate, given some observations about that network, the size and location of one or more leaks in a water pipeline network. In detecting background leakage, however, there is a greater uncertainty in using these methodologies since their output is not so reliable. In this work, we are presenting a scalable concept and simulation where a pressure-driven model (PDM) was used to determine water pipeline leakage in a system network. These pressure data were collected with the use of acoustic sensors located at various node points after a predetermined distance apart. We were able to determine with the use of correlation difference to determine the leakage point locally introduced at a predetermined point between two consecutive nodes, causing a substantial pressure difference between in a pipeline network. After de-noising the signal from the sensors at the nodes, we successfully obtained the exact point where we introduced the local leakage using the correlation difference model we developed.

Keywords: leakage detection, acoustic signals, pipeline network, correlation, wireless sensor networks (WSNs)

Procedia PDF Downloads 109
365 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models

Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti

Abstract:

In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.

Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics

Procedia PDF Downloads 53
364 Detecting Memory-Related Gene Modules in sc/snRNA-seq Data by Deep-Learning

Authors: Yong Chen

Abstract:

To understand the detailed molecular mechanisms of memory formation in engram cells is one of the most fundamental questions in neuroscience. Recent single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) techniques have allowed us to explore the sparsely activated engram ensembles, enabling access to the molecular mechanisms that underlie experience-dependent memory formation and consolidation. However, the absence of specific and powerful computational methods to detect memory-related genes (modules) and their regulatory relationships in the sc/snRNA-seq datasets has strictly limited the analysis of underlying mechanisms and memory coding principles in mammalian brains. Here, we present a deep-learning method named SCENTBOX, to detect memory-related gene modules and causal regulatory relationships among themfromsc/snRNA-seq datasets. SCENTBOX first constructs codifferential expression gene network (CEGN) from case versus control sc/snRNA-seq datasets. It then detects the highly correlated modules of differential expression genes (DEGs) in CEGN. The deep network embedding and attention-based convolutional neural network strategies are employed to precisely detect regulatory relationships among DEG genes in a module. We applied them on scRNA-seq datasets of TRAP; Ai14 mouse neurons with fear memory and detected not only known memory-related genes, but also the modules and potential causal regulations. Our results provided novel regulations within an interesting module, including Arc, Bdnf, Creb, Dusp1, Rgs4, and Btg2. Overall, our methods provide a general computational tool for processing sc/snRNA-seq data from case versus control studie and a systematic investigation of fear-memory-related gene modules.

Keywords: sc/snRNA-seq, memory formation, deep learning, gene module, causal inference

Procedia PDF Downloads 120
363 Ultrasound Therapy: Amplitude Modulation Technique for Tissue Ablation by Acoustic Cavitation

Authors: Fares A. Mayia, Mahmoud A. Yamany, Mushabbab A. Asiri

Abstract:

In recent years, non-invasive Focused Ultrasound (FU) has been utilized for generating bubbles (cavities) to ablate target tissue by mechanical fractionation. Intensities >10 kW/cm² are required to generate the inertial cavities. The generation, rapid growth, and collapse of these inertial cavities cause tissue fractionation and the process is called Histotripsy. The ability to fractionate tissue from outside the body has many clinical applications including the destruction of the tumor mass. The process of tissue fractionation leaves a void at the treated site, where all the affected tissue is liquefied to particles at sub-micron size. The liquefied tissue will eventually be absorbed by the body. Histotripsy is a promising non-invasive treatment modality. This paper presents a technique for generating inertial cavities at lower intensities (< 1 kW/cm²). The technique (patent pending) is based on amplitude modulation (AM), whereby a low frequency signal modulates the amplitude of a higher frequency FU wave. Cavitation threshold is lower at low frequencies; the intensity required to generate cavitation in water at 10 kHz is two orders of magnitude lower than the intensity at 1 MHz. The Amplitude Modulation technique can operate in both continuous wave (CW) and pulse wave (PW) modes, and the percentage modulation (modulation index) can be varied from 0 % (thermal effect) to 100 % (cavitation effect), thus allowing a range of ablating effects from Hyperthermia to Histotripsy. Furthermore, changing the frequency of the modulating signal allows controlling the size of the generated cavities. Results from in vitro work demonstrate the efficacy of the new technique in fractionating soft tissue and solid calcium carbonate (Chalk) material. The technique, when combined with MR or Ultrasound imaging, will present a precise treatment modality for ablating diseased tissue without affecting the surrounding healthy tissue.

