Search results for: soil acidity correction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3597

Search results for: soil acidity correction

2427 Determining the Sources of Sediment at Different Areas of the Catchment: A Case Study of Welbedacht Reservoir, South Africa

Authors: D. T. Chabalala, J. M. Ndambuki, M. F. Ilunga

Abstract:

Sedimentation includes the processes of erosion, transportation, deposition, and the compaction of sediment. Sedimentation in reservoir results in a decrease in water storage capacity, downstream problems involving aggregation and degradation, blockage of the intake, and change in water quality. A study was conducted in Caledon River catchment in the upstream of Welbedacht Reservoir located in the South Eastern part of Free State province, South Africa. The aim of this research was to investigate and develop a model for an Integrated Catchment Modelling of Sedimentation processes and management for the Welbedacht reservoir. Revised Universal Soil Loss Equation (RUSLE) was applied to determine sources of sediment at different areas of the catchment. The model has been also used to determine the impact of changes from management practice on erosion generation. The results revealed that the main sources of sediment in the watershed are cultivated land (273 ton per hectare), built up and forest (103.3 ton per hectare), and grassland, degraded land, mining and quarry (3.9, 9.8 and 5.3 ton per hectare) respectively. After application of soil conservation practices to developed Revised Universal Soil Loss Equation model, the results revealed that the total average annual soil loss in the catchment decreased by 76% and sediment yield from cultivated land decreased by 75%, while the built up and forest area decreased by 42% and 99% respectively. Thus, results of this study will be used by government departments in order to develop sustainable policies.

Keywords: Welbedacht reservoir, sedimentation, RUSLE, Caledon River

Procedia PDF Downloads 186
2426 Potential of Lead Tolerant and Mobilizing Fungus for Plant Growth Promotion through Plant Growth Promoting Activity; A Promising Approach for Enhance Phytoremediation

Authors: Maria Manzoor, Iram Gul, Muhammad Arshad, Jean Kallerhoff

Abstract:

The potential of fungal isolates to be used in phytoremediation of widespread lead contaminated soil has been evaluated in this study. Five different fungal isolates (Trichoderma harzianum, Penicillium simplicissimum, Aspergillus flavus, Aspergillus niger and Mucor spp.) were obtained and tested for their tolerance to increasing concentration of lead (Pb) i.e. 100, 200, 300, 400 and 500 mgL-1 on PDA and PDB culture experiment. All strains were tolerant up to 500 mgL-1 following sequence; A. flavus > A. niger > Mucor spp. > P. simplicissimum > T. harzianum. Further the isolates were then monitored for possible effect on Pb solubility/mobility through soil incubation experiments and characterized for essays including pathogenicity, germination and root elongation and plant growth promoting activities including IAA (indole acetic acid), phosphorus solubilization and gibberellic acid (GA3) production. Results revealed that fungal isolates have positive effect on Pb mobility in soil and plant biomass production. Pb solubility was significantly (P> 0.05) increased in soil upon application of Mucor spp. P. simplicissimum and T. harzianum. when compared to control. Among different strains three isolates (Mucor spp., P. simplicissimum and T. harzianum) were nonpathogenic because no inhibitory effect of fungus was observed to plant growth when exposed to these strains in root shoot elongation essay. Particularly T. harzianum and P. simplicissimum showed great ability to increase root length by 1.1 and 1.3 folds and shoot length by 1.47 and 1.5 folds respectively under Pb stress (500 mgL-1). Significantly high production of IAA was observed in A. niger (26.7 μg/ml), Phosphorus solubilization was observed in T. harzianum (9.15 μg/ml) and GA3 production was observed in P. simplicissimum (11.02 μg/ml). From results it is concluded that Mucor spp., P. simplicissimum and T. harzianum have potential to increase Pb mobility and improving plant growth under highy Pb contamination, therefore can be used in microbially assisted phytoremediation of Pb contaminated soil.

Keywords: Pb tolerant fungus, Pb mobility, plant growth promoting activities, indole acetic acid (IAA)

Procedia PDF Downloads 259
2425 SSRUIC Students’ Attitude and Preference toward Error Corrections

Authors: Papitchaya Papangkorn

Abstract:

Matching the expectations of teachers and learners is significant for successful language learning. Moreover, teachers should discover what their learners think and feel about what and how they want to learn. Therefore, this study investigates International College, Suan Sunandha Rajabhat University students’ preferences toward error corrections in order to help SSRUIC teachers match their expectations and their learners because it is important for successful language learning. This study examined the learners’ attitude and preference toward error correction through 50 first year SSRUIC students both male (25) and female (25) in Bangkok, Thailand. The data were collected from a questionnaire and interviews to investigate the necessity and frequency, timing, type of errors, method of corrective feedback, and person who gives error correction in order to answer the overall research question and sub-questions. The findings indicate five suggestions regarding the overall research question. Firstly, errors should be treated, and always be treated. Secondly, treating errors after finish speaking is the most appropriate time. Thirdly, “errors that may cause problems in an understanding of listener” and “frequent spoken errors” should be treated. Fourthly, repetition and explicit feedback were the most popular types of feedback among males, whereas metalinguistic feedback was the most favoured types amongst females. Finally, teachers were the most preferred person to deliver corrective feedback for the learners. Although the results of the study are difficult to generalize to a larger population, which are Thai EFL learners because of the small sample, the findings provide useful information that may contribute to understanding of SSRUIC learners’ preferences toward error corrections and it might reduce the gap between what teachers employ and what students expect when receiving corrective feedback. The reduction of this gap may be useful for the learning process and could enhance the efforts of both teachers and learners in a Thai context.

Keywords: attitude, corrective feedback, error, preference

Procedia PDF Downloads 353
2424 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models

Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi

Abstract:

This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.

Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control

Procedia PDF Downloads 31
2423 Contamination of the Groundwater by the Flow of the Discharge in Khouribga City (Morocco) and the Danger It Presents to the Health of the Surrounding Population.

