Search results for: teaching-learning based optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30006

Search results for: teaching-learning based optimization

28836 Comparison of Hydrogen and Electrification Perspectives in Decarbonizing the Transport Sector

Authors: Matteo Nicoli, Gianvito Colucci, Valeria Di Cosmo, Daniele Lerede, Laura Savoldi

Abstract:

The transport sector is currently responsible for approximately 1/3 of greenhouse gas emissions in Europe. In the wider context of achieving carbon neutrality of the global energy system, different alternatives are available to decarbonizethe transport sector. In particular, while electricity is already the most consumed energy commodity in rail transport, battery electric vehicles are one of the zero-emissions options on the market for road transportation. On the other hand, hydrogen-based fuel cell vehicles are available for road and non-road vehicles. The European Commission is strongly pushing toward the integration of hydrogen in the energy systems of European countries and its widespread adoption as an energy vector to achieve the Green Deal targets. Furthermore, the Italian government is defining hydrogen-related objectives with the publication of a dedicated Hydrogen Strategy. The adoption of energy system optimization models to study the possible penetration of alternative zero-emitting transport technologies gives the opportunity to perform an overall analysis of the effects that the development of innovative technologies has on the entire energy system and on the supply-side, devoted to the production of energy carriers such as hydrogen and electricity. Using an open-source modeling framework such as TEMOA, this work aims to compare the role of hydrogen and electric vehicles in the decarbonization of the transport sector. The analysis investigates the advantages and disadvantages of adopting the two options, from the economic point of view (costs associated with the two options) and the environmental one (looking at the emissions reduction perspectives). Moreover, an analysis on the profitability of the investments in hydrogen and electric vehicles will be performed. The study investigates the evolution of energy consumption and greenhouse gas emissions in different transportation modes (road, rail, navigation, and aviation) by detailed analysis of the full range of vehicles included in the techno-economic database used in the TEMOA model instance adopted for this work. The transparency of the analysis is guaranteed by the accessibility of the TEMOA models, based on an open-access source code and databases.

Keywords: battery electric vehicles, decarbonization, energy system optimization models, fuel cell vehicles, hydrogen, open-source modeling, TEMOA, transport

Procedia PDF Downloads 112
28835 Optimizing Performance of Tablet's Direct Compression Process Using Fuzzy Goal Programming

Authors: Abbas Al-Refaie

Abstract:

This paper aims at improving the performance of the tableting process using statistical quality control and fuzzy goal programming. The tableting process was studied. Statistical control tools were used to characterize the existing process for three critical responses including the averages of a tablet’s weight, hardness, and thickness. At initial process factor settings, the estimated process capability index values for the tablet’s averages of weight, hardness, and thickness were 0.58, 3.36, and 0.88, respectively. The L9 array was utilized to provide experimentation design. Fuzzy goal programming was then employed to find the combination of optimal factor settings. Optimization results showed that the process capability index values for a tablet’s averages of weight, hardness, and thickness were improved to 1.03, 4.42, and 1.42, respectively. Such improvements resulted in significant savings in quality and production costs.

Keywords: fuzzy goal programming, control charts, process capability, tablet optimization

Procedia PDF Downloads 270
28834 Optimal Number and Placement of Vertical Links in 3D Network-On-Chip

Authors: Nesrine Toubaline, Djamel Bennouar, Ali Mahdoum

Abstract:

3D technology can lead to a significant reduction in power and average hop-count in Networks on Chip (NoCs). It offers short and fast vertical links which copes with the long wire problem in 2D NoCs. This work proposes heuristic-based method to optimize number and placement of vertical links to achieve specified performance goals. Experiments show that significant improvement can be achieved by using a specific number of vertical interconnect.

Keywords: interconnect optimization, monolithic inter-tier vias, network on chip, system on chip, through silicon vias, three dimensional integration circuits

Procedia PDF Downloads 303
28833 Measurement of Sarcopenia Associated with the Extent of Gastrointestinal Oncological Disease

Authors: Adrian Hang Yue Siu, Matthew Holyland, Sharon Carey, Daniel Steffens, Nabila Ansari, Cherry E. Koh

Abstract:

Introduction: Peritoneal malignancies are challenging cancers to manage. While cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS and HIPEC) may offer a cure, it’s considered radical and morbid. Pre-emptive identification of deconditioned patients for optimization may mitigate the risks of surgery. However, the difficulty lies in the scarcity of validated predictive tools to identify high-risk patients. In recent times, there has been growing interest in sarcopenia, which can occur as a result of malnutrition and malignancies. Therefore, the purpose of this study was to assess the utility of sarcopenia in predicting post-operative outcomes. Methods: A single quaternary-center retrospective study of CRS and HIPEC patients between 2017-2020 was conducted to determine the association between pre-operative sarcopenia and post-operative outcomes. Lumbar CT images were analyzed using Slice-o-matic® to measure sarcopenia. Results : Cohort (n=94) analysis found that 40% had sarcopenia, with a majority being female (53.2%) and a mean age of 55 years. Sarcopenia was statistically associated with decreased weight compared to non-sarcopenia patients, 72.7kg vs. 82.2kg (p=0.014) and shorter overall survival, 1.4 years vs. 2.1 years (p=0.032). Post-operatively, patients with sarcopenia experienced more post-operative complications (p=0.001). Conclusion: Complex procedures often require optimization to prevent complications and improve survival. While patient biomarkers – BMI and weight – are used for optimization, this research advocates for the identification of sarcopenia status for pre-operative planning. Sarcopenia may be an indicator of advanced disease requiring further treatment and is an emerging area of research. Larger studies are required to confirm these findings and to assess the reversibility of sarcopenia after surgery.

Keywords: sarcopaenia, cytoreductive surgery, hyperthermic intraperitoneal chemotherapy, surgical oncology

Procedia PDF Downloads 85
28832 Laser Additive Manufacturing of Carbon Nanotube-Reinforced Polyamide 12 Composites

Authors: Kun Zhou

Abstract:

Additive manufacturing has emerged as a disruptive technology that is capable of manufacturing products with complex geometries through an accumulation of material feedstock in a layer-by-layer fashion. Laser additive manufacturing such as selective laser sintering has excellent printing resolution, high printing speed and robust part strength, and has led to a widespread adoption in the aerospace, automotive and biomedical industries. This talk highlights and discusses the recent work we have undertaken in the development of carbon nanotube-reinforced polyamide 12 (CNT/PA12) composites printed using laser additive manufacturing. Numerical modelling studies have been conducted to simulate various processes within laser additive manufacturing of CNT/PA12 composites, and extensive experimental work has been carried out to investigate the mechanical and functional properties of the printed parts. The results from these studies grant a deeper understanding of the intricate mechanisms occurring within each process and enables an accurate optimization of process parameters for the CNT/PA12 and other polymer composites.

Keywords: CNT/PA12 composites, laser additive manufacturing, process parameter optimization, numerical modeling

Procedia PDF Downloads 153
28831 Simulation of Wet Scrubbers for Flue Gas Desulfurization

Authors: Anders Schou Simonsen, Kim Sorensen, Thomas Condra

Abstract:

Wet scrubbers are used for flue gas desulfurization by injecting water directly into the flue gas stream from a set of sprayers. The water droplets will flow freely inside the scrubber, and flow down along the scrubber walls as a thin wall film while reacting with the gas phase to remove SO₂. This complex multiphase phenomenon can be divided into three main contributions: the continuous gas phase, the liquid droplet phase, and the liquid wall film phase. This study proposes a complete model, where all three main contributions are taken into account and resolved using OpenFOAM for the continuous gas phase, and MATLAB for the liquid droplet and wall film phases. The 3D continuous gas phase is composed of five species: CO₂, H₂O, O₂, SO₂, and N₂, which are resolved along with momentum, energy, and turbulence. Source terms are present for four species, energy and momentum, which are affecting the steady-state solution. The liquid droplet phase experiences breakup, collisions, dynamics, internal chemistry, evaporation and condensation, species mass transfer, energy transfer and wall film interactions. Numerous sub-models have been implemented and coupled to realise the above-mentioned phenomena. The liquid wall film experiences impingement, acceleration, atomization, separation, internal chemistry, evaporation and condensation, species mass transfer, and energy transfer, which have all been resolved using numerous sub-models as well. The continuous gas phase has been coupled with the liquid phases using source terms by an approach, where the two software packages are couples using a link-structure. The complete CFD model has been verified using 16 experimental tests from an existing scrubber installation, where a gradient-based pattern search optimization algorithm has been used to tune numerous model parameters to match the experimental results. The CFD model needed to be fast for evaluation in order to apply this optimization routine, where approximately 1000 simulations were needed. The results show that the complex multiphase phenomena governing wet scrubbers can be resolved in a single model. The optimization routine was able to tune the model to accurately predict the performance of an existing installation. Furthermore, the study shows that a coupling between OpenFOAM and MATLAB is realizable, where the data and source term exchange increases the computational requirements by approximately 5%. This allows for exploiting the benefits of both software programs.

Keywords: desulfurization, discrete phase, scrubber, wall film

Procedia PDF Downloads 265
28830 X-Ray Detector Technology Optimization in Computed Tomography

Authors: Aziz Ikhlef

Abstract:

Most of multi-slices Computed Tomography (CT) scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This is translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80 kVp and 140 kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.

Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts

Procedia PDF Downloads 194
28829 Modeling Water Resources Carrying Capacity, Optimizing Water Treatment, Smart Water Management, and Conceptualizing a Watershed Management Approach

Authors: Pius Babuna

Abstract:

Sustainable water use is important for the existence of the human race. Water resources carrying capacity (WRCC) measures the sustainability of water use; however, the calculation and optimization of WRCC remain challenging. This study used a mathematical model (the Logistics Growth of Water Resources -LGWR) and a linear objective function to model water sustainability. We tested the validity of the models using data from Ghana. Total freshwater resources, water withdrawal, and population data were used in MATLAB. The results show that the WRCC remains sustainable until the year 2132 ±18, when half of the total annual water resources will be used. The optimized water treatment cost suggests that Ghana currently wastes GHȼ 1115.782± 50 cedis (~$182.21± 50) per water treatment plant per month or ~ 0.67 million gallons of water in an avoidable loss. Adopting an optimized water treatment scheme and a watershed management approach will help sustain the WRCC.

Keywords: water resources carrying capacity, smart water management, optimization, sustainable water use, water withdrawal

Procedia PDF Downloads 87
28828 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.

Keywords: computer vision, human motion analysis, random forest, machine learning

Procedia PDF Downloads 38
28827 Research on the Performance Management of Social Organizations Participating in Home-Based Care

Authors: Qiuhu Shao

Abstract:

Community home-based care service system, which is based on the family pension, supported by community pension and supplied by institutions pension, is an effective pension system to solve the current situation of China's accelerated aging. However, due to the fundamental realities of our country, the government is not able to bear the unilateral supply of the old-age service of the community. Therefore, based on the theory of welfare pluralism, the participation of social organizations in the home-based care service center has become an important part of the diversified supply of the old-age service for the elderly. Meanwhile, the home-based care service industry is still in the early stage, the management is relatively rough, which resulted in a large number of social resources waste. Thus, scientific, objective and long-term implementation is needed for social organizations to participate in home-based care services to guide its performance management. In order to realize the design of the performance management system, the author has done a research work that clarifies the research status of social organization's participation in home-based care service. Relevant theories such as welfare pluralism, community care theory, and performance management theory have been used to demonstrate the feasibility of data envelopment analysis method in social organization performance research. This paper analyzes the characteristics of the operation mode of the home-based care service center, and hackles the national as well as local documents, standards and norms related to the development of the home-based care industry, particularly studies those documents in Nanjing. Based on this, the paper designed a set of performance management PDCA system for home-based care service center in Nanjing and clarified each step of the system in detail. Subsequently, the research methods of performance evaluation and performance management and feedback, which are two core steps of performance management have been compared and screened in order to establish the overall framework of the performance management system of the home-based care service center. Through a large number of research, the paper summarized and analyzed the characteristics of the home-based care service center. Based on the research results, combined with the practice of the industry development in Nanjing, the paper puts forward a targeted performance evaluation index system of home-based care service center in Nanjing. Finally, the paper evaluated and sub-filed the performance of 186 home-based care service centers in Nanjing and then designed the performance optimization direction and performance improvement path based on the results. This study constructs the index system of performance evaluation of home-based care service and makes the index detailed to the implementation level, and constructs the evaluation index system which can be applied directly. Meanwhile, the quantitative evaluation of social organizations participating in the home-based care service changed the subjective impression in the previous practice of evaluation.

Keywords: data envelopment analysis, home-based care, performance management, social organization

Procedia PDF Downloads 270
28826 Type–2 Fuzzy Programming for Optimizing the Heat Rate of an Industrial Gas Turbine via Absorption Chiller Technology

Authors: T. Ganesan, M. S. Aris, I. Elamvazuthi, Momen Kamal Tageldeen

Abstract:

Terms set in power purchase agreements (PPA) challenge power utility companies in balancing between the returns (from maximizing power production) and securing long term supply contracts at capped production. The production limitation set in the PPA has driven efforts to maximize profits through efficient and economic power production. In this paper, a combined industrial-scale gas turbine (GT) - absorption chiller (AC) system is considered to cool the GT air intake for reducing the plant’s heat rate (HR). This GT-AC system is optimized while considering power output limitations imposed by the PPA. In addition, the proposed formulation accounts for uncertainties in the ambient temperature using Type-2 fuzzy programming. Using the enhanced chaotic differential evolution (CEDE), the Pareto frontier was constructed and the optimization results are analyzed in detail.

Keywords: absorption chillers (AC), turbine inlet air cooling (TIC), power purchase agreement (PPA), multiobjective optimization, type-2 fuzzy programming, chaotic differential evolution (CDDE)

Procedia PDF Downloads 310
28825 Optimization of Pretreatment Process of Napier Grass for Improved Sugar Yield

Authors: Shashikant Kumar, Chandraraj K.