Keywords: focused ultrasound therapy, histotripsy, inertial cavitation, mechanical tissue ablation

Procedia PDF Downloads 319
362 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death

Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar

Abstract:

In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.

Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death

Procedia PDF Downloads 342
361 Autistic Traits and Multisensory Integration–Using a Size-Weight Illusion Paradigm

Authors: Man Wai Lei, Charles Mark Zaroff

Abstract:

Objective: A majority of studies suggest that people with Autism Spectrum Disorder (ASD) have multisensory integration deficits. However, normal and even supranormal multisensory integration abilities have also been reported. Additionally, little of this work has been undertaken utilizing a dimensional conceptualization of ASD; i.e., a broader autism phenotype. Utilizing methodology that controls for common potential confounds, the current study aimed to examine if deficits in multisensory integration are associated with ASD traits in a non-clinical population. The contribution of affective versus non-affective components of sensory hypersensitivity to multisensory integration was also examined. Methods: Participants were 147 undergraduate university students in Macau, a Special Administrative Region of China, of Chinese ethnicity, aged 16 to 21 (Mean age = 19.13; SD = 1.07). Participants completed the Autism-Spectrum Quotient, the Sensory Perception Quotient, and the Adolescent/Adult Sensory Profile, in order to measure ASD traits, non-affective, and affective aspects of sensory/perceptual hypersensitivity, respectively. In order to explore multisensory integration across visual and haptic domains, participants were asked to judge which one of two equally weighted, but different sized cylinders was heavier, as a means of detecting the presence of the size-weight illusion (SWI). Results: ASD trait level was significantly and negatively correlated with susceptibility to the SWI (p < 0.05); this correlation was not associated with either accuracy in weight discrimination or gender. Examining the top decile of the non-normally distributed SWI scores revealed a significant negative association with sensation avoiding, but not other aspects of effective or non-effective sensory hypersensitivity. Conclusion and Implications: Within the normal population, a greater degree of ASD traits is associated with a lower likelihood of multisensory integration; echoing was often found in individuals with a clinical diagnosis of ASD, and providing further evidence for the dimensional nature of this disorder. This tendency appears to be associated with dysphoric emotional reactions to sensory input.

Keywords: Autism Spectrum Disorder, dimensional, multisensory integration, size-weight illusion

Procedia PDF Downloads 482
360 Applying Multiple Kinect on the Development of a Rapid 3D Mannequin Scan Platform

Authors: Shih-Wen Hsiao, Yi-Cheng Tsao

Abstract:

In the field of reverse engineering and creative industries, applying 3D scanning process to obtain geometric forms of the objects is a mature and common technique. For instance, organic objects such as faces and nonorganic objects such as products could be scanned to acquire the geometric information for further application. However, although the data resolution of 3D scanning device is increasing and there are more and more abundant complementary applications, the penetration rate of 3D scanning for the public is still limited by the relative high price of the devices. On the other hand, Kinect, released by Microsoft, is known for its powerful functions, considerably low price, and complete technology and database support. Therefore, related studies can be done with the applying of Kinect under acceptable cost and data precision. Due to the fact that Kinect utilizes optical mechanism to extracting depth information, limitations are found due to the reason of the straight path of the light. Thus, various angles are required sequentially to obtain the complete 3D information of the object when applying a single Kinect for 3D scanning. The integration process which combines the 3D data from different angles by certain algorithms is also required. This sequential scanning process costs much time and the complex integration process often encounter some technical problems. Therefore, this paper aimed to apply multiple Kinects simultaneously on the field of developing a rapid 3D mannequin scan platform and proposed suggestions on the number and angles of Kinects. In the content, a method of establishing the coordination based on the relation between mannequin and the specifications of Kinect is proposed, and a suggestion of angles and number of Kinects is also described. An experiment of applying multiple Kinect on the scanning of 3D mannequin is constructed by Microsoft API, and the results show that the time required for scanning and technical threshold can be reduced in the industries of fashion and garment design.