Authors: Najih Amina

Abstract:

Our study focuses on monitoring the spatial evolution of a number of physico-chemical parameters of wells waters located at different distances from the discharge of the city of Khouribga (S0 upstream station, S1, S2 et S3 are respectively located at 5.5, 7.5, 11 Km away from solid waste discharge of the city). The absence of a source of drinking water in this region involves the population to feeding on its groundwater wells. Through the results, we note that most of the analyzed parameters exceed the potable water standards from S1. At this source of water, we find that the conductivity (1290 μmScm-1; Standard 1000 μmScm-1), Total Hardness TH (67.2°F/ Standard 50° F), Ca2 + (146 mg l-1 standard 60 mg l-1), Cl- (369 mg l-1 standard 150 mg l-1), NaCl (609 mgl-1), Methyl orange alakanity “M. alk” (280 mg l-1) greatly exceed the drinking water standards. By following these parameters, it is obvious that some values have decreased in the downstream stations, while others become important. We find that the conductivity is always higher than 950 μmScm-1; the TH registers 72°F in S3; Ca 2+ is in the range of 153 mg l-1 in S3, Cl- and NaCl- reached 426 mg l-1 and 702 mg l-1 respectively in S2, M alk becomes higher and reaches 430 to 350 in S3. At the wells S2, we found that the nitrites are well beyond the standard 1.05 mg l-1. Whereas, at the control station S0, the values are lower or at the limit of drinking water standards: conductivity (452 μmScm-1), TH (34 F°), Ca2+ (68 mg l-1), Cl- (157 mg l-1), NaCl- (258 mg l-1), M alk (220 mg l-1). Thus, the diagnosis reveals the presence of a high pollution caused by the leachates of the household waste discharge and by the effluents of the sewage waste water plant (SWWP). The phenomenon of the water hardness could, also, be generated by the processes of erosion, leaching and soil infiltration in the region (phosphate layers, intercalated layers of marl and limestone), phenomenons also caused by the acidity due to this surrounding pollution. The source S1 is the nearest surrounding site of the discharge and the most affected by the phenomenon of pollution, especially, it is near to a superficial water source S’1 polluted by the effluents coming from the sewage waste water plant of the city. In the light of these data, we can deduce that the consumption of this water from S1 does not conform the standards of drinking waters, and could affect the human health.

Keywords: physico-chemical parameters, ground water wells, infiltration, leaching, pollution, leachate discharge effluent SWWP, human health.

Procedia PDF Downloads 400
2422 In situ Stabilization of Arsenic in Soils with Birnessite and Goethite

Authors: Saeed Bagherifam, Trevor Brown, Chris Fellows, Ravi Naidu

Abstract:

Over the last century, rapid urbanization, industrial emissions, and mining activities have resulted in widespread contamination of the environment by heavy metal(loid)s. Arsenic (As) is a toxic metalloid belonging to group 15 of the periodic table, which occurs naturally at low concentrations in soils and the earth’s crust, although concentrations can be significantly elevated in natural systems as a result of dispersion from anthropogenic sources, e.g., mining activities. Bioavailability is the fraction of a contaminant in soils that is available for uptake by plants, food chains, and humans and therefore presents the greatest risk to terrestrial ecosystems. Numerous attempts have been made to establish in situ and ex-situ technologies of remedial action for remediation of arsenic-contaminated soils. In situ stabilization techniques are based on deactivation or chemical immobilization of metalloid(s) in soil by means of soil amendments, which consequently reduce the bioavailability (for biota) and bioaccessibility (for humans) of metalloids due to the formation of low-solubility products or precipitates. This study investigated the effectiveness of two different types of synthetic manganese and iron oxides (birnessite and goethite) for stabilization of As in a soil spiked with 1000 mg kg⁻¹ of As and treated with 10% dosages of soil amendments. Birnessite was made using HCl and KMnO₄, and goethite was synthesized by the dropwise addition of KOH into Fe(NO₃) solution. The resulting contaminated soils were subjected to a series of chemical extraction studies including sequential extraction (BCR method), single-step extraction with distilled (DI) water, 2M HNO₃ and simplified bioaccessibility extraction tests (SBET) for estimation of bioaccessible fractions of As in two different soil fractions ( < 250 µm and < 2 mm). Concentrations of As in samples were measured using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that soil with birnessite reduced bioaccessibility of As by up to 92% in both soil fractions. Furthermore, the results of single-step extractions revealed that the application of both birnessite and Goethite reduced DI water and HNO₃ extractable amounts of arsenic by 75, 75, 91, and 57%, respectively. Moreover, the results of the sequential extraction studies showed that both birnessite and goethite dramatically reduced the exchangeable fraction of As in soils. However, the amounts of recalcitrant fractions were higher in birnessite, and Goethite amended soils. The results revealed that the application of both birnessite and goethite significantly reduced bioavailability and the exchangeable fraction of As in contaminated soils, and therefore birnessite and Goethite amendments might be considered as promising adsorbents for stabilization and remediation of As contaminated soils.

Keywords: arsenic, bioavailability, in situ stabilisation, metalloid(s) contaminated soils

Procedia PDF Downloads 128
2421 Effect of Black Locust Trees on the Nitrogen Dynamics of Black Pine Trees in Shonai Coastal Forest, Japan

Authors: Kazushi Murata, Fabian Watermann, O. B. Herve Gonroudobou, Le Thuy Hang, Toshiro Yamanaka, M. Larry Lopez C.

Abstract:

Aims: Black pine coastal forests play an important role as a windbreak and as a natural barrier to sand and salt spray inland in Japan. The recent invasion of N₂-fxing black locust (Robinia pseudoacacia) trees in these forests is expected to have a nutritional contribution to black pine trees growth. Thus, the effect of this new source of N on black pine trees' N assimilation needs to be assessed. Methods: In order to evaluate this contribution, tree-ring isotopic composition (δ¹⁵N) and nitrogen content (%N) of black pine (Pinus thunbergii) trees in a pure stand (BPP) and a mixed stand (BPM) with black locust (BL) trees were measured for the period 2000–2019 for BPP and BL and 1990–2019 for BPM. The same measurements were conducted in plant tissues and in soil samples. Results: The tree ring δ15N values showed that for the last 30 years, BPM trees gradually switched from BPP to BL-derived soil N starting in the 1990s, becoming the dominant N source from 2000 as no significant diference was found between BPM and BL tree ring δ¹⁵N values from 2000 to 2019. No difference in root and sapwood BPM and BL δ¹⁵N values were found, but BPM foliage (−2.1‰) was different to BPP (−4.4‰) and BL (−0.3‰), which is related to the different N assimilation pathways between BP and BL. Conclusions: Based on the results of this study, the assimilation of BL-derived N inferred from the BPM tissues' δ¹⁵N values is the result of an increase in soil bioavailable N with a higher δ¹⁵N value.