Abstract:

Perennial grasses have presented interesting choices in the current demand for renewable and sustainable energy sources to alleviate the load of the global energy problem. The perennial grass Napier grass (Pennisetum purpureum Schumach) is a promising feedstock for the production of cellulosic ethanol. The conversion of biomass into glucose and xylose is a crucial stage in the production of bioethanol, and it necessitates optimal pretreatment. Alkali treatment, among the several pretreatments available, effectively reduces lignin concentration and crystallinity of cellulose. Response surface methodology was used to optimize the alkali pretreatment of Napier grass for maximal reducing sugar production. The combined effects of three independent variables, viz. sodium hydroxide concentration, temperature, and reaction time, were studied. A second-order polynomial equation was used to fit the observed data. Maximum reducing sugar (590.54 mg/g) was obtained under the following conditions: 1.6 % sodium hydroxide, a reaction period of 30 min., and 120˚C. The results showed that Napier grass is a desirable feedstock for bioethanol production.

Keywords: Napier grass, optimization, pretreatment, sodium hydroxide

Procedia PDF Downloads 506
28824 Estimation of Synchronous Machine Synchronizing and Damping Torque Coefficients

Authors: Khaled M. EL-Naggar

Abstract:

Synchronizing and damping torque coefficients of a synchronous machine can give a quite clear picture for machine behavior during transients. These coefficients are used as a power system transient stability measurement. In this paper, a crow search optimization algorithm is presented and implemented to study the power system stability during transients. The algorithm makes use of the machine responses to perform the stability study in time domain. The problem is formulated as a dynamic estimation problem. An objective function that minimizes the error square in the estimated coefficients is designed. The method is tested using practical system with different study cases. Results are reported and a thorough discussion is presented. The study illustrates that the proposed method can estimate the stability coefficients for the critical stable cases where other methods may fail. The tests proved that the proposed tool is an accurate and reliable tool for estimating the machine coefficients for assessment of power system stability.

Keywords: optimization, estimation, synchronous, machine, crow search

Procedia PDF Downloads 140
28823 Indoor Real-Time Positioning and Mapping Based on Manhattan Hypothesis Optimization

Authors: Linhang Zhu, Hongyu Zhu, Jiahe Liu

Abstract:

This paper investigated a method of indoor real-time positioning and mapping based on the Manhattan world assumption. In indoor environments, relying solely on feature matching techniques or other geometric algorithms for sensor pose estimation inevitably resulted in cumulative errors, posing a significant challenge to indoor positioning. To address this issue, we adopt the Manhattan world hypothesis to optimize the camera pose algorithm based on feature matching, which improves the accuracy of camera pose estimation. A special processing method was applied to image data frames that conformed to the Manhattan world assumption. When similar data frames appeared subsequently, this could be used to eliminate drift in sensor pose estimation, thereby reducing cumulative errors in estimation and optimizing mapping and positioning. Through experimental verification, it is found that our method achieves high-precision real-time positioning in indoor environments and successfully generates maps of indoor environments. This provides effective technical support for applications such as indoor navigation and robot control.

Keywords: Manhattan world hypothesis, real-time positioning and mapping, feature matching, loopback detection

Procedia PDF Downloads 61
28822 Storage Assignment Strategies to Reduce Manual Picking Errors with an Emphasis on an Ageing Workforce

Authors: Heiko Diefenbach, Christoph H. Glock

Abstract:

Order picking, i.e., the order-based retrieval of items in a warehouse, is an important time- and cost-intensive process for many logistic systems. Despite the ongoing trend of automation, most order picking systems are still manual picker-to-parts systems, where human pickers walk through the warehouse to collect ordered items. Human work in warehouses is not free from errors, and order pickers may at times pick the wrong or the incorrect number of items. Errors can cause additional costs and significant correction efforts. Moreover, age might increase a person’s likelihood to make mistakes. Hence, the negative impact of picking errors might increase for an aging workforce currently witnessed in many regions globally. A significant amount of research has focused on making order picking systems more efficient. Among other factors, storage assignment, i.e., the assignment of items to storage locations (e.g., shelves) within the warehouse, has been subject to optimization. Usually, the objective is to assign items to storage locations such that order picking times are minimized. Surprisingly, there is a lack of research concerned with picking errors and respective prevention approaches. This paper hypothesize that the storage assignment of items can affect the probability of pick errors. For example, storing similar-looking items apart from one other might reduce confusion. Moreover, storing items that are hard to count or require a lot of counting at easy-to-access and easy-to-comprehend self heights might reduce the probability to pick the wrong number of items. Based on this hypothesis, the paper discusses how to incorporate error-prevention measures into mathematical models for storage assignment optimization. Various approaches with respective benefits and shortcomings are presented and mathematically modeled. To investigate the newly developed models further, they are compared to conventional storage assignment strategies in a computational study. The study specifically investigates how the importance of error prevention increases with pickers being more prone to errors due to age, for example. The results suggest that considering error-prevention measures for storage assignment can reduce error probabilities with only minor decreases in picking efficiency. The results might be especially relevant for an aging workforce.

