Search results for: release kinetics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1840

Search results for: release kinetics

670 Kinetics of Inhibition of Xanthine Oxidase by Lycium Arabicum and Its Protective Effect against Oxonate-Induced Hyperuricemia and Renal Dysfunction in Mice

Authors: Naouel Boussoualim, Hayat Trabsa, Imane Krache, Seddik Khennouf, Noureddine Charef, Lekhmici Arrar, Abderrahmane Baghiani

Abstract:

Purpose: To evaluate the in-vitro inhibition of xanthine oxidase (purified from bovine milk) by extracts of Lycium arabicum, as well as it is in vivo hypouricemic and renal protective effects. Methods: Four extracts of Lycium arabicum, methanol (CrE), chloroform (ChE), ethyl acetate (EaE) and aqueous (AqE) extracts, were screened for their total phenolics and potential inhibitory effects on purified bovine milk xanthine oxidase (XO) activity by measuring the formation of uric acid or superoxide radical. The mode of inhibition was investigated and compared with the standard drugs, allopurinol, quercitin, and catechin. To evaluate their hypouricemic effect, the extracts were administered to potassium oxonate-induced hyperuricemic mice at a dose of 50 mg/kg body weight. Results: The results showed that EaE had the highest content of phenolic compounds and was the most potent inhibitor of uric acid formation (IC50 = 0.017 ± 0.001 mg/mL) and formation of superoxide (IC50 = 0.035 ± 0.001 mg/ml). Lineweaver-Burk analysis showed that CrE and EaE inhibited XO competitively, whereas the inhibitory activities exerted by ChE and AqE were of a mixed type. Intraperetoneal injection of L. arabicum extracts (50 mg/kg) elicited hypouricemic actions in hyperuricemic mice. Hyperuricemic mice presented a serum uric acid concentration of 4.71 ± 0.29 mg/L but this was reduced to 1.78 ± 0.11 mg/L by EaE, which was the most potent hyporuricemic extract. Conclusion: L. arabicum fractions have a strong inhibitory effect on xanthine oxidase and and also have a significantly lowering effect on serum and liver creatinine and urea levels in hyperuricemic mice.

Keywords: lycium arabicum, uric acid, creatinine, superoxide, phenolic compounds, flavonoids, hyperuricemia

Procedia PDF Downloads 396
669 Pathogenic Effects of IgG and IgM Apoptotic Cell-Reactive Monoclonal Auto-Antibodies on Innate and Adaptive Immunity in Lupus

Authors: Monika Malik, Pooja Arora, Ruchi Sachdeva, Vishnampettai G. Ramachandran, Rahul Pal

Abstract:

Apoptotic debris is believed to be the antigenic trigger in lupus. Whether such debris and autoantibodies induced in lupus-prone mice which specifically recognize its constituents can mediate differential effects on innate and humoral responses in such mice was assessed. The influence of apoptotic blebs and apoptotic cell-reactive monoclonal antibodies on phenotypic markers expressed on bone marrow-derived dendritic cells (BMDCs) and secreted cytokines were evaluated. Sera from lupus-prone and healthy mice immunized with the antibodies were analyzed for anti-self reactivity. Apoptotic blebs, as well as somatically-mutated IgG and non-mutated IgM apoptotic-cell reactive monoclonal antibodies, induced the preferential maturation of BMDCs derived from lupus-prone mice relative to BMDCs derived from healthy mice; antibody specificity and cell genotype both influenced the secretion of inflammatory cytokines. Immunization of lupus-prone mice with IgM and IgG antibodies led to hypergammaglobulinemia; elicited antibodies were self-reactive, and exhibited enhanced recognition of lupus-associated autoantigens (dsDNA, Ro60, RNP68, and Sm) in comparison with adjuvant-induced sera. While ‘natural’ IgM antibodies are believed to contribute to immune homeostasis, this study reveals that apoptotic cell-reactive IgM antibodies can promote inflammation and drive anti-self responses in lupus. Only in lupus-prone mice did immunization with IgG auto-antibodies enhance the kinetics of humoral anti-self responses, resulting in advanced-onset glomerulosclerosis. This study reveals that preferential innate and humoral recognition of the products of cell death in an autoimmune milieu influences the indices associated with lupus pathology.

Keywords: antigen spreading, apoptotic cell-reactive pathogenic IgG, and IgM autoantibodies, glomerulosclerosis, lupus

Procedia PDF Downloads 170
668 The Politics of Cinema: Representation of Rising Nationalism in Indian Cinema in the Election Year of 2019

Authors: Paawani Tewari, Oishik Dasgupta

Abstract:

Cinema and politics have often intertwined in India. Movies have become a mainstream method of communication with audiences and voters subliminally and directly. Indian film industry on average produces over a thousand films in a year, and during the election year of 2019, India witnessed the release of several highly political movies. Movies such as Uri: The Surgical Strike, Accidental Prime Minister, and PM Modi, et cetera, which are the sample of this study have tried to depict an ideal character of political stalwart leaders with the plausibility to inspire and aiming to change ideological orientations of viewers and the potent voters. This study tries to understand the major links between nationalism, its representation, and its manifestation in Indian cinema and how it is instrumental in shaping the character and orientations of its citizens towards nation, nationalism, and nationhood. Our work aims to highlight how nationalistic assumptions that are swaddled in the Hindi movies released during January 2019 – May 2019 affect the political mood of the nation and, in totality, the democratic system. The authors also try to throw light on how films being a powerful tool, are now being used to shape ideas, brainwashing and swaying opinions for political mileage. Hence it becomes essential for us to explore the dynamics between the quintessential definitions of what nationalism is for a common man in India versus of what has been represented in cinema, especially during the time of the elections.