Keywords: nitrogen-15, N₂-fxing species, mixed stand, soil, tree rings

Procedia PDF Downloads 52
2420 Finite Element Simulation of an Offshore Monopile Subjected to Cyclic Loading Using Hypoplasticity with Intergranular Strain Anisotropy (ISA) for the Soil

Authors: William Fuentes, Melany Gil

Abstract:

Numerical simulations of offshore wind turbines (OWTs) in shallow waters demand sophisticated models considering the cyclic nature of the environmental loads. For the case of an OWT founded on sands, rapid loading may cause a reduction of the effective stress of the soil surrounding the structure. This eventually leads to its settlement, tilting, or other issues affecting its serviceability. In this work, a 3D FE model of an OWT founded on sand is constructed and analyzed. Cyclic loading with different histories is applied at certain points of the tower to simulate some environmental forces. The mechanical behavior of the soil is simulated through the recently proposed ISA-hypoplastic model for sands. The Intergranular Strain Anisotropy ISA can be interpreted as an enhancement of the intergranular strain theory, often used to extend hypoplastic formulations for the simulation of cyclic loading. In contrast to previous formulations, the proposed constitutive model introduces an elastic range for small strain amplitudes, includes the cyclic mobility effect and is able to capture the cyclic behavior of sands under a larger number of cycles. The model performance is carefully evaluated on the FE dynamic analysis of the OWT.

Keywords: offshore wind turbine, monopile, ISA, hypoplasticity

Procedia PDF Downloads 237
2419 Influence of Pile Radius on Inertial Response of Pile Group in Fundamental Frequency of Homogeneous Soil Medium

Authors: Faghihnia Torshizi Mostafa, Saitoh Masato

Abstract:

An efficient method is developed for the response of a group of vertical, cylindrical fixed-head, finite length piles embedded in a homogeneous elastic stratum, subjected to harmonic force atop the pile group cap. Pile to pile interaction is represented through simplified beam-on-dynamic-Winkler-foundation (BDWF) with realistic frequency-dependent springs and dashpots. Pile group effect is considered through interaction factors. New closed-form expressions for interaction factors and curvature ratios atop the pile are extended by considering different boundary conditions at the tip of the piles (fixed, hinged). In order to investigate the fundamental characteristics of inertial bending strains in pile groups, inertial bending strains at the head of each pile are expressed in terms of slenderness ratio. The results of parametric study give valuable insight in understanding the behavior of fixed head pile groups in fundamental natural frequency of soil stratum.

Keywords: Winkler-foundation, fundamental frequency of soil stratum, normalized inertial bending strain, harmonic excitation

Procedia PDF Downloads 406
2418 Phytoremediation of Zn-Contaminated Soils by Malva Sylvestris

Authors: Abdelouahab Diafat, Meribai Abdelmalek, Ahmed Bahloul

Abstract:

phytoremediation is the use of plants to remove or degrade organic or inorganic contaminants from soil and water this work aims to study the potential effect of malva sylvestris for the phytoremediation of soils contaminated by Zn. plants were grown in pots containing soil artificially contaminated with Zn at concentrations of 100, 200, and 300 mg/kg. the results obtained show that the Zn concentrations used have a negative effect on the growth of this plant the search for the metal carried out by the technique of atomic absorption spectrometry shows that this plant accumulates a small quantity of this metal. it can be concluded that the malva sylvestris plant tolerates Zn contaminated soils but it is not considered as a zinc hyperaccumulator plant

Keywords: phytoremidiation, Zn-contaminated soils, Malva Sylvestris, phytoextraction

Procedia PDF Downloads 74
2417 Forest Soil Greenhouse Gas Real-Time Analysis Using Quadrupole Mass Spectrometry

Authors: Timothy L. Porter, T. Randy Dillingham

Abstract:

Vegetation growth and decomposition, along with soil microbial activity play a complex role in the production of greenhouse gases originating in forest soils. The absorption or emission (respiration) of these gases is a function of many factors relating to the soils themselves, the plants, and the environment in which the plants are growing. For this study, we have constructed a battery-powered, portable field mass spectrometer for use in analyzing gases in the soils surrounding trees, plants, and other areas. We have used the instrument to sample in real-time the greenhouse gases carbon dioxide and methane in soils where plant life may be contributing to the production of gases such as methane. Gases such as isoprene, which may help correlate gas respiration to microbial activity have also been measured. The instrument is composed of a quadrupole mass spectrometer with part per billion or better sensitivity, coupled to battery-powered turbo and diaphragm pumps. A unique ambient air pressure differentially pumped intake apparatus allows for the real-time sampling of gases in the soils from the surface to several inches below the surface. Results show that this instrument is capable of instant, part-per-billion sensitivity measurement of carbon dioxide and methane in the near surface region of various forest soils. We have measured differences in soil respiration resulting from forest thinning, forest burning, and forest logging as compared to pristine, untouched forests. Further studies will include measurements of greenhouse gas respiration as a function of temperature, microbial activity as measured by isoprene production, and forest restoration after fire.