Keywords: an aging workforce, error prevention, order picking, storage assignment

Procedia PDF Downloads 204
28821 Optimal Capacitor Placement in Distribution Using Cuckoo Optimization Algorithm

Authors: Ali Ravangard, S. Mohammadi

Abstract:

Shunt Capacitors have several uses in the electric power systems. They are utilized as sources of reactive power by connecting them in line-to-neutral. Electric utilities have also connected capacitors in series with long lines in order to reduce its impedance. This is particularly common in the transmission level, where the lines have length in several hundreds of kilometers. However, this post will generally discuss shunt capacitors. In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. For solving the problem, a new enhanced cuckoo optimization algorithm is presented.The proposed method is tested on distribution test system and the results show that the algorithm suitable for practical implementation on real systems with any size.

Keywords: capacitor placement, power losses, voltage stability, radial distribution systems

Procedia PDF Downloads 377
28820 Cross-Dipole Right-Hand Circularly Polarized UHF/VHF Yagi-Uda Antenna for Satellite Applications

Authors: Shativel S., Chandana B. R., Kavya B. C., Obli B. Vikram, Suganthi J., Nagendra Rao G.

Abstract:

Satellite communication plays a pivotal role in modern global communication networks, serving as a vital link between terrestrial infrastructure and remote regions. The demand for reliable satellite reception systems, especially in UHF (Ultra High Frequency) and VHF (Very High Frequency) bands, has grown significantly over the years. This research paper presents the design and optimization of a high-gain, dual-band crossed Yagi-Uda antenna in CST Studio Suite, specifically tailored for satellite reception. The proposed antenna system incorporates a circularly polarized (Right-Hand Circular Polarization - RHCP) design to reduce Faraday loss. Our aim was to use fewer elements and achieve gain, so the antenna is constructed using 6x2 elements arranged in cross dipole and supported with a boom. We have achieved 10.67dBi at 146MHz and 9.28dBi at 437.5MHz.The process includes parameter optimization and fine-tuning of the Yagi-Uda array’s elements, such as the length and spacing of directors and reflectors, to achieve high gain and desirable radiation patterns. Furthermore, the optimization process considers the requirements for UHF and VHF frequency bands, ensuring broad frequency coverage for satellite reception. The results of this research are anticipated to significantly contribute to the advancement of satellite reception systems, enhancing their capabilities to reliably connect remote and underserved areas to the global communication network. Through innovative antenna design and simulation techniques, this study seeks to provide a foundation for the development of next-generation satellite communication infrastructure.

Keywords: Yagi-Uda antenna, RHCP, gain, UHF antenna, VHF antenna, CST, radiation pattern.

Procedia PDF Downloads 61
28819 Design and Development of an 'Optimisation Controller' and a SCADA Based Monitoring System for Renewable Energy Management in Telecom Towers

Authors: M. Sundaram, H. R. Sanath Kumar, A. Ramprakash

Abstract:

Energy saving is a key sustainability focus area for the Indian telecom industry today. This is especially true in rural India where energy consumption contributes to 70 % of the total network operating cost. In urban areas, the energy cost for network operation ranges between 15-30 %. This expenditure on energy as a result of the lack of grid power availability highlights a potential barrier to telecom industry growth. As a result of this, telecom tower companies switch to diesel generators, making them the second largest consumer of diesel in India, consuming over 2.5 billion litres per annum. The growing cost of energy due to increasing diesel prices and concerns over rising greenhouse emissions have caused these companies to look at other renewable energy options. Even the TRAI (Telecom Regulation Authority of India) has issued a number of guidelines to implement Renewable Energy Technologies (RETs) in the telecom towers as part of its ‘Implementation of Green Technologies in Telecom Sector’ initiative. Our proposal suggests the implementation of a Programmable Logic Controller (PLC) based ‘optimisation controller’ that can not only efficiently utilize the energy from RETs but also help to conserve the power used in the telecom towers. When there are multiple RETs available to supply energy, this controller will pick the optimum amount of energy from each RET based on the availability and feasibility at that point of time, reducing the dependence on diesel generators. For effective maintenance of the towers, we are planing to implement a SCADA based monitoring system along with the ‘optimization controller’.