Keywords: 3D scan, depth sensor, fashion and garment design, mannequin, multiple Kinect sensor

Procedia PDF Downloads 366
359 Lithuanian Sign Language Literature: Metaphors at the Phonological Level

Authors: Anželika Teresė

Abstract:

In order to solve issues in sign language linguistics, address matters pertaining to maintaining high quality of sign language (SL) translation, contribute to dispelling misconceptions about SL and deaf people, and raise awareness and understanding of the deaf community heritage, this presentation discusses literature in Lithuanian Sign Language (LSL) and inherent metaphors that are created by using the phonological parameter –handshape, location, movement, palm orientation and nonmanual features. The study covered in this presentation is twofold, involving both the micro-level analysis of metaphors in terms of phonological parameters as a sub-lexical feature and the macro-level analysis of the poetic context. Cognitive theories underlie research of metaphors in sign language literature in a range of SL. The study follows this practice. The presentation covers the qualitative analysis of 34 pieces of LSL literature. The analysis employs ELAN software widely used in SL research. The target is to examine how specific types of each phonological parameter are used for the creation of metaphors in LSL literature and what metaphors are created. The results of the study show that LSL literature employs a range of metaphors created by using classifier signs and by modifying the established signs. The study also reveals that LSL literature tends to create reference metaphors indicating status and power. As the study shows, LSL poets metaphorically encode status by encoding another meaning in the same sign, which results in creating double metaphors. The metaphor of identity has been determined. Notably, the poetic context has revealed that the latter metaphor can also be identified as a metaphor for life. The study goes on to note that deaf poets create metaphors related to the importance of various phenomena significance of the lyrical subject. Notably, the study has allowed detecting locations, nonmanual features and etc., never mentioned in previous SL research as used for the creation of metaphors.

Keywords: Lithuanian sign language, sign language literature, sign language metaphor, metaphor at the phonological level, cognitive linguistics

Procedia PDF Downloads 136
358 Intrusion Detection in SCADA Systems

Authors: Leandros A. Maglaras, Jianmin Jiang

Abstract:

The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm.

Keywords: cyber-security, SCADA systems, OCSVM, intrusion detection

Procedia PDF Downloads 552
357 Associated Risks of Spontaneous Lung Collapse after Shoulder Surgery: A Literature Review

Authors: Fiona Bei Na Tan, Glen Wen Kiat Ho, Ee Leen Liow, Li Yin Tan, Sean Wei Loong Ho

Abstract:

Background: Shoulder arthroscopy is an increasingly common procedure. Pneumothorax post-shoulder arthroscopy is a rare complication. Objectives: Our aim is to highlight a case report of pneumothorax post shoulder arthroscopy and to conduct a literature review to evaluate the possible risk factors associated with developing a pneumothorax during or after shoulder arthroscopy. Case Report: We report the case of a 75-year-old male non-smoker who underwent left shoulder arthroscopy without regional anaesthesia and in the left lateral position. The general anaesthesia and surgery were uncomplicated. The patient was desaturated postoperatively and was found to have a pneumothorax on examination and chest X-ray. A chest tube drain was inserted promptly into the right chest. He had an uncomplicated postoperative course. Methods: PubMed Medline and Cochrane database search was carried out using the terms shoulder arthroplasty, pneumothorax, pneumomediastinum, and subcutaneous emphysema. We selected full-text articles written in English. Results: Thirty-two articles were identified and thoroughly reviewed. Based on our inclusion and exclusion criteria, 14 articles, which included 20 cases of pneumothorax during or after shoulder arthroscopy, were included. Eighty percent (16/20) of pneumothoraxes occurred postoperatively. In the articles that specify the side of pneumothorax, 91% (10/11) occur on the ipsilateral side of the arthroscopy. Eighty-eight percent (7/8) of pneumothoraxes occurred when subacromial decompression was performed. Fifty-six percent (9/16) occurred in patients placed in the lateral decubitus position. Only 30% (6/20) occurred in current or ex-smokers, and only 25% (5/20) had a pre-existing lung condition. Overall, of the articles that posit a mechanism, 75% (9/12) deem the pathogenesis to be multifactorial. Conclusion: The exact mechanism of pneumothorax is currently unknown. Awareness of this complication and timely recognition are important to prevent life-threatening sequelae. Surgeons should have a low threshold to obtain diagnostic plain radiographs in the event of clinical suspicion.

Keywords: rotator cuff repair, decompression, pressure, complication

Procedia PDF Downloads 66
356 GIS-Based Identification of Overloaded Distribution Transformers and Calculation of Technical Electric Power Losses

Authors: Awais Ahmed, Javed Iqbal

Abstract:

Pakistan has been for many years facing extreme challenges in energy deficit due to the shortage of power generation compared to increasing demand. A part of this energy deficit is also contributed by the power lost in transmission and distribution network. Unfortunately, distribution companies are not equipped with modern technologies and methods to identify and eliminate these losses. According to estimate, total energy lost in early 2000 was between 20 to 26 percent. To address this issue the present research study was designed with the objectives of developing a standalone GIS application for distribution companies having the capability of loss calculation as well as identification of overloaded transformers. For this purpose, Hilal Road feeder in Faisalabad Electric Supply Company (FESCO) was selected as study area. An extensive GPS survey was conducted to identify each consumer, linking it to the secondary pole of the transformer, geo-referencing equipment and documenting conductor sizes. To identify overloaded transformer, accumulative kWH reading of consumer on transformer was compared with threshold kWH. Technical losses of 11kV and 220V lines were calculated using the data from substation and resistance of the network calculated from the geo-database. To automate the process a standalone GIS application was developed using ArcObjects with engineering analysis capabilities. The application uses GIS database developed for 11kV and 220V lines to display and query spatial data and present results in the form of graphs. The result shows that about 14% of the technical loss on both high tension (HT) and low tension (LT) network while about 4 out of 15 general duty transformers were found overloaded. The study shows that GIS can be a very effective tool for distribution companies in management and planning of their distribution network.

Keywords: geographical information system, GIS, power distribution, distribution transformers, technical losses, GPS, SDSS, spatial decision support system

Procedia PDF Downloads 376
355 Carbon-Encapsulated Iron Nanoparticles for Hydrogen Sulfide Removal

Authors: Meriem Abid, Erika Oliveria-Jardim, Andres Fullana, Joaquin Silvestre-Albero

Abstract:

The rapid industrial development associated with the increase of volatile organic compounds (VOCs) has seriously impacted the environment. Among VOCs, hydrogen sulfide (H₂S) is known as a highly toxic, malodorous, flammable, and corrosive gas, which is emitted from diverse chemical processes, including industrial waste-gas streams, natural gas processing, and biogas purification. The high toxicity, corrosively, and very characteristic odor threshold of H2S call for urgent development of efficient desulfurization processes from the viewpoint of environmental protection and resource regeneration. In order to reduce H₂S emissions, effective technologies for have been performed. The general method of H₂S removal included amine aqueous solution, adsorption process, biological methods, and fixed-bed solid catalytic oxidation processes. Ecologically and economically, low-temperature direct oxidation of H₂S to elemental sulfur using catalytic oxidation is the preferred approach for removing H₂S-containing gas streams. A large number of catalysts made from carbon, metal oxides, clay, and others, have been studied extensively for this application. In this sense, activated carbon (AC) is an attractive catalyst for H₂S removal because it features a high specific surface area, diverse functional groups, low cost, durability, and high efficiency. It is interesting to stand out that AC is modified using metal oxides to promote the efficiency of H₂S removal and to enhance the catalytic performance. Based on these premises, the main goal of the present study is the evaluation of the H₂S adsorption performance in carbon-encapsulated iron nanoparticles obtained from an olive mill, thermally treated at 600, 800 and 1000 ºC temperatures under anaerobic conditions. These results anticipate that carbon-encapsulated iron nanoparticles exhibit a promising performance for the H₂S removal up to 360 mg/g.

Keywords: H₂S removal, catalytic oxidation, carbon encapsulated iron, olive mill wastewater

Procedia PDF Downloads 87
354 Radar Track-based Classification of Birds and UAVs

Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo

Abstract:

In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).

Keywords: birds, classification, machine learning, UAVs

Procedia PDF Downloads 222
353 Price Compensation Mechanism with Unmet Demand for Public-Private Partnership Projects

Authors: Zhuo Feng, Ying Gao

Abstract:

Public-private partnership (PPP), as an innovative way to provide infrastructures by the private sector, is being widely used throughout the world. Compared with the traditional mode, PPP emerges largely for merits of relieving public budget constraint and improving infrastructure supply efficiency by involving private funds. However, PPP projects are characterized by large scale, high investment, long payback period, and long concession period. These characteristics make PPP projects full of risks. One of the most important risks faced by the private sector is demand risk because many factors affect the real demand. If the real demand is far lower than the forecasting demand, the private sector will be got into big trouble because operating revenue is the main means for the private sector to recoup the investment and obtain profit. Therefore, it is important to study how the government compensates the private sector when the demand risk occurs in order to achieve Pareto-improvement. This research focuses on price compensation mechanism, an ex-post compensation mechanism, and analyzes, by mathematical modeling, the impact of price compensation mechanism on payoff of the private sector and consumer surplus for PPP toll road projects. This research first investigates whether or not price compensation mechanisms can obtain Pareto-improvement and, if so, then explores boundary conditions for this mechanism. The research results show that price compensation mechanism can realize Pareto-improvement under certain conditions. Especially, to make the price compensation mechanism accomplish Pareto-improvement, renegotiation costs of the government and the private sector should be lower than a certain threshold which is determined by marginal operating cost and distortionary cost of the tax. In addition, the compensation percentage should match with the price cut of the private investor when demand drops. This research aims to provide theoretical support for the government when determining compensation scope under the price compensation mechanism. Moreover, some policy implications can also be drawn from the analysis for better risk-sharing and sustainability of PPP projects.