Keywords: forest, soil, greenhouse, quadrupole

Procedia PDF Downloads 105
2416 The Optimal Irrigation in the Mitidja Plain

Authors: Gherbi Khadidja

Abstract:

In the Mediterranean region, water resources are limited and very unevenly distributed in space and time. The main objective of this project is the development of a wireless network for the management of water resources in northern Algeria, the Mitidja plain, which helps farmers to irrigate in the most optimized way and solve the problem of water shortage in the region. Therefore, we will develop an aid tool that can modernize and replace some traditional techniques, according to the real needs of the crops and according to the soil conditions as well as the climatic conditions (soil moisture, precipitation, characteristics of the unsaturated zone), These data are collected in real-time by sensors and analyzed by an algorithm and displayed on a mobile application and the website. The results are essential information and alerts with recommendations for action to farmers to ensure the sustainability of the agricultural sector under water shortage conditions. In the first part: We want to set up a wireless sensor network, for precise management of water resources, by presenting another type of equipment that allows us to measure the water content of the soil, such as the Watermark probe connected to the sensor via the acquisition card and an Arduino Uno, which allows collecting the captured data and then program them transmitted via a GSM module that will send these data to a web site and store them in a database for a later study. In a second part: We want to display the results on a website or a mobile application using the database to remotely manage our smart irrigation system, which allows the farmer to use this technology and offers the possibility to the growers to access remotely via wireless communication to see the field conditions and the irrigation operation, at home or at the office. The tool to be developed will be based on satellite imagery as regards land use and soil moisture. These tools will make it possible to follow the evolution of the needs of the cultures in time, but also to time, and also to predict the impact on water resources. According to the references consulted, if such a tool is used, it can reduce irrigation volumes by up to up to 40%, which represents more than 100 million m3 of savings per year for the Mitidja. This volume is equivalent to a medium-size dam.

Keywords: optimal irrigation, soil moisture, smart irrigation, water management

Procedia PDF Downloads 98
2415 Assessment of Heavy Metal Contamination in Roadside Soils along Shenyang-Dalian Highway in Liaoning Province, China

Authors: Zhang Hui, Wu Caiqiu, Yuan Xuyin, Qiu Jie, Zhang Hanpei

Abstract:

The heavy metal contaminations were determined with a detailed soil survey in roadside soils along Shenyang-Dalian Highway of Liaoning Province (China) and Pb, Cu, Cd, Ni and Zn were analyzed using the atomic absorption spectrophotometric method. The average concentration of Pb, Cu, Cd, Ni and Zn in roadside soils was determined to be 43.8, 26.5, 0.119, 32.1, 71.3 mg/kg respectively, and all of the heavy metal contents were higher than the background values. Different heavy metal distribution regularity was found in different land use type of roadside soil, there was an obvious peak of heavy concentration at 25m from road edge in the farmland, while in the forest and orchard soil, all heavy metals gradually decreased with the increase of distance from road edge and conformed to the exponential model. Furthermore, the heavy metal contents of heavy metals except Cd were markedly increased compared with those in 1999 and 2007, and the heavy metals concentrations of Shenyang- Dalian Highway were considered medium or low in comparison with those in other cities around the world. The assessment of heavy metal contamination of roadside soils illustrated a common low pollution for all heavy metal and recommended that more attention should be paid to Pb contamination in roadside soils in Shenyang-Dalian Highway.

Keywords: heavy metal contamination, roadside, highway, Nemerow Pollution Index

Procedia PDF Downloads 256
2414 The Study of the Absorption and Translocation of Chromium by Lygeum spartum in the Mining Region of Djebel Hamimat and Soil-Plant Interaction

Authors: H. Khomri, A. Bentellis

Abstract:

Since century of the Development Activities extraction and a dispersed mineral processing Toxic metals and much more contaminated vast areas occupied by what they natural outcrops. New types of metalliferous habitats are so appeared. A species that is Lygeum spartum attracted our curiosity because apart from its valuable role in desertification, it is apparently able to exclude antimony and other metals can be. This species, green leaf blades which are provided as cattle feed, would be a good subject for phytoremediation of mineral soils. The study of absorption and translocation of chromium by the Lygeum spartum in the mining region of Djebel Hamimat and the interaction soil-plant, revealed that soils of this species living in this region are alkaline, calcareous majority in their fine texture medium and saline in their minority. They have normal levels of organic matter. They are moderately rich in nitrogen. They contain total chromium content reaches a maximum of 66,80 mg Kg^(-1) and a total absence of soluble chromium. The results of the analysis of variance of the difference between bare soils and soils appear Lygeum spartum made a significant difference only for the silt and organic matter. But for the other variables analyzed this difference is not significant. Thus, this plant has only one action on the amendment, only the levels of silt and organic matter in soils. The results of the multiple regression of the chromium content of the roots according to all soil variables studied did appear that among the studied variables included in the model, only the electrical conductivity and clay occur in the explanation of contents chromium in roots. The chromium content of the aerial parts analyzed by regression based on all studied soil variables allows us to see only the variables: electrical conductivity and content of chromium in the root portion involved in the explanation of the content chromium in the aerial part.

Keywords: absorption, translocation, analysis of variance, chrome, Lygeum spartum, multiple regression, the soil variables

Procedia PDF Downloads 254
2413 The Effect of Shredded Polyurethane Foams on Shear Modulus and Damping Ratio of Sand

Authors: Javad Saeidaskari, Nader Khalafian

Abstract:

The undesirable impact of vibrations induced by road and railway traffic is an important concern in modern world. These vibrations are transmitted through soil and cause disturbances to the residence area and high-tech production facilities alongside the train/traffic lines. In this paper for the first time a new method of soil improvement with vibration absorber material, is used to increase the damping factor, in other word, to reduce the ability of wave transitions in sand. In this study standard Firoozkooh No. 161 sand is used as the host sand. The semi rigid polyurethane (PU) foam which used in this research is one of the common materials for vibration absorbing purposes. Series of cyclic triaxial tests were conducted on remolded samples with identical relative density of 70% of maximum dry density for different volume percentage of shredded PU foam. The frequency of tests was 0.1 Htz with shear strain of 0.37% and 0.75% and also the effective confining pressures during the tests were 100 kPa and 350 kPa. In order to find out the best soil-PU foam mixture, different volume percent of PU foam varying from 10% to 30% were examined. The results show that adding PU foam up to 20%, as its optimum content, causes notable enhancement in damping ratio for both shear strains of 0.37% (52.19% and 69% increase for effective confining pressures of 100 kPa and 350 kPa, respectively) and 0.75% (59.56% and 59.11% increase for effective confining pressures of 100 kPa and 350 kPa, respectively). The results related to shear modulus present significant reduction for both shear strains of 0.37% (82.22% and 56.03% decrease for effective confining pressures of 100 kPa and 350 kPa, respectively) and 0.75% (89.32% and 39.9% decrease for effective confining pressures of 100 kPa and 350 kPa, respectively). In conclusion, shredded PU foams effectively affect the dynamic properties of sand and act as vibration absorber in soil.