Keywords: operation costs, consumption of fuel and carbon footprint, implementation of a programmable logic controller (PLC) based ‘optimisation controller’, efficient SCADA based monitoring system

Procedia PDF Downloads 419
28818 Value Engineering and Its Impact on Drainage Design Optimization for Penang International Airport Expansion

Authors: R.M. Asyraf, A. Norazah, S.M. Khairuddin, B. Noraziah

Abstract:

Designing a system at present requires a vital, challenging task; to ensure the design philosophy is maintained in economical ways. This paper perceived the value engineering (VE) approach applied in infrastructure works, namely stormwater drainage. This method is adopted in line as consultants have completed the detailed design. Function Analysis System Technique (FAST) diagram and VE job plan, information, function analysis, creative judgement, development, and recommendation phase are used to scrutinize the initial design of stormwater drainage. An estimated cost reduction using the VE approach of 2% over the initial proposal was obtained. This cost reduction is obtained from the design optimization of the drainage foundation and structural system, where the pile design and drainage base structure are optimized. Likewise, the design of the on-site detention tank (OSD) pump was revised and contribute to the cost reduction obtained. This case study shows that the VE approach can be an important tool in optimizing the design to reduce costs.

Keywords: value engineering, function analysis system technique, stormwater drainage, cost reduction

Procedia PDF Downloads 145
28817 Molecular and Electronic Structure of Chromium (III) Cyclopentadienyl Complexes

Authors: Salem El-Tohami Ashoor

Abstract:

Here we show that the reduction of [Cr(ArN(CH2)3NAr)2Cl2] (1) where (Ar = 2,6-Pri2C6H3) and in presence of NaCp (2) (Cp= C5H5 = cyclopentadien), with a center coordination η5 interaction between Cp as co-ligand and chromium metal center, this was optimization by using density functional theory (DFT) and then was comparing with experimental data, also other possibility of Cp interacted with ion metal were tested like η1 ,η2 ,η3 and η4 under optimization system. These were carried out under investigation of density functional theory (DFT) calculation, and comparing together. Other methods, explicitly including electron correlation, are necessary for more accurate calculations; MB3LYP ( Becke)( Lee–Yang–Parr ) level of theory often being used to obtain more exact results. These complexes were estimated of electronic energy for molecular system, because it accounts for all electron correlation interactions. The optimised of [Cr(ArN(CH2)3NAr)2(η5-Cp)] (Ar = 2,6-Pri2C6H3 and Cp= C5H5) was found to be thermally more stable than others of chromium cyclopentadienyl. By using Dewar-Chatt-Duncanson model, as a basis of the molecular orbital (MO) analysis and showed the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital LUMO.

Keywords: Chromium(III) cyclopentadienyl complexes, DFT, MO, HOMO, LUMO

Procedia PDF Downloads 506
28816 Modeling and Optimization of Performance of Four Stroke Spark Ignition Injector Engine

Authors: A. A. Okafor, C. H. Achebe, J. L. Chukwuneke, C. G. Ozoegwu

Abstract:

The performance of an engine whose basic design parameters are known can be predicted with the assistance of simulation programs into the less time, cost and near value of actual. This paper presents a comprehensive mathematical model of the performance parameters of four stroke spark ignition engine. The essence of this research work is to develop a mathematical model for the analysis of engine performance parameters of four stroke spark ignition engine before embarking on full scale construction, this will ensure that only optimal parameters are in the design and development of an engine and also allow to check and develop the design of the engine and it’s operation alternatives in an inexpensive way and less time, instead of using experimental method which requires costly research test beds. To achieve this, equations were derived which describe the performance parameters (sfc, thermal efficiency, mep and A/F). The equations were used to simulate and optimize the engine performance of the model for various engine speeds. The optimal values obtained for the developed bivariate mathematical models are: sfc is 0.2833kg/kwh, efficiency is 28.77% and a/f is 20.75.

Keywords: bivariate models, engine performance, injector engine, optimization, performance parameters, simulation, spark ignition

Procedia PDF Downloads 326
28815 Multi-Criteria Decision Making Network Optimization for Green Supply Chains

Authors: Bandar A. Alkhayyal

Abstract:

Modern supply chains are typically linear, transforming virgin raw materials into products for end consumers, who then discard them after use to landfills or incinerators. Nowadays, there are major efforts underway to create a circular economy to reduce non-renewable resource use and waste. One important aspect of these efforts is the development of Green Supply Chain (GSC) systems which enables a reverse flow of used products from consumers back to manufacturers, where they can be refurbished or remanufactured, to both economic and environmental benefit. This paper develops novel multi-objective optimization models to inform GSC system design at multiple levels: (1) strategic planning of facility location and transportation logistics; (2) tactical planning of optimal pricing; and (3) policy planning to account for potential valuation of GSC emissions. First, physical linear programming was applied to evaluate GSC facility placement by determining the quantities of end-of-life products for transport from candidate collection centers to remanufacturing facilities while satisfying cost and capacity criteria. Second, disassembly and remanufacturing processes have received little attention in industrial engineering and process cost modeling literature. The increasing scale of remanufacturing operations, worth nearly $50 billion annually in the United States alone, have made GSC pricing an important subject of research. A non-linear physical programming model for optimization of pricing policy for remanufactured products that maximizes total profit and minimizes product recovery costs were examined and solved. Finally, a deterministic equilibrium model was used to determine the effects of internalizing a cost of GSC greenhouse gas (GHG) emissions into optimization models. Changes in optimal facility use, transportation logistics, and pricing/profit margins were all investigated against a variable cost of carbon, using case study system created based on actual data from sites in the Boston area. As carbon costs increase, the optimal GSC system undergoes several distinct shifts in topology as it seeks new cost-minimal configurations. A comprehensive study of quantitative evaluation and performance of the model has been done using orthogonal arrays. Results were compared to top-down estimates from economic input-output life cycle assessment (EIO-LCA) models, to contrast remanufacturing GHG emission quantities with those from original equipment manufacturing operations. Introducing a carbon cost of $40/t CO2e increases modeled remanufacturing costs by 2.7% but also increases original equipment costs by 2.3%. The assembled work advances the theoretical modeling of optimal GSC systems and presents a rare case study of remanufactured appliances.

Keywords: circular economy, extended producer responsibility, greenhouse gas emissions, industrial ecology, low carbon logistics, green supply chains

Procedia PDF Downloads 160
28814 CPU Architecture Based on Static Hardware Scheduler Engine and Multiple Pipeline Registers

Authors: Ionel Zagan, Vasile Gheorghita Gaitan

Abstract:

The development of CPUs and of real-time systems based on them made it possible to use time at increasingly low resolutions. Together with the scheduling methods and algorithms, time organizing has been improved so as to respond positively to the need for optimization and to the way in which the CPU is used. This presentation contains both a detailed theoretical description and the results obtained from research on improving the performances of the nMPRA (Multi Pipeline Register Architecture) processor by implementing specific functions in hardware. The proposed CPU architecture has been developed, simulated and validated by using the FPGA Virtex-7 circuit, via a SoC project. Although the nMPRA processor hardware structure with five pipeline stages is very complex, the present paper presents and analyzes the tests dedicated to the implementation of the CPU and of the memory on-chip for instructions and data. In order to practically implement and test the entire SoC project, various tests have been performed. These tests have been performed in order to verify the drivers for peripherals and the boot module named Bootloader.

Keywords: hardware scheduler, nMPRA processor, real-time systems, scheduling methods

Procedia PDF Downloads 267
28813 Towards Computational Fluid Dynamics Based Methodology to Accelerate Bioprocess Scale Up and Scale Down

Authors: Vishal Kumar Singh

Abstract:

Bioprocess development is a time-constrained activity aimed at harnessing the full potential of culture performance in an ambience that is not natural to cells. Even with the use of chemically defined media and feeds, a significant amount of time is devoted in identifying the apt operating parameters. In addition, the scale-up of these processes is often accompanied by loss of antibody titer and product quality, which further delays the commercialization of the drug product. In such a scenario, the investigation of this disparity of culture performance is done by further experimentation at a smaller scale that is representative of at-scale production bioreactors. These scale-down model developments are also time-intensive. In this study, a computation fluid dynamics-based multi-objective scaling approach has been illustrated to speed up the process transfer. For the implementation of this approach, a transient multiphase water-air system has been studied in Ansys CFX to visualize the air bubble distribution and volumetric mass transfer coefficient (kLa) profiles, followed by the design of experiment based parametric optimization approach to define the operational space. The proposed approach is completely in silico and requires minimum experimentation, thereby rendering a high throughput to the overall process development.

Keywords: bioprocess development, scale up, scale down, computation fluid dynamics, multi-objective, Ansys CFX, design of experiment

Procedia PDF Downloads 82
28812 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation

Authors: Vishwesh Kulkarni, Nikhil Bellarykar

Abstract:

Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.

Keywords: synthetic gene network, network identification, optimization, nonlinear modeling

Procedia PDF Downloads 156
28811 DFIG-Based Wind Turbine with Shunt Active Power Filter Controlled by Double Nonlinear Predictive Controller

Authors: Abderrahmane El Kachani, El Mahjoub Chakir, Anass Ait Laachir, Abdelhamid Niaaniaa, Jamal Zerouaoui, Tarik Jarou

Abstract:

This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.