Keywords: political governance and political analysis, political and public administration, election, public choice

Procedia PDF Downloads 167
667 BTEX Removal from Water: A Comparative Analysis of Efficiency of Low Cost Adsorbents and Granular Activated Carbon

Authors: Juliet Okoli

Abstract:

The removal of BTEX (Benzene, toluene, Ethylbenzene and p-Xylene) from water by orange peel and eggshell compared to GAC were investigated. The influence of various factors such as contact time, dosage and pH on BTEX removal by virgin orange peel and egg shell were accessed using the batch adsorption set-up. These were also compared to that of GAC which serves as a benchmark for this study. Further modification (preparation of Activated carbon) of these virgin low-cost adsorbents was also carried out. The batch adsorption result showed that the optimum contact time, dosage and pH for BTEX removal by virgin LCAs were 180 minutes, 0.5g and 7 and that of GAC was 30mintues, 0.2g and 7. The maximum adsorption capacity for total BTEX showed by orange peel and egg shell were 42mg/g and 59mg/g respectively while that of GAC was 864mg/g. The adsorbent preference for adsorbate were in order of X>E>T>B. A comparison of batch and column set-up showed that the batch set-up was more efficient than the column set-up. The isotherm data for the virgin LCA and GAC prove to fit the Freundlich isotherm better than the Langmuir model, which produced n values >1 in case of GAC and n< 1 in case of virgin LCAs; indicating a more appropriate adsorption of BTEX onto the GAC. The adsorption kinetics for the three studied adsorbents were described well by the pseudo-second order, suggesting chemisorption as the rate limiting step. This was further confirmed by desorption study, as low levels of BTEX (<10%) were recovered from the spent adsorbents especially for GAC (<3%). Further activation of the LCAs which was compared to the virgin LCAs, revealed that the virgin LCAs had minor higher adsorption capacity than the activated LCAs. Economic analysis revealed that the total cost required to clean-up 9,600m3 of BTEX contaminated water using LCA was just 2.8% lesser than GAC, a difference which could be considered negligible. However, this area still requires a more detailed cost-benefit analysis, and if similar conclusions are reached; a low-cost adsorbent, easy to obtain are still promising adsorbents for BTEX removal from aqueous solution; however, the GAC are still more superior to these materials.

Keywords: activated carbon, BTEX removal, low cost adsorbents, water treatment

Procedia PDF Downloads 269
666 Investigation on 3D Printing of Calcium silicate Bioceramic Slurry for Bone Tissue Engineering

Authors: Amin Jabbari

Abstract:

The state of the art in major 3D printing technologies, such as powder-based and slurry based, has led researchers to investigate the ability to fabricate bone scaffolds for bone tissue engineering using biomaterials. In addition, 3D printing technology can simulate mechanical and biological surface properties and print with high precision complex internal and external structures that match their functional properties. Polymer matrix composites reinforced with particulate bioceramics, hydrogels reinforced with particulate bioceramics, polymers coated with bioceramics, and non-porous bioceramics are among the materials that can be investigated for bone scaffold printing. Furthermore, it was shown that the introduction of high-density micropores into the sparingly dissolvable CSiMg10 and dissolvable CSiMg4 shell layer inevitably leads to a nearly 30% reduction in compressive strength, but such micropores can easily influence the ion release behavior of the scaffolds. Also, biocompatibility tests such as cytotoxicity, hemocompatibility and genotoxicity were tested on printed parts. The printed part was tested in vitro, and after 24-26 h for cytotoxicity, and 4h for hemocompatibility test, the CSiMg4@CSiMg10-p scaffolds were found to have significantly higher osteogenic capability than the other scaffolds of implantation. Overall, these experimental studies demonstrate that 3D printed, additively-manufactured bioceramic calcium (Ca)-silicate scaffolds with appropriate pore dimensions are promising to guide new bone ingrowth.

Keywords: AM, 3D printed implants, bioceramic, tissue engineering

Procedia PDF Downloads 67
665 Influence of Annealing on the Mechanical Properties of Polyester-Cotton Friction Spun Yarn

Authors: Sujit Kumar Sinha, R. Chattopadhyay

Abstract:

In the course of processing phases and use, fibres, yarns, or fabrics are subjected to a variety of stresses and strains, which cause the development of internal stresses. Given an opportunity, these inherent stresses try to bring back the structure to the original state. As an example, a twisted yarn always shows a tendency to untwist whenever its one end is made free. If the yarn is not held under tension, it may form snarls due to the presence of excessive torque. The running performance of such yarn or thread may, therefore, get negatively affected by it, as a snarl may not pass through the knitting or sewing needle smoothly, leading to an end break. A fabric shows a tendency to form wrinkles whenever squeezed. It may also shrink when brought to a relaxed state. In order to improve performance (i.e., dimensional stability or appearance), stabilization of the structure is needed. The stabilization can be attained through the release of internal stresses, which can be brought about by the process of annealing and/or other finishing treatments. When a fabric is subjected to heat, a change in the properties of the fibers, yarns, and fabric is expected. The degree to which the properties are affected would depend upon the condition of heat treatment and on the properties & structure of fibres, yarns, and fabric. In the present study, an attempt has been made to investigate the effect of annealing treatment on the properties of polyester cotton yarns with varying sheath structures.