Keywords: polyurethane foam, sand, damping ratio, shear modulus

Procedia PDF Downloads 441
2412 Generation of Mesoporous Silica Shell onto SSZ-13 and Its Effects on Methanol to Olefins

Authors: Ying Weiyong

Abstract:

The micro/mesoporous core-shell composites compromising SSZ-13 cores and mesoporous silica shells were synthesized successfully with the soft template of cetytrimethylammonium. The shell thickness could be tuned from 25 nm to 100 nm by varying the TEOS/SSZ-13 ratio. The BET and SEM results show the core-shell composites possessing the tunable surface area (544.7-811.0 m2/g) with plenty of mesopores (2.7 nm). The acidity intensity of the strong acid sites on SSZ-13 was remarkably impaired with the decoration of the mesoporous silica shell, which leads to the suppression of the hydrogen transfer reaction in MTO reaction. The micro/mesoporous core-shell composites exhibit better methanol to olefins reaction performance with a prolonged lifetime and the improvement of light olefins selectivity.

Keywords: core-shell, mesoporous silica, methanol to olefins, SSZ-13

Procedia PDF Downloads 157
2411 Climate Changes and Ecological Response on the Tibetan Plateau

Authors: Weishou Shen, Changxin Zou, Dong Liu

Abstract:

High-mountain environments are experiencing more rapid warming than lowlands. The Tibetan (Qinghai-Xizang, TP) Plateau, known as the “Third Pole” of the Earth and the “Water Tower of Asia,” is the highest plateau in the world, however, ecological response to climate change has been hardly documented in high altitude regions. In this paper, we investigated climate warming induced ecological changes on the Tibetan Plateau over the past 50 years through combining remote sensing data with a large amount of in situ field observation. The results showed that climate warming up to 0.41 °C/10 a has greatly improved the heat conditions on the TP. Lake and river areas exhibit increased trend whereas swamp area decreased in the recent 35 years. The expansion in the area of the lake is directly related to the increase of precipitation as well as the climate warming up that makes the glacier shrink, the ice and snow melting water increase and the underground frozen soil melting water increase. Climate warming induced heat condition growth and reduced annual range of temperature, which will have a positive influence on vegetation, agriculture production and decreased freeze–thaw erosion on the TP. Terrestrial net primary production and farmland area on the TP have increased by 0.002 Pg C a⁻¹ and 46,000 ha, respectively. We also found that seasonal frozen soil depth decreased as the consequence of climate warming. In the long term, accelerated snow melting and thinned seasonal frozen soil induced by climate warming possibly will have a negative effect on alpine ecosystem stability and soil preservation.

Keywords: global warming, alpine ecosystem, ecological response, remote sensing

Procedia PDF Downloads 271
2410 Analysis of Pollution Caused by the Animal Feed Industry and the Fertilizer Industry Using Rock Magnetic Method

Authors: Kharina Budiman, Adinda Syifa Azhari, Eleonora Agustine

Abstract:

Industrial activities get increase in this globalization era, one of the major impacts of industrial activities is a problem to the environment. This can happen because at the industrial production term will bring out pollutant in the shape of solid, liquid or gas. Normally this pollutant came from some dangerous materials for environment. However not every industry produces the same amount of pollutant, every industry produces different kind of pollution. To compare the pollution impact of industrial activities, soil sample has been taken around the animal feed industry and the fertilizer industry. This study applied the rock magnetic method and used Bartington MS2B to measured magnetic susceptibility (χ) as the physical parameter. This study tested soil samples using the value of susceptibility low frequency (χ lf) and Frequency Dependent (χ FD). Samples only taken in the soil surface with 0-5 cm depth and sampling interval was 20 cm. The animal feed factory has susceptibility low frequency (χ lf) = 111,9 – 325,7 and Frequency Dependent (χ FD) = 0,8 – 3,57 %. And the fertilizer factory has susceptibility low frequency (χ lf) = 187,1 – 494,8 and Frequency Dependent (χ FD) = 1,37 – 2,46 %. Based on the results, the highest value of susceptibility low frequency (χ lf) is the fertilizer factory, but the highest value of Frequency Dependent (FD) is the animal feed factory.

Keywords: industrial, pollution, magnetic susceptibility, χlf, χfd, animal feed industry and fertilizer industry

Procedia PDF Downloads 390
2409 Tomato Quality Produced in Saline Soils Using Irrigation with Treated Electromagnetic Water

Authors: Angela Vacaro de Souza, Fernando Ferrari Putti

Abstract:

One of the main plants cultivated in protected environment is tomato crop, which presents significant growth in its demand, because it is a tasty fruit, rich in nutrients and of high added value, however, poor management of fertilizers induces the process of soil salinization, causing several consequences, from reduced productivity to even soil infertility. These facts are derived from the increased concentration of salts, which hampers the process of water absorption by the plant, resulting in a biochemical and nutritional imbalance in the plant. Thus, this study aimed to investigate the effects of untreated and electromagnetically treated water in salinized soils on physical, physicochemical, and biochemical parameters in tomato fruits. The experiment was conducted at the Faculty of Science and Engineering, Tupã Campus (FCE/UNESP). A randomized complete block design with two types of treated water was adopted, with five different levels of initial salinity (0; 1.5; 2.5; 4; 5.5; 7 dS m⁻¹) by fertigation. Although the effects of salinity on fruit quality parameters are evident, no beneficial effects on increasing or maintaining postharvest quality of fruits whose plants were treated with electromagnetized water were evidenced.