Keywords: infrastructure, price compensation mechanism, public-private partnership, renegotiation

Procedia PDF Downloads 179
352 T Cell Immunity Profile in Pediatric Obesity and Asthma

Authors: Mustafa M. Donma, Erkut Karasu, Burcu Ozdilek, Burhan Turgut, Birol Topcu, Burcin Nalbantoglu, Orkide Donma

Abstract:

The mechanisms underlying the association between obesity and asthma may be related to a decreased immunological tolerance induced by a defective function of regulatory T cells (Tregs). The aim of this study is to establish the potential link between these diseases and CD4+, CD25+ FoxP3+ Tregs as well as T helper cells (Ths) in children. This is a prospective case control study. Obese (n:40), asthmatic (n:40), asthmatic obese (n:40), and healthy children (n:40), who don't have any acute or chronic diseases, were included in this study. Obese children were evaluated according to WHO criteria. Asthmatic patients were chosen based on GINA criteria. Parents were asked to fill up the questionnaire. Informed consent forms were taken. Blood samples were marked with CD4+, CD25+ and FoxP3+ in order to determine Tregs and Ths by flow cytometric method. Statistical analyses were performed. p≤0.05 was chosen as meaningful threshold. Tregs exhibiting anti-inflammatory nature were significantly lower in obese (0,16%; p≤0,001), asthmatic (0,25%; p≤0,01) and asthmatic obese (0,29%; p≤0,05) groups than the control group (0,38%). Ths were counted higher in asthma group than the control (p≤0,01) and obese (p≤0,001)) groups. T cell immunity plays important roles in obesity and asthma pathogeneses. Decreased numbers of Tregs found in obese, asthmatic and asthmatic obese children may help to elucidate some questions in pathophysiology of these diseases. For HOMA-IR levels, any significant difference was not noted between control and obese groups, but statistically higher values were found for obese asthmatics. The values obtained in all groups were found to be below the critical cut off points. This finding has made the statistically significant difference observed between Tregs of obese, asthmatic, obese asthmatic, and control groups much more valuable. These findings will be useful in diagnosis and treatment of these disorders and future studies are needed. The production and propagation of Tregs may be promising in alternative asthma and obesity treatments.

Keywords: asthma, flow cytometry, pediatric obesity, T cells

Procedia PDF Downloads 346
351 Development of Digital Twin Concept to Detect Abnormal Changes in Structural Behaviour

Authors: Shady Adib, Vladimir Vinogradov, Peter Gosling

Abstract:

Digital Twin (DT) technology is a new technology that appeared in the early 21st century. The DT is defined as the digital representation of living and non-living physical assets. By connecting the physical and virtual assets, data are transmitted smoothly, allowing the virtual asset to fully represent the physical asset. Although there are lots of studies conducted on the DT concept, there is still limited information about the ability of the DT models for monitoring and detecting unexpected changes in structural behaviour in real time. This is due to the large computational efforts required for the analysis and an excessively large amount of data transferred from sensors. This paper aims to develop the DT concept to be able to detect the abnormal changes in structural behaviour in real time using advanced modelling techniques, deep learning algorithms, and data acquisition systems, taking into consideration model uncertainties. finite element (FE) models were first developed offline to be used with a reduced basis (RB) model order reduction technique for the construction of low-dimensional space to speed the analysis during the online stage. The RB model was validated against experimental test results for the establishment of a DT model of a two-dimensional truss. The established DT model and deep learning algorithms were used to identify the location of damage once it has appeared during the online stage. Finally, the RB model was used again to identify the damage severity. It was found that using the RB model, constructed offline, speeds the FE analysis during the online stage. The constructed RB model showed higher accuracy for predicting the damage severity, while deep learning algorithms were found to be useful for estimating the location of damage with small severity.