Keywords: friction spun yarn, annealing, tenacity, structural integrity, decay

Procedia PDF Downloads 65
664 Nano-emulsion/Nano-suspension as Precursors for Oral Dissolvable Film to Enhance Bioavalabilty for Poor-water Solubility Drugs

Authors: Yuan Yang, Mickey Lam

Abstract:

Oral dissolvable films have been considered as a unique alternative approach to conventional oral dosage forms. The films could be administrated via the gastrointestinal tract as conventional dosages or through sublingual/buccal mucosa membranes, which could enhance drug bioavailability by avoiding the first-pass effect and improving permeability due to high blood flow and lymphatic circulation. This work has described a state-of-art technic using nano-emulsion/nano-suspension as a precursor for the film to enhance the bioavailability of BCS class II drugs. The drug molecules are consequentially processed through the emulsification, gelation, and film-casting processes. The gelation process is critical to stabilizing the nano-emulsion for the film-casting as well as controlling the drug release process. Furthermore, the size of the nanoparticle on the film has a strong correlation with the size of the micelles in the precursor and the condition of the gelation process. It has been discovered that nanoparticle from 200 nm to 300 nm has shown the highest permeability for sublingual administration. In one example shown in work, the bioavailability of a low solubilize drug has been increased from 10% to 24% via sublingual administration of the film. The increasing of the bioavailability was thought to be associated with the enhancement of the diffusion process of the drug in the saliva layer above the mucosa membrane and the fact that the presents of the emulsifier help lose the rigid junction of the mucosa cells.

Keywords: oral dissolvable film, nano-suspension, nano-emulsion, bioavailability

Procedia PDF Downloads 186
663 3D Steady and Transient Centrifugal Pump Flow within Ansys CFX and OpenFOAM

Authors: Clement Leroy, Guillaume Boitel

Abstract:

This paper presents a comparative benchmarking review of a steady and transient three-dimensional (3D) flow computations in centrifugal pump using commercial (AnsysCFX) and open source (OpenFOAM) computational fluid dynamics (CFD) software. In centrifugal rotor-dynamic pump, the fluid enters in the impeller along to the rotating axis to be accelerated in order to increase the pressure, flowing radially outward into another stage, vaned diffuser or volute casing, from where it finally exits into a downstream pipe. Simulations are carried out at the best efficiency point (BEP) and part load, for single-phase flow with several turbulence models. The results are compared with overall performance report from experimental data. The use of CFD technology in industry is still limited by the high computational costs, and even more by the high cost of commercial CFD software and high-performance computing (HPC) licenses. The main objectives of the present study are to define OpenFOAM methodology for high-quality 3D steady and transient turbomachinery CFD simulation to conduct a thorough time-accurate performance analysis. On the other hand a detailed comparisons between computational methods, features on latest Ansys release 18 and OpenFOAM is investigated to assess the accuracy and industrial applications of those solvers. Finally an automated connected workflow (IoT) for turbine blade applications is presented.

Keywords: benchmarking, CFX, internet of things, openFOAM, time-accurate, turbomachinery

Procedia PDF Downloads 205
662 A Novel Gene Encoding Ankyrin-Repeat Protein, SHG1, Is Indispensable for Seed Germination under Moderate Salt Stress

Authors: H. Sakamoto, J. Tochimoto, S. Kurosawa, M. Suzuki, S. Oguri

Abstract:

Salt stress adversely affects plant growth at various stages of development including seed germination, seedling establishment, vegetative growth and finally reproduction. Because of their immobile nature, plants have evolved mechanisms to sense and respond to salt stress. Seed dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. We identified a novel locus of Arabidopsis, designated SHG1 (salt hypersensitive germination 1), whose disruption leads to reduced germination rate under moderate salt stress conditions. SHG1 encodes a transmembrane protein with an ankyrin repeat motif that has been implicated in diverse cellular processes such as signal transduction. The SGH1-disrupted Arabidopsis mutant died at the cotyledon stage when sown on salt-containing medium, although wild type plants could form true leaves under the same conditions. On the other hand, this mutant showed similar phenotypes to wild type plants when sown on medium without salt and transferred to salt-containing medium at the vegetative stage. These results suggested that SHG1 played indispensable role in the seed germination and seedling establishment under moderate salt stress conditions. SHG1 may be involved in the release of seed dormancy.