Keywords: Solanum lycopersicum, soil salinization, protected environment, fertigation

Procedia PDF Downloads 108
2408 Remediation of Crude Oil Contaminated Soils by Indigenous Bacterial Isolates Using Cow Dung as a Bioenhancement Agent

Authors: E. Osazee, L. U. Bashir

Abstract:

This study was conducted at the Department of Biological Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria, to determine the effects of different weights of cow dung on indigenous bacterial isolates in remediation of crude oil contaminated soils. The soil (1kg) was contaminated with 20g of crude oil and this was treated with three (40g, 80g and 120g) weights of cow dung. The soils were amended after two weeks of crude oil contamination. Soil samples were collected from the plastic bags for microbiological analyses. The isolates were cultured to test their ability to grow on crude oil. The ability of the isolates to utilize the crude oil was determined using media dilution technique. Bacteria such as Proteus mirabilis, Bacillus lacterosporus, Morganella morganii, Serratia marcescens and Bacillus alvei were isolated. The variables measured were heterotrophic bacterial populations, hydrocarbon utilizing bacterial populations and the percentage of crude oil degraded in the soils. Data collected were subjected to analysis of variance (ANOVA). Results obtained indicated that all the different weights of cow dung showed appreciable effect in crude oil decontamination. Based on the findings of the experiments, it could be deduced that 120g of cow dung promoted higher degradation of hydrocarbons. Thus, it should be recommended for remediation of crude oil contaminated soil in the study area.

Keywords: crude oil, cow dung, amendment, bioremediation, decontamination

Procedia PDF Downloads 43
2407 Quantification of Leachate Potential of the Quezon City Controlled Dumping Facility Using Help Model

Authors: Paul Kenneth D. Luzon, Maria Antonia N. Tanchuling

Abstract:

The Quezon City Controlled Dumping facility also known as Payatas produces leachate which can contaminate soil and water environment in the area. The goal of this study is to quantify the leachate produced by the QCCDF using the Hydrologic Evaluation of Landfill Performance (HELP) model. Results could be used as input for groundwater contaminant transport studies. The HELP model is based on a simple water budget and is an essential “model requirement” used by the US Environmental Protection Agency (EPA). Annual waste profile of the QCCDF was calculated. Based on topographical maps and estimation of settlement due to overburden pressure and degradation, a total of 10M m^3 of waste is contained in the landfill. The input necessary for the HELP model are weather data, soil properties, and landfill design. Results showed that from 1988 to 2011, an average of 50% of the total precipitation percolates through the bottom layer. Validation of the results is still needed due to the assumptions made in the study. The decrease in porosity of the top soil cover showed the best mitigation for minimizing percolation rate. This study concludes that there is a need for better leachate management system in the QCCDF.

Keywords: help model, landfill, payatas trash slide, quezon city controlled dumping facility

Procedia PDF Downloads 283
2406 Experimental Study on Weak Cohesion Less Soil Using Granular Piles with Geogrid Reinforcement

Authors: Sateesh Kumar Pisini, Swetha Priya Pisini

Abstract:

Granular piles are becoming popular as a technique of deep ground improvement not only in soft cohesive soils but also in loose cohesionless deposits. The present experimental study has been carried out on granular piles in sand (loose sand and medium dense sand i.e. relative density at 15% and 30%) with geogrid reinforcement. In this experimental study, a group of five piles installed in sand (at different spacing i.e s = 2d, 3d and 4d) the length and diameter of the pile (L = 0.4 m and d= 50 mm) kept as same for all series of experiments. Geogrid reinforcement is provided on granular piles with a limited number of laboratory tests. It has been conducted in laboratory to study the behavior of a granular pile with reinforced geogrid layers supporting a square footing at different s/d ratios. The influence of geogrid layers providing on granular piles investigated through model tests. In this paper the experimental study carried out results in significant increase in load carrying capacity and decrease in settlement reduction of the weak cohesionless soil. Also, the behavior of load carrying capacity and settlement with changing the s/d ratio has been carried out through a parametric study.

Keywords: granular piles, cohesionless soil, geogrid reinforcement, load carrying capacity

Procedia PDF Downloads 247
2405 Effect of Temperature on the Water Retention Capacity of Liner Materials

Authors: Ahmed M. Al-Mahbashi, Mosleh A. Al-Shamrani, Muawia Dafalla

Abstract:

Mixtures of sand and clay are frequently used to serve for specific purposes in several engineering practices. In environmental engineering, liner layers and cover layers are common for controlling waste disposal facilities. These layers are exposed to moisture and temperature fluctuation specially when existing in unsaturated condition. The relationship between soil suction and water content for these materials is essential for understanding their unsaturated behavior and properties such as retention capacity and unsaturated follow (hydraulic conductivity). This study is aimed at investigating retention capacity for two sand-natural expansive clay mixtures (15% (C15) and 30% (C30) expansive clay) at two ambient temperatures within the range of 5 -50 °C. Soil water retention curves (SWRC) for these materials were determined at these two ambient temperatures using different salt solutions for a wide range of suction (up to 200MPa). The results indicate that retention capacity of C15 mixture underwent significant changes due to temperature variations. This effect tends to be less visible when the clay fraction is doubled (C30). In addition, the overall volume change is marginally affected by high temperature within the range considered in this study.

Keywords: soil water retention curve, sand-expansive clay liner, suction, temperature

Procedia PDF Downloads 131
2404 Utilizing Spatial Uncertainty of On-The-Go Measurements to Design Adaptive Sampling of Soil Electrical Conductivity in a Rice Field

Authors: Ismaila Olabisi Ogundiji, Hakeem Mayowa Olujide, Qasim Usamot

Abstract:

The main reasons for site-specific management for agricultural inputs are to increase the profitability of crop production, to protect the environment and to improve products’ quality. Information about the variability of different soil attributes within a field is highly essential for the decision-making process. Lack of fast and accurate acquisition of soil characteristics remains one of the biggest limitations of precision agriculture due to being expensive and time-consuming. Adaptive sampling has been proven as an accurate and affordable sampling technique for planning within a field for site-specific management of agricultural inputs. This study employed spatial uncertainty of soil apparent electrical conductivity (ECa) estimates to identify adaptive re-survey areas in the field. The original dataset was grouped into validation and calibration groups where the calibration group was sub-grouped into three sets of different measurements pass intervals. A conditional simulation was performed on the field ECa to evaluate the ECa spatial uncertainty estimates by the use of the geostatistical technique. The grouping of high-uncertainty areas for each set was done using image segmentation in MATLAB, then, high and low area value-separate was identified. Finally, an adaptive re-survey was carried out on those areas of high-uncertainty. Adding adaptive re-surveying significantly minimized the time required for resampling whole field and resulted in ECa with minimal error. For the most spacious transect, the root mean square error (RMSE) yielded from an initial crude sampling survey was minimized after an adaptive re-survey, which was close to that value of the ECa yielded with an all-field re-survey. The estimated sampling time for the adaptive re-survey was found to be 45% lesser than that of all-field re-survey. The results indicate that designing adaptive sampling through spatial uncertainty models significantly mitigates sampling cost, and there was still conformity in the accuracy of the observations.