Keywords: wind power, doubly fed induction generator, shunt active power filter, double nonlinear predictive controller

Procedia PDF Downloads 416
28810 Adsorption of Cerium as One of the Rare Earth Elements Using Multiwall Carbon Nanotubes from Aqueous Solution: Modeling, Equilibrium and Kinetics

Authors: Saeb Ahmadi, Mohsen Vafaie Sefti, Mohammad Mahdi Shadman, Ebrahim Tangestani

Abstract:

Carbon nanotube has shown great potential for the removal of various inorganic and organic components due to properties such as large surface area and high adsorption capacity. Central composite design is widely used method for determining optimal conditions. Also due to the economic reasons and wide application, the rare earth elements are important components. The analyses of cerium (Ce(III)) adsorption as one of the Rare Earth Elements (REEs) adsorption on Multiwall Carbon Nanotubes (MWCNTs) have been studied. The optimization process was performed using Response Surface Methodology (RSM). The optimum amount conditions were pH of 4.5, initial Ce (III) concentration of 90 mg/l and MWCNTs dosage of 80 mg. Under this condition, the optimum adsorption percentage of Ce (III) was obtained about 96%. Next, at the obtained optimum conditions the kinetic and isotherm studied and result showed the pseudo-second order and Langmuir isotherm are more fitted with experimental data than other models.

Keywords: cerium, rare earth element, MWCNTs, adsorption, optimization

Procedia PDF Downloads 167
28809 Optimization of Temperature for Crystal Violet Dye Adsorption Using Castor Leaf Powder by Response Surface Methodology

Authors: Vipan Kumar Sohpal

Abstract:

Temperature effect on the adsorption of crystal violet dye (CVD) was investigated using a castor leaf powder (CLP) that was prepared from the mature leaves of castor trees, through chemical reaction. The optimum values of pH (8), adsorbent dose (10g/L), initial dye concentration (10g/L), time (2hrs), and stirrer speed (120 rpm) were fixed to investigate the influence of temperature on adsorption capacity, percentage of removal of dye and free energy. A central composite design (CCD) was successfully employed for experimental design and analysis of the results. The combined effect of temperature, absorbance, and concentration on the dye adsorption was studied and optimized using response surface methodology. The optimum values of adsorption capacity, percentage of removal of dye and free energy were found to be 0.965(mg/g), 93.38 %, -8202.7(J/mol) at temperature 55.97 °C having desirability > 90% for removal of crystal violet dye respectively. The experimental values were in good agreement with predicted values.

Keywords: crystal violet dye, CVD, castor leaf powder, CLP, response surface methodology, temperature, optimization

Procedia PDF Downloads 132
28808 Optimization of 3D Printing Parameters Using Machine Learning to Enhance Mechanical Properties in Fused Deposition Modeling (FDM) Technology

Authors: Darwin Junnior Sabino Diego, Brando Burgos Guerrero, Diego Arroyo Villanueva

Abstract:

Additive manufacturing, commonly known as 3D printing, has revolutionized modern manufacturing by enabling the agile creation of complex objects. However, challenges persist in the consistency and quality of printed parts, particularly in their mechanical properties. This study focuses on addressing these challenges through the optimization of printing parameters in FDM technology, using Machine Learning techniques. Our aim is to improve the mechanical properties of printed objects by optimizing parameters such as speed, temperature, and orientation. We implement a methodology that combines experimental data collection with Machine Learning algorithms to identify relationships between printing parameters and mechanical properties. The results demonstrate the potential of this methodology to enhance the quality and consistency of 3D printed products, with significant applications across various industrial fields. This research not only advances understanding of additive manufacturing but also opens new avenues for practical implementation in industrial settings.

Keywords: 3D printing, additive manufacturing, machine learning, mechanical properties

Procedia PDF Downloads 52
28807 Maximum Power Point Tracking Using Fuzzy Logic Control for a Stand-Alone PV System with PI Controller for Battery Charging Based on Evolutionary Technique

Authors: Mohamed A. Moustafa Hassan, Omnia S .S. Hussian, Hany M. Elsaved

Abstract:

This paper introduces the application of Fuzzy Logic Controller (FLC) to extract the Maximum Power Point Tracking (MPPT) from the PV panel. In addition, the proportional integral (PI) controller is used to be the strategy for battery charge control according to acceptable performance criteria. The parameters of the PI controller have been tuned via Modified Adaptive Accelerated Coefficient Particle Swarm Optimization (MAACPSO) technique. The simulation results, using MATLAB/Simulink tools, show that the FLC technique has advantages for use in the MPPT problem, as it provides a fast response under changes in environmental conditions such as radiation and temperature. In addition, the use of PI controller based on MAACPSO results in a good performance in terms of controlling battery charging with constant voltage and current to execute rapid charging.

Keywords: battery charging, fuzzy logic control, maximum power point tracking, PV system, PI controller, evolutionary technique

Procedia PDF Downloads 166