Keywords: germination, ankyrin repeat, arabidopsis, salt tolerance

Procedia PDF Downloads 399
661 The Relationship between Human Neutrophil Elastase Levels and Acute Respiratory Distress Syndrome in Patients with Thoracic Trauma

Authors: Wahyu Purnama Putra, Artono Isharanto

Abstract:

Thoracic trauma is trauma that hits the thoracic wall or intrathoracic organs, either due to blunt trauma or sharp trauma. Thoracic trauma often causes impaired ventilation-perfusion due to damage to the lung parenchyma. This results in impaired tissue oxygenation, which is one of the causes of acute respiratory distress syndrome (ARDS). These changes are caused by the release of pro-inflammatory mediators, plasmatic proteins, and proteases into the alveolar space associated with ongoing edema, as well as oxidative products that ultimately result in severe inhibition of the surfactant system. This study aims to predict the incidence of acute respiratory distress syndrome (ARDS) through human neutrophil elastase levels. This study examines the relationship between plasma elastase levels as a predictor of the incidence of ARDS in thoracic trauma patients in Malang. This study is an observational cohort study. Data analysis uses the Pearson correlation test and ROC curve (receiver operating characteristic curve). It can be concluded that there is a significant (p= 0.000, r= -0.988) relationship between elastase levels and BGA-3. If the value of elastase levels is limited to 23.79 ± 3.95, the patient will experience mild ARDS. While if the value of elastase levels is limited to 57.68 ± 18.55, in the future, the patient will experience moderate ARDS. Meanwhile, if the elastase level is between 107.85 ± 5.04, the patient will likely experience severe ARDS. Neutrophil elastase levels correlate with the degree of severity of ARDS incidence.

Keywords: ARDS, human neutrophil elastase, severity, thoracic trauma

Procedia PDF Downloads 149
660 Designing Modified Nanocarriers Containing Selenium Nanoparticles Extracted from the Lactobacillus acidophilus and Their Anticancer Properties

Authors: Mahnoosh Aliahmadi, Akbar Esmaeili

Abstract:

This study synthesized new modified imaging nanocapsules (NCs) of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA) containing Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Se nanoparticles were then deposited on (Ga@DFA/FA/CS/PANI/PVA) using the impregnation method. The modified contrast agents were mixed with M. nigra extract, and their antibacterial activities were investigated by applying them to L929 cell lines. The influence of variable factors including surfactant, solvent, aqueous phase, pH, buffer, minimum Inhibitory concentration (MIC), minimum bactericidal concentration (MBC), cytotoxicity on cancer cells, antibiotic, antibiogram, release and loading, stirring effect, the concentration of nanoparticle, olive oil, and thermotical methods was investigated. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), and energy-dispersive X-ray (EDX), ultraviolet-visible (UV-Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM) and MTT conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful, and the MIC=2 factor was obtained with a less harmful effect.

Keywords: imaging contrast agent, nanoparticles, response surface method, Lactobacillus acidophilus, selenium

Procedia PDF Downloads 80
659 Improving the Dimensional Stability of Medium-Density Fiberboard with Bio-Based Additives

Authors: Reza Hosseinpourpia, Stergios Adamopoulos, Carsten Mai

Abstract:

Medium density fiberboard (MDF) is a common category of wood-based panels that are widely used in the furniture industry. Fine lignocellulosic fibres are combined with a synthetic resin, mostly urea formaldehyde (UF), and joined together under heat and pressure to form panels. Like solid wood, MDF is a hygroscopic material; therefore, its moisture content depends on the surrounding relative humidity and temperature. In addition, UF is a hydrophilic resin and susceptible to hydrolysis under certain conditions of elevated temperatures and humidity, which cause dimensional instability of the panels. The latter directly affect the performance of final products such as furniture, when they are used in situations of high relative humidity. Existing water-repellent formulations, such as paraffin, present limitations related to their non-renewable nature, cost and highest allowed added amount. Therefore, the aim of the present study was to test the suitability of renewable water repellents as alternative chemicals for enhancing the dimensional stability of MDF panels. A small amount of tall oil based formulations were used as water-repellent agents in the manufacturing of laboratory scale MDF. The effects on dimensional stability, internal bond strength and formaldehyde release of MDF were tested. The results indicated a good potential of tall oil as a bio-based substance of water repellent formulations for improving the dimensional stability of MDF.

Keywords: dimensional stability, medium density fiberboard, tall oil, urea formaldehyde

Procedia PDF Downloads 241
658 Comparison of the Positive and Indeterminate Rates of QuantiFERON-TB Gold In-Tube and T-SPOT. TB According to Age-group

Authors: Kina Kim

Abstract:

Background: There are two types of interferon-gamma release assays (IGRAs) in use for the detection of latent tuberculosis infection (LTBI), QuantiFERON-TB Gold In-tube (QFT-GIT) and T-SPOT.TB. There are some reports that IGRA results are affected by the patient's age. This study aims to compare the results of both IGRA tests according to age groups. Methods: We reviewed 54,882 samples referred to an independent reference laboratory (Seegene Medical Foundation, Seoul, Korea) for the diagnosis of LTBI from January 1, 2021, to December 31, 2021. This retrospective study enrolled 955 patients tested using QFT-GIT and 53,927 patients tested using T-SPOT.TB. The results of both IGRAs were divided in three age groups (0-9, 10-17, and ≥18-year old). The positive rates and the indeterminate rates between QFT-GIT and T-SPOT.TB were compared. We also evaluated the differences in positive and indeterminate rates by age-group. Results: The positive rate of QFT-GIT was 20.1% (192/955) and that of T-SPOT.TB was 8.7% (4704/53927) in overall patients. The positive rates of QFT-GIT in individuals aged 0-9, 10-17, and over 18-year old were 15.4%, 13.3%, and 22.0%, respectively. The positive rates of T-SPOT.TB were 8.9%, 2.0% and 8.8%,in each agegroup, respectively.The overall prevalence of indeterminate results was 2.1% (20/955) of QFT-GIT and 0.5% (270/53927) of T-SPOT.TB. The indeterminate rates of QFT-GIT in individuals aged 0-9, 10-17, and over 18 years were 0.4%, 6.7%, and 2.6%, respectively. The indeterminate rate of T-SPOT.TB were 0.5%, 0.7% and 0.5%,in each age group, respectively. Conclusion: Our findings suggest that T-SPOT.TB has a lower rate of positive results in overall patients and a lower rate of indeterminate results than those of QFT-GIT. The highest positive rate was found in the over 18 years group for QFT-GIT, but the positive rates of T-SPOT.TB was not significantly different among groups by age. QFT-GIT showed variable and higher indeterminate rates according to age group, but T-SPOT.TB showed lower rates in all age groups(<1%).

Keywords: LTBI, IGRA, QFT-GIT, T-SPOT. TB

Procedia PDF Downloads 122
657 Exploring Attachment Mechanisms of Sulfate-Reducing Bacteria Biofilm to X52 Carbon Steel and Effective Mitigation Through Moringa Oleifera Extract

Authors: Hadjer Didouh, Mohammed Hadj Melliani, Izzeddine Sameut Bouhaik

Abstract:

Corrosion is a serious problem in industrial installations or metallic transport pipes. Corrosion is an interfacial process controlled by several parameters. The presence of microorganisms affects the kinetics of corrosion. This type of corrosion is often referred as bio-corrosion or corrosion influenced by microorganisms (MIC). The action of a microorganism or a bacterium is carried out by the formation of biofilm following its attachment to the metal surface. The formation of biofilm isolates the metal surface from its environment and allows the bacteria to control the parameters of the metal/bacteria interface. Biofilm formation by sulfate-reducing bacteria (SRB) X52 steel, poses substantial challenges in oil and gas industry SONATRACH of Algeria. This research delves into the complex attachment mechanisms employed by SRB biofilm on X52 carbon steel and investigates strategies for effective mitigation using biocides. The exploration commences by elucidating the underlying mechanisms facilitating SRB biofilm adhesion to X52 carbon steel, considering factors such as surface morphology, electrostatic interactions, and microbial extracellular substances. Advanced microscopy and spectroscopic techniques provide a support to the attachment processes, laying the foundation for targeted mitigation strategies. The use of 100 ppm of Moringa Oleifera extract biocide as a promising approach to control and prevent SRB biofilm formation on X52 carbon steel surfaces. Green extract undergo evaluation for their effectiveness in disrupting biofilm development while ensuring the integrity of the steel substrate. Systematic analysis is conducted on the biocide's impact on the biofilm's structural integrity, microbial viability, and overall attachment strength. This two-pronged investigation aims to deepen our comprehension of SRB biofilm dynamics and contribute to the development of effective strategies for mitigating its impact on X52 carbon steel.

Keywords: bio-corrosion, biofilm, attachement, metal/bacteria interface

Procedia PDF Downloads 25
656 Conjugated Chitosan-Carboxymethyl-5-Fluorouracil Nanoparticles for Skin Delivery

Authors: Mazita Mohd Diah, Anton V. Dolzhenko, Tin Wui Wong

Abstract:

Nanoparticles, being small with a large specific surface area, increase solubility, enhance bioavailability, improve controlled release and enable precision targeting of the entrapped compounds. In this study, chitosan as polymeric permeation enhancer was conjugated to a polar pro-drug, carboxymethyl-5-fluorouracil (CMFU) to increase the skin drug permeation. Chitosan-CMFU conjugate was synthesized using chemical conjugation process through succinate linker. It was then transformed into nanoparticles via spray drying method. The conjugation was elucidated using Fourier Transform Infrared and Proton Nuclear Magnetic Resonance techniques. The nanoparticle size, size distribution, zeta potential, drug content, skin permeation and retention profiles were characterized. The conjugation was denoted using 1H NMR by new peaks at signal δ = 4.184 ppm (singlet, 2H for CH2) and 7.676-7.688 ppm (doublet, 1H for C6) attributed to CMFU in chitosan-CMFU NMR spectrum. The nanoparticles had profiles of particle size: 93.97 ±35.11 nm, polydispersity index: 0.40 ± 0.14, zeta potential: +18.25 ±2.95 mV and drug content: 6.20 ± 1.98 % w/w. Almost 80 % w/w CMFU in the form of nanoparticles permeated through the skin in 24 hours and close to 50 % w/w permeation occurred in first 1-2 hours. Without conjugation to chitosan and nanoparticulation, less than 40 % w/w CMFU permeated through the skin in 24 hours. The skin drug retention likewise was higher with chitosan-CMFU nanoparticles (15.34 ± 5.82 % w/w) than CMFU (2.24 ± 0.57 % w/w). CMFU, through conjugation with chitosan permeation enhancer and processed in nanogeometry, had its skin permeation and retention degree promoted.