Keywords: soil electrical conductivity, adaptive sampling, conditional simulation, spatial uncertainty, site-specific management

Procedia PDF Downloads 123
2403 Study on the Effects of Grassroots Characteristics on Reinforced Soil Performance by Direct Shear Test

Authors: Zhanbo Cheng, Xueyu Geng

Abstract:

Vegetation slope protection technique is economic, aesthetic and practical. Herbs are widely used in practice because of rapid growth, strong erosion resistance, obvious slope protection and simple method, in which the root system of grass plays a very important role. In this paper, through changing the variables value of grassroots quantity, grassroots diameter, grassroots length and grassroots reinforce layers, the direct shear tests were carried out to discuss the change of shear strength indexes of grassroots reinforced soil under different reinforce situations, and analyse the effects of grassroots characteristics on reinforced soil performance. The laboratory test results show that: (1) in the certain number of grassroots diameter, grassroots length and grassroots reinforce layers, the value of shear strength, and cohesion first increase and then reduce with the increasing of grassroots quantity; (2) in the certain number of grassroots quantity, grassroots length and grassroots reinforce layers, the value of shear strength and cohesion rise with the increasing of grassroots diameter; (3) in the certain number of grassroots diameter, and grassroots reinforce layers, the value of shear strength and cohesion raise with the increasing of grassroots length in a certain range of grassroots quantity, while the value of shear strength and cohesion first rise and then decline with the increasing of grassroots length when the grassroots quantity reaches a certain value; (4) in the certain number of grassroots quantity, grassroots diameter, and grassroots length, the value of shear strength and cohesion first climb and then decline with the increasing of grassroots reinforced layers; (5) the change of internal friction angle is small in different parameters of grassroots. The research results are of importance for understanding the mechanism of vegetation protection for slopes and determining the parameters of grass planting.

Keywords: direct shear test, reinforced soil, grassroots characteristics, shear strength indexes

Procedia PDF Downloads 168
2402 Prediction of California Bearing Ratio of a Black Cotton Soil Stabilized with Waste Glass and Eggshell Powder using Artificial Neural Network

Authors: Biruhi Tesfaye, Avinash M. Potdar

Abstract:

The laboratory test process to determine the California bearing ratio (CBR) of black cotton soils is not only overpriced but also time-consuming as well. Hence advanced prediction of CBR plays a significant role as it is applicable In pavement design. The prediction of CBR of treated soil was executed by Artificial Neural Networks (ANNs) which is a Computational tool based on the properties of the biological neural system. To observe CBR values, combined eggshell and waste glass was added to soil as 4, 8, 12, and 16 % of the weights of the soil samples. Accordingly, the laboratory related tests were conducted to get the required best model. The maximum CBR value found at 5.8 at 8 % of eggshell waste glass powder addition. The model was developed using CBR as an output layer variable. CBR was considered as a function of the joint effect of liquid limit, plastic limit, and plastic index, optimum moisture content and maximum dry density. The best model that has been found was ANN with 5, 6 and 1 neurons in the input, hidden and output layer correspondingly. The performance of selected ANN has been 0.99996, 4.44E-05, 0.00353 and 0.0067 which are correlation coefficient (R), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE) respectively. The research presented or summarized above throws light on future scope on stabilization with waste glass combined with different percentages of eggshell that leads to the economical design of CBR acceptable to pavement sub-base or base, as desired.

Keywords: CBR, artificial neural network, liquid limit, plastic limit, maximum dry density, OMC

Procedia PDF Downloads 181
2401 Analysis of Brownfield Soil Contamination Using Local Government Planning Data

Authors: Emma E. Hellawell, Susan J. Hughes

Abstract:

BBrownfield sites are currently being redeveloped for residential use. Information on soil contamination on these former industrial sites is collected as part of the planning process by the local government. This research project analyses this untapped resource of environmental data, using site investigation data submitted to a local Borough Council, in Surrey, UK. Over 150 site investigation reports were collected and interrogated to extract relevant information. This study involved three phases. Phase 1 was the development of a database for soil contamination information from local government reports. This database contained information on the source, history, and quality of the data together with the chemical information on the soil that was sampled. Phase 2 involved obtaining site investigation reports for development within the study area and extracting the required information for the database. Phase 3 was the data analysis and interpretation of key contaminants to evaluate typical levels of contaminants, their distribution within the study area, and relating these results to current guideline levels of risk for future site users. Preliminary results for a pilot study using a sample of the dataset have been obtained. This pilot study showed there is some inconsistency in the quality of the reports and measured data, and careful interpretation of the data is required. Analysis of the information has found high levels of lead in shallow soil samples, with mean and median levels exceeding the current guidance for residential use. The data also showed elevated (but below guidance) levels of potentially carcinogenic polyaromatic hydrocarbons. Of particular concern from the data was the high detection rate for asbestos fibers. These were found at low concentrations in 25% of the soil samples tested (however, the sample set was small). Contamination levels of the remaining chemicals tested were all below the guidance level for residential site use. These preliminary pilot study results will be expanded, and results for the whole local government area will be presented at the conference. The pilot study has demonstrated the potential for this extensive dataset to provide greater information on local contamination levels. This can help inform regulators and developers and lead to more targeted site investigations, improving risk assessments, and brownfield development.