Keywords: data acquisition system, deep learning, digital twin, model uncertainties, reduced basis, reduced order model

Procedia PDF Downloads 99
350 Phylogenetic Analysis Based On the Internal Transcribed Spacer-2 (ITS2) Sequences of Diadegma semiclausum (Hymenoptera: Ichneumonidae) Populations Reveals Significant Adaptive Evolution

Authors: Ebraheem Al-Jouri, Youssef Abu-Ahmad, Ramasamy Srinivasan

Abstract:

The parasitoid, Diadegma semiclausum (Hymenoptera: Ichneumonidae) is one of the most effective exotic parasitoids of diamondback moth (DBM), Plutella xylostella in the lowland areas of Homs, Syria. Molecular evolution studies are useful tools to shed light on the molecular bases of insect geographical spread and adaptation to new hosts and environment and for designing better control strategies. In this study, molecular evolution analysis was performed based on the 42 nuclear internal transcribed spacer-2 (ITS2) sequences representing the D. semiclausum and eight other Diadegma spp. from Syria and worldwide. Possible recombination events were identified by RDP4 program. Four potential recombinants of the American D. insulare and D. fenestrale (Jeju) were detected. After detecting and removing recombinant sequences, the ratio of non-synonymous (dN) to synonymous (dS) substitutions per site (dN/dS=ɷ) has been used to identify codon positions involved in adaptive processes. Bayesian techniques were applied to detect selective pressures at a codon level by using five different approaches including: fixed effects likelihood (FEL), internal fixed effects likelihood (IFEL), random effects method (REL), mixed effects model of evolution (MEME) and Program analysis of maximum liklehood (PAML). Among the 40 positively selected amino acids (aa) that differed significantly between clades of Diadegma species, three aa under positive selection were only identified in D. semiclausum. Additionally, all D. semiclausum branches tree were highly found under episodic diversifying selection (EDS) at p≤0.05. Our study provide evidence that both recombination and positive selection have contributed to the molecular diversity of Diadegma spp. and highlights the significant contribution of D. semiclausum in adaptive evolution and influence the fitness in the DBM parasitoid.

Keywords: diadegma sp, DBM, ITS2, phylogeny, recombination, dN/dS, evolution, positive selection

Procedia PDF Downloads 416
349 Triplex Detection of Pistacia vera, Arachis hypogaea and Pisum sativum in Processed Food Products Using Probe Based PCR

Authors: Ergün Şakalar, Şeyma Özçirak Ergün, Emrah Yalazi̇, Emine Altinkaya, Cengiz Ataşoğlu

Abstract:

In recent years, food allergies which cause serious health problems affect to public health around the world. Foodstuffs which contain allergens are either intentionally used as ingredients or are encased as contaminant in food products. The prevalence of clinical allergy to peanuts and nuts is estimated at about 0.4%-1.1% of the adult population, representing the allergy to pistachio the 7% of the cases of tree nut causing allergic reactions. In order to protect public health and enforce the legislation, methods for sensitive analysis of pistachio and peanut contents in food are required. Pea, pistachio and peanut are used together, to reduce the cost in food production such as baklava, snack foods.DNA technology-based methods in food analysis are well-established and well-roundedtools for species differentiation, allergen detection. Especially, the probe-based TaqMan real-time PCR assay can amplify target DNA with efficiency, specificity, and sensitivity.In this study, pistachio, peanut and pea were finely ground and three separate series of triplet mixtures containing 0.1, 1, 10, 100, 1000, 10,000 and 100,000 mg kg-1 of each sample were prepared for each series, to a final weight of 100 g. DNA from reference samples and industrial products was successfully extracted with the GIDAGEN® Multi-Fast DNA Isolation Kit. TaqMan probes were designed for triplex determination of ITS, Ara h 3 and pea lectin genes which are specific regions for identification pistachio, peanut and pea, respectively.The real-time PCR as quantitative detected pistachio, peanut and pea in these mixtures down to the lowest investigated level of 0.1, 0.1 and 1 mg kg-1, respectively. Also, the methods reported here are capable of detecting of as little as 0.001% level of peanut DNA, 0,000001% level of pistachio DNA and 0.000001% level of pea DNA. We accomplish that the quantitative triplex real-time PCR method developed in this study canbe applied to detect pistachio, peanut and peatraces for three allergens at once in commercial food products.