Keywords: carboxymethyl-5-fluorouracil, chitosan, conjugate, skin permeation, skin retention

Procedia PDF Downloads 366
655 H₆P₂W₁₈O₆₂.14H₂O Catalyzed Synthesis of α-Aminophosphonates from Amino Acids Esters

Authors: Sarra Boughaba

Abstract:

α-aminophosphonates have found a wide range of applications in organic and medicinal chemistry; they are considered as pharmacological agents, anti-inflammatory antitumor agents, and antibiotics. A number of procedures have been developed for their synthesis. However, many of these methods suffer from some disadvantages such as long reaction times, environmental pollution, utilization of organic solvents, and expensive catalysts. In the past few years, heteropolyacids have received great attention as environmentally benign catalysts for organic synthetic processes, they possess unique physicochemical properties, such as super-acidity, high thermal and chemical stability, ability to accept and release electrons and high proton mobility, and the possibility of varying their acidity and oxidizing potential. In this context, an efficient and eco-friendly protocol has been described for the synthesis of α-aminophosphonates via one pot, three component reaction catalyzed by H₆P₂W₁₈O₆₂.14H₂O as reusable catalyst, by condensation of amino acids esters, various aromatic aldehydes and triethylphosphite under solvent-free conditions, the corresponding α-aminophosphonates were formed in good yields as racemic or diastereomericmixture. All the new products were systematically characterized by IR, MS, and ¹H, ¹³C-³¹P-NMR analyses. This method offers advantages such as simplicity workup with the green aspects by avoiding expensive catalysts and toxic solvents, good yields, short reaction times.

Keywords: amino acids esters, α-aminophosphonates, H₆P₂W₁₈O₆₂.14H₂O catalyst, green chemistry

Procedia PDF Downloads 128
654 Quantifying the Protein-Protein Interaction between the Ion-Channel-Forming Colicin A and the Tol Proteins by Potassium Efflux in E. coli Cells

Authors: Fadilah Aleanizy

Abstract:

Colicins are a family of bacterial toxins that kill Escherichia coli and other closely related species. The mode of action of colicins involves binding to an outer membrane receptor and translocation across the cell envelope, leading to cytotoxicity through specific targets. The mechanism of colicin cytotoxicity includes a non-specific endonuclease activity or depolarization of the cytoplasmic membrane by pore-forming activity. For Group A colicins, translocation requires an interaction between the N-terminal domain of the colicin and a series of membrane- bound and periplasmic proteins known as the Tol system (TolB, TolR, TolA, TolQ, and Pal and the active domain must be translocated through the outer membranes. Protein-protein interactions are intrinsic to virtually every cellular process. The transient protein-protein interactions of the colicin include the interaction with much more complicated assemblies during colicin translocation across the cellular membrane to its target. The potassium release assay detects variation in the K+ content of bacterial cells (K+in). This assays is used to measure the effect of pore-forming colicins such as ColA on an indicator organism by measuring the changes of the K+ concentration in the external medium (K+out ) that are caused by cell killing with a K+ selective electrode. One of the goals of this work is to employ a quantifiable in-vivo method to spot which Tol protein are more implicated in the interaction with colicin A as it is translocated to its target.

Keywords: K+ efflux, Colicin A, Tol-proteins, E. coli

Procedia PDF Downloads 410
653 Exploring Attachment Mechanisms of Sulfate-Reducing Bacteria Biofilm to X52 Carbon Steel and Effective Mitigation Through Moringa Oleifera Extract

Authors: Hadjer Didouh, Mohammed Hadj Melliani, Izzeddine Sameut Bouhaik

Abstract:

Corrosion is a serious problem in industrial installations or metallic transport pipes. Corrosion is an interfacial process controlled by several parameters. The presence of microorganisms affects the kinetics of corrosion. This type of corrosion is often referred to as bio-corrosion or corrosion influenced by microorganisms (MIC). The action of a microorganism or a bacterium is carried out by the formation of biofilm following its attachment to the metal surface. The formation of biofilm isolates the metal surface from its environment and allows the bacteria to control the parameters of the metal/bacteria interface. Biofilm formation by sulfate-reducing bacteria (SRB) X52 steel poses substantial challenges in the oil and gas industry SONATRACH of Algeria. This research delves into the complex attachment mechanisms employed by SRB biofilm on X52 carbon steel and investigates innovative strategies for effective mitigation using biocides. The exploration commences by elucidating the underlying mechanisms facilitating SRB biofilm adhesion to X52 carbon steel, considering factors such as surface morphology, electrostatic interactions, and microbial extracellular substances. Advanced microscopy and spectroscopic techniques provide support to the attachment processes, laying the foundation for targeted mitigation strategies. The use of 100 ppm of Moringa Oleifera extract biocide as a promising approach to control and prevent SRB biofilm formation on X52 carbon steel surfaces. Green extracts undergo evaluation for their effectiveness in disrupting biofilm development while ensuring the integrity of the steel substrate. Systematic analysis is conducted on the biocide's impact on the biofilm's structural integrity, microbial viability, and overall attachment strength. This two-pronged investigation aims to deepen our comprehension of SRB biofilm dynamics and contribute to the development of effective strategies for mitigating its impact on X52 carbon steel.