Keywords: Brownfield development, contaminated land, local government planning data, site investigation

Procedia PDF Downloads 131
2400 Long-Term Tillage, Lime Matter and Cover Crop Effects under Heavy Soil Conditions in Northern Lithuania

Authors: Aleksandras Velykis, Antanas Satkus

Abstract:

Clay loam and clay soils are typical for northern Lithuania. These soils are susceptible to physical degradation in the case of intensive use of heavy machinery for field operations. However, clayey soils having poor physical properties by origin require more intensive tillage to maintain proper physical condition for grown crops. Therefore not only choice of suitable tillage system is very important for these soils in the region, but also additional search of other measures is essential for good soil physical state maintenance. Research objective: To evaluate the long-term effects of different intensity tillage as well as its combinations with supplementary agronomic practices on improvement of soil physical conditions and environmental sustainability. The experiment examined the influence of deep and shallow ploughing, ploughless tillage, combinations of ploughless tillage with incorporation of lime sludge and cover crop for green manure and application of the same cover crop for mulch without autumn tillage under spring and winter crop growing conditions on clay loam (27% clay, 50% silt, 23% sand) Endocalcaric Endogleyic Cambisol. Methods: The indicators characterizing the impact of investigated measures were determined using the following methods and devices: Soil dry bulk density – by Eijkelkamp cylinder (100 cm3), soil water content – by weighing, soil structure – by Retsch sieve shaker, aggregate stability – by Eijkelkamp wet sieving apparatus, soil mineral nitrogen – in 1 N KCL extract using colorimetric method. Results: Clay loam soil physical state (dry bulk density, structure, aggregate stability, water content) depends on tillage system and its combination with additional practices used. Application of cover crop winter mulch without tillage in autumn, ploughless tillage and shallow ploughing causes the compaction of bottom (15-25 cm) topsoil layer. However, due to ploughless tillage the soil dry bulk density in subsoil (25-35 cm) layer is less compared to deep ploughing. Soil structure in the upper (0-15 cm) topsoil layer and in the seedbed (0-5 cm), prepared for spring crops is usually worse when applying the ploughless tillage or cover crop mulch without autumn tillage. Application of lime sludge under ploughless tillage conditions helped to avoid the compaction and structure worsening in upper topsoil layer, as well as increase aggregate stability. Application of reduced tillage increased soil water content at upper topsoil layer directly after spring crop sowing. However, due to reduced tillage the water content in all topsoil markedly decreased when droughty periods lasted for a long time. Combination of reduced tillage with cover crop for green manure and winter mulch is significant for preserving the environment. Such application of cover crops reduces the leaching of mineral nitrogen into the deeper soil layers and environmental pollution. This work was supported by the National Science Program ‘The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems’ [grant number SIT-9/2015] funded by the Research Council of Lithuania.

Keywords: clay loam, endocalcaric endogleyic cambisol, mineral nitrogen, physical state

Procedia PDF Downloads 220
2399 Determination of the Water Needs of Some Crops Irrigated with Treated Water from the Sidi Khouiled Wastewater Treatment Plant in Ouargla, Algeria

Authors: Dalila Oulhaci, Mehdi Benlarbi, Mohammed Zahaf

Abstract:

The irrigation method is fundamental for maintaining a wet bulb around the roots of the crop. This is the case with localized irrigation, where soil moisture can be maintained permanently around the root system between the two water content extremes. Also, one of the oldest methods used since Roman times throughout North Africa and the Near East is based on the frequent dumping of water into porous pottery vases buried in the ground. In this context, these two techniques have been combined by replacing the pottery vase with plastic bottles filled with sand that discharge water through their perforated walls into the surrounding soil. The first objective of this work is the theoretical determination using CLIMWAT and CROPWAT software of the irrigation doses of some crops (palm, wheat, and onion) and experimental by measuring the humidity of the soil before and after watering. The second objective is to determine the purifying power of the sand filter in the bottle. Based on the CROPWAT software results, the date palm needs 18.5 mm in the third decade of December, 57.2 mm in January, and 73.7 mm in February, whereas the doses received by experimentally determined by means of soil moisture before and after irrigation are 19.5 mm respectively, 79.66 mm and 95.66 mm. The onion needs 14.3 mm in the third decade of December of, 59.1 mm in January, and 80 mm in February, whereas the experimental dose received is 15.07 mm, respectively, 64.54 and 86.8 mm. The total requirements for the vegetative period are estimated at 1642.6 mm for date palms, 277.4 mm for wheat, and 193.5 mm for onions. The removal rate of the majority of pollutants from the bottle is 80%. This work covers, on the one hand, the context of water conservation, sustainable development, and protection of the environment, and on the other, the agricultural field.

Keywords: irrigation, sand, filter, humidity, bottle

Procedia PDF Downloads 58
2398 Improving the Compaction Properties and Shear Resistance of Sand Reinforced with COVID-19 Waste Mask Fibers

Authors: Samah Said, Muhsin Elie Rahhal

Abstract:

Due to the COVID-19 pandemic, disposable plastic-based face masks were excessively used worldwide. Therefore, the production and consumption rates of these masks were significantly brought up, which led to severe environmental problems. The main purpose of this research is to test the possibility of reinforcing soil deposits with mask fibers to reuse pandemic-generated waste materials. When testing the compaction properties, the sand was reinforced with a fiber content that increased from 0% to 0.5%, with successive small increments of 0.1%. The optimum content of 0.1% remarkably increased the maximum dry density of the soil and dropped its optimum moisture content. Add to that, it was noticed that 15 mm and rectangular chips were, respectively, the optimum fiber length and shape to maximize the improvement of the sand compaction properties. Regarding the shear strength, fiber contents of 0.1%, 0.25%, and 0.5% were adopted. The direct shear tests have shown that the highest enhancement was observed for the optimum fiber content of 0.25%. Similarly to compaction tests, 15 mm and rectangular chips were respectively the optimum fiber length and shape to extremely enhance the shear resistance of the tested sand.

Keywords: COVID-19, mask fibers, compaction properties, soil reinforcement, shear resistance

Procedia PDF Downloads 81