Keywords: allergens, DNA, real-time PCR, TaqMan probe

Procedia PDF Downloads 256
348 Rapid and Cheap Test for Detection of Streptococcus pyogenes and Streptococcus pneumoniae with Antibiotic Resistance Identification

Authors: Marta Skwarecka, Patrycja Bloch, Rafal Walkusz, Oliwia Urbanowicz, Grzegorz Zielinski, Sabina Zoledowska, Dawid Nidzworski

Abstract:

Upper respiratory tract infections are one of the most common reasons for visiting a general doctor. Streptococci are the most common bacterial etiological factors in these infections. There are many different types of Streptococci and infections vary in severity from mild throat infections to pneumonia. For example, S. pyogenes mainly contributes to acute pharyngitis, palatine tonsils and scarlet fever, whereas S. Streptococcus pneumoniae is responsible for several invasive diseases like sepsis, meningitis or pneumonia with high mortality and dangerous complications. There are only a few diagnostic tests designed for detection Streptococci from the infected throat of patients. However, they are mostly based on lateral flow techniques, and they are not used as a standard due to their low sensitivity. The diagnostic standard is to culture patients throat swab on semi selective media in order to multiply pure etiological agent of infection and subsequently to perform antibiogram, which takes several days from the patients visit in the clinic. Therefore, the aim of our studies is to develop and implement to the market a Point of Care device for the rapid identification of Streptococcus pyogenes and Streptococcus pneumoniae with simultaneous identification of antibiotic resistance genes. In the course of our research, we successfully selected genes for to-species identification of Streptococci and genes encoding antibiotic resistance proteins. We have developed a reaction to amplify these genes, which allows detecting the presence of S. pyogenes or S. pneumoniae followed by testing their resistance to erythromycin, chloramphenicol and tetracycline. What is more, the detection of β-lactamase-encoding genes that could protect Streptococci against antibiotics from the ampicillin group, which are widely used in the treatment of this type of infection is also developed. The test is carried out directly from the patients' swab, and the results are available after 20 to 30 minutes after sample subjection, which could be performed during the medical visit.

Keywords: antibiotic resistance, Streptococci, respiratory infections, diagnostic test

Procedia PDF Downloads 129
347 Profiling the Food Security Status of Farming Households in Chanchaga Area of Nigeria’s Guinea Savana

Authors: Olorunsanya E. O., Adedeji S. O., Anyanwu A. A.

Abstract:

Food insecurity is a challenge to many nations Nigeria inclusive. It is increasingly becoming a major problem among farm households due to many factors chief of which is low labour productivity. This study therefore profiles the food security status of a representative randomly selected 90 farming households in Chanchaga area of Nigeria’s Guinea Savana using structured interview schedule Descriptive and inferential statistics were used as analytical tools for the study. The results of the descriptive statistics show that majority (35.56%) of the surveyed household heads fall within the age range of 40 – 49 years and (88.89%) are male while (78.89) are married. More than half of the respondents have formal education. About 43.3% of the household heads have farm experience of 11- 20 years and a modal household size class range of 7 – 12. The results further reveal that majority (68.8%) earned more than N12, 500 (22.73 US Dollar) per month. The result of households’ food expenditure pattern reveals that an average household spends about N3, 644.44 (6.63 US Dollar) on food and food items on a weekly basis. The result of the analysis of food diversity intake in the study area shows that 63.33% of the sampled households fell under the low household food diversity intake, while 33 households, representing 36.67% ranks high in term of household food diversity intake. The result for the food security status shows that the sampled population was food secure (58.89%) while 41.11% falls below the recommended threshold. The result for the logistics regression model shows that age, engagement in off farm employment and household size are significant in determining the food security status of farm household in the study area. The three variables were significant at 10%, 5% and 1% respectively. The study therefore recommends among others, that measures be put in place by stakeholders to make agriculture attractive for youth since age is a significant determinant of food security in the study area. Awareness should also be created by stakeholders on the needs for effective family planning methods to be adopted by farm household in the study area.

Keywords: Niger State, Guinea Savana, food diversity, logit regression model and food security

Procedia PDF Downloads 106
346 Ratings of Hand Activity and Force Levels in Identical Hand-Intensive Work Tasks in Women and Men

Authors: Gunilla Dahlgren, Per Liv, Fredrik Öhberg, Lisbeth Slunga Järvholm, Mikael Forsman, Börje Rehn

Abstract:

Background: Accuracy of risk assessment tools in hand-repetitive work is important. This can support precision in the risk management process and for a sustainable working life for women and men equally. Musculoskeletal disorders, MSDs, from the hand, wrist, and forearm, are common in the working population. Women report a higher prevalence of MSDs in these regions. Objective: The objective of this study was to compare if women and men who performed the identical hand-intensive work task were rated equally using the Hand Activity Threshold Limit Value® (HA-TLV) when self-rated and observer-rated. Method: Fifty-six workers from eight companies participated, with various intensities in hand-repetitive work tasks. In total, 18 unique identical hand-intensive work tasks were executed in 28 pairs of a woman and a man. Hand activity and force levels were assessed. Each worker executed the work task for 15 minutes, which was also video recorded. Data was collected on workers who self-rated directly after the execution of the work task. Also, experienced observers performed ratings from videos of the same work tasks. For comparing means between women and men, paired samples t-tests were used. Results: The main results showed that there was no difference in self-ratings of hand activity level and force by women and men who executed the same work task. Further, there was no difference between observer ratings of hand activity level. However, the observer force ratings of women and men differed significantly (p=0.01). Conclusion: Hand activity and force levels are rated equally in women and men when self-rated, also by observers for hand activity. However, it is an observandum that observer force rating is rated higher for women and lower for men. This indicates the need of comparing force ratings with technical measures.

Keywords: gender, equity, sex differences, repetitive strain injury, cumulative trauma disorders, upper extremity, exposure assessment, workload, health risk assessment, observation, psychophysics

Procedia PDF Downloads 125
345 Identifying a Drug Addict Person Using Artificial Neural Networks

Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh

Abstract:

Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.

Keywords: drug addiction, artificial neural networks, multilayer perceptron (MLP), decision support system

Procedia PDF Downloads 299
344 Continuous-Time Convertible Lease Pricing and Firm Value

Authors: Ons Triki, Fathi Abid

Abstract:

Along with the increase in the use of leasing contracts in corporate finance, multiple studies aim to model the credit risk of the lease in order to cover the losses of the lessor of the asset if the lessee goes bankrupt. In the current research paper, a convertible lease contract is elaborated in a continuous time stochastic universe aiming to ensure the financial stability of the firm and quickly recover the losses of the counterparties to the lease in case of default. This work examines the term structure of the lease rates taking into account the credit default risk and the capital structure of the firm. The interaction between the lessee's capital structure and the equilibrium lease rate has been assessed by applying the competitive lease market argument developed by Grenadier (1996) and the endogenous structural default model set forward by Leland and Toft (1996). The cumulative probability of default was calculated by referring to Leland and Toft (1996) and Yildirim and Huan (2006). Additionally, the link between lessee credit risk and lease rate was addressed so as to explore the impact of convertible lease financing on the term structure of the lease rate, the optimal leverage ratio, the cumulative default probability, and the optimal firm value by applying an endogenous conversion threshold. The numerical analysis is suggestive that the duration structure of lease rates increases with the increase in the degree of the market price of risk. The maximal value of the firm decreases with the effect of the optimal leverage ratio. The results are indicative that the cumulative probability of default increases with the maturity of the lease contract if the volatility of the asset service flows is significant. Introducing the convertible lease contract will increase the optimal value of the firm as a function of asset volatility for a high initial service flow level and a conversion ratio close to 1.

Keywords: convertible lease contract, lease rate, credit-risk, capital structure, default probability

Procedia PDF Downloads 98
343 Dynamic Web-Based 2D Medical Image Visualization and Processing Software

Authors: Abdelhalim. N. Mohammed, Mohammed. Y. Esmail

Abstract:

In the course of recent decades, medical imaging has been dominated by the use of costly film media for review and archival of medical investigation, however due to developments in networks technologies and common acceptance of a standard digital imaging and communication in medicine (DICOM) another approach in light of World Wide Web was produced. Web technologies successfully used in telemedicine applications, the combination of web technologies together with DICOM used to design a web-based and open source DICOM viewer. The Web server allowance to inquiry and recovery of images and the images viewed/manipulated inside a Web browser without need for any preinstalling software. The dynamic site page for medical images visualization and processing created by using JavaScript and HTML5 advancements. The XAMPP ‘apache server’ is used to create a local web server for testing and deployment of the dynamic site. The web-based viewer connected to multiples devices through local area network (LAN) to distribute the images inside healthcare facilities. The system offers a few focal points over ordinary picture archiving and communication systems (PACS): easy to introduce, maintain and independently platforms that allow images to display and manipulated efficiently, the system also user-friendly and easy to integrate with an existing system that have already been making use of web technologies. The wavelet-based image compression technique on which 2-D discrete wavelet transform used to decompose the image then wavelet coefficients are transmitted by entropy encoding after threshold to decrease transmission time, stockpiling cost and capacity. The performance of compression was estimated by using images quality metrics such as mean square error ‘MSE’, peak signal to noise ratio ‘PSNR’ and compression ratio ‘CR’ that achieved (83.86%) when ‘coif3’ wavelet filter is used.

Keywords: DICOM, discrete wavelet transform, PACS, HIS, LAN

Procedia PDF Downloads 160