Keywords: attachment, bio-corrosion, biofilm, metal/bacteria interface

Procedia PDF Downloads 74
652 Implications of Meteorological Parameters in Decision Making for Public Protective Actions during a Nuclear Emergency

Authors: M. Hussaina, K. Mahboobb, S. Z. Ilyasa, S. Shaheena

Abstract:

Plume dispersion modeling is a computational procedure to establish a relationship between emissions, meteorology, atmospheric concentrations, deposition and other factors. The emission characteristics (stack height, stack diameter, release velocity, heat contents, chemical and physical properties of the gases/particle released etc.), terrain (surface roughness, local topography, nearby buildings) and meteorology (wind speed, stability, mixing height, etc.) are required for the modeling of the plume dispersion and estimation of ground and air concentration. During the early phase of Fukushima accident, plume dispersion modeling and decisions were taken for the implementation of protective measures. A difference in estimated results and decisions made by different countries for taking protective actions created a concern in local and international community regarding the exact identification of the safe zone. The current study is focused to highlight the importance of accurate and exact weather data availability, scientific approach for decision making for taking urgent protective actions, compatible and harmonized approach for plume dispersion modeling during a nuclear emergency. As a case study, the influence of meteorological data on plume dispersion modeling and decision-making process has been performed.

Keywords: decision making process, radiation doses, nuclear emergency, meteorological implications

Procedia PDF Downloads 183
651 Biochemical Characterization of CTX-M-15 from Enterobacter cloacae and Designing a Novel Non-β-Lactam-β-Lactamase Inhibitor

Authors: Mohammad Faheem, M. Tabish Rehman, Mohd Danishuddin, Asad U. Khan

Abstract:

The worldwide dissemination of CTX-M type β-lactamases is a threat to human health. Previously, we have reported the spread of blaCTX-M-15 gene in different clinical strains of Enterobacteriaceae from the hospital settings of Aligarh in north India. In view of the varying resistance pattern against cephalosporins and other β-lactam antibiotics, we intended to understand the correlation between MICs and catalytic activity of CTX-M-15. In this study, steady-state kinetic parameters and MICs were determined on E. coli DH5α transformed with blaCTX-M-15 gene that was cloned from Enterobacter cloacae (EC-15) strain of clinical background. The effect of conventional β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) on CTX-M-15 was also studied. We have found that tazobactam is the best among these inhibitors against CTX-M-15. The inhibition characteristic of tazobactam is defined by its very low IC50 value (6 nM), high affinity (Ki = 0.017 µM) and better acylation efficiency (k+2/K9 = 0.44 µM-1s-1). It forms an acyl-enzyme covalent complex, which is quite stable (k+3 = 0.0057 s-1). Since increasing resistance has been reported against conventional b-lactam antibiotic-inhibitor combinations, we aspire to design a non-b-lactam core containing b-lactamase inhibitor. For this, we screened ZINC database and performed molecular docking to identify a potential non-β-lactam based inhibitor (ZINC03787097). The MICs of cephalosporin antibiotics in combination with this inhibitor gave promising results. Steady-state kinetics and molecular docking studies showed that ZINC03787097 is a reversible inhibitor which binds non-covalently to the active site of the enzyme through hydrogen bonds and hydrophobic interactions. Though, it’s IC50 (180 nM) is much higher than tazobactam, it has good affinity for CTX-M-15 (Ki = 0.388 µM). This study concludes that ZINC03787097 compound can be used as seed molecule to design more efficient non-b-lactam containing b-lactamase inhibitor that could evade pre-existing bacterial resistance mechanisms.

Keywords: ESBL, non-b-lactam-b-lactamase inhibitor, bioinformatics, biomedicine

Procedia PDF Downloads 239
650 Development and Efficacy Assessment of an Enteric Coated Porous Tablet Loaded with F4 Fimbriae for Oral Vaccination against Enterotoxigenic Escherichia coli Infections

Authors: Atul Srivastava, D. V. Gowda

Abstract:

Enterotoxigenic Escherichia coli (ETEC) infection is one of the major causes contributing to the development of diarrhoea in adults and children in developing countries. To date, no preventive/treatment strategy showed promising results, which could be due to the lack of potent vaccines, and/or due to the development of resistance of ETEC to antibiotics. Therefore, in the present investigation, a novel porous Sodium Alginate (SA) tablet formulation loaded with F4 fimbriae antigen was developed and tested for efficacy against ETEC infections in piglet models. Pre-compression parameters of the powder mixes and post compression parameters of tablets have been evaluated and results were found to be satisfactory. Loading of F4 fimbrial antigens in to the tablets was achieved by inducing pores in the tablets via the sublimation of camphor followed by incubation with purified F4 fimbriae. The loaded tablets have been coated with Eudragit L100 to protect the F4 fimbriae from (a) highly acidic gastric environment; (b) proteolytic cleavage by pepsin; and (c) to promote subsequent release in the intestine. Evaluation of developed F4 fimbrial tablets in a Pig model demonstrated induction of mucosal immunity, and a significant reduction of F4+ E. coli in faeces. Therefore, F4 fimbriae loaded porous tablets could be a novel oral vaccination candidate to induce mucosal and systemic immunity against ETEC infections.

Keywords: porous tablets, sublimation, f4 fimbriae, eudragit l100, vaccination

Procedia PDF Downloads 343
649 From Binary Solutions to Real Bio-Oils: A Multi-Step Extraction Story of Phenolic Compounds with Ionic Liquid

Authors: L. Cesari, L. Canabady-Rochelle, F. Mutelet

Abstract:

The thermal conversion of lignin produces bio-oils that contain many compounds with high added-value such as phenolic compounds. In order to efficiently extract these compounds, the possible use of choline bis(trifluoromethylsulfonyl)imide [Choline][NTf2] ionic liquid was explored. To this end, a multistep approach was implemented. First, binary (phenolic compound and solvent) and ternary (phenolic compound and solvent and ionic liquid) solutions were investigated. Eight binary systems of phenolic compound and water were investigated at atmospheric pressure. These systems were quantified using the turbidity method and UV-spectroscopy. Ternary systems (phenolic compound and water and [Choline][NTf2]) were investigated at room temperature and atmospheric pressure. After stirring, the solutions were let to settle down, and a sample of each phase was collected. The analysis of the phases was performed using gas chromatography with an internal standard. These results were used to quantify the values of the interaction parameters of thermodynamic models. Then, extractions were performed on synthetic solutions to determine the influence of several operating conditions (temperature, kinetics, amount of [Choline][NTf2]). With this knowledge, it has been possible to design and simulate an extraction process composed of one extraction column and one flash. Finally, the extraction efficiency of [Choline][NTf2] was quantified with real bio-oils from lignin pyrolysis. Qualitative and quantitative analysis were performed using gas chromatographic connected to mass spectroscopy and flame ionization detector. The experimental measurements show that the extraction of phenolic compounds is efficient at room temperature, quick and does not require a high amount of [Choline][NTf2]. Moreover, the simulations of the extraction process demonstrate that [Choline][NTf2] process requires less energy than an organic one. Finally, the efficiency of [Choline][NTf2] was confirmed in real situations with the experiments on lignin pyrolysis bio-oils.

Keywords: bio-oils, extraction, lignin, phenolic compounds

Procedia PDF Downloads 110
648 Ultra-Rapid and Efficient Immunomagnetic Separation of Listeria Monocytogenes from Complex Samples in High-Gradient Magnetic Field Using Disposable Magnetic Microfluidic Device

Authors: L. Malic, X. Zhang, D. Brassard, L. Clime, J. Daoud, C. Luebbert, V. Barrere, A. Boutin, S. Bidawid, N. Corneau, J. Farber, T. Veres

Abstract:

The incidence of infections caused by foodborne pathogens such as Listeria monocytogenes (L. monocytogenes) poses a great potential threat to public health and safety. These issues are further exacerbated by legal repercussions due to “zero tolerance” food safety standards adopted in developed countries. Unfortunately, a large number of related disease outbreaks are caused by pathogens present in extremely low counts currently undetectable by available techniques. The development of highly sensitive and rapid detection of foodborne pathogens is therefore crucial, and requires robust and efficient pre-analytical sample preparation. Immunomagnetic separation is a popular approach to sample preparation. Microfluidic chips combined with external magnets have emerged as viable high throughput methods. However, external magnets alone are not suitable for the capture of nanoparticles, as very strong magnetic fields are required. Devices that incorporate externally applied magnetic field and microstructures of a soft magnetic material have thus been used for local field amplification. Unfortunately, very complex and costly fabrication processes used for integration of soft magnetic materials in the reported proof-of-concept devices would prohibit their use as disposable tools for food and water safety or diagnostic applications. We present a sample preparation magnetic microfluidic device implemented in low-cost thermoplastic polymers using fabrication techniques suitable for mass-production. The developed magnetic capture chip (M-chip) was employed for rapid capture and release of L. monocytogenes conjugated to immunomagnetic nanoparticles (IMNs) in buffer and beef filtrate. The M-chip relies on a dense array of Nickel-coated high-aspect ratio pillars for capture with controlled magnetic field distribution and a microfluidic channel network for sample delivery, waste, wash and recovery. The developed Nickel-coating process and passivation allows generation of switchable local perturbations within the uniform magnetic field generated with a pair of permanent magnets placed at the opposite edges of the chip. This leads to strong and reversible trapping force, wherein high local magnetic field gradients allow efficient capture of IMNs conjugated to L. monocytogenes flowing through the microfluidic chamber. The experimental optimization of the M-chip was performed using commercially available magnetic microparticles and fabricated silica-coated iron-oxide nanoparticles. The fabricated nanoparticles were optimized to achieve the desired magnetic moment and surface functionalization was tailored to allow efficient capture antibody immobilization. The integration, validation and further optimization of the capture and release protocol is demonstrated using both, dead and live L. monocytogenes through fluorescence microscopy and plate- culture method. The capture efficiency of the chip was found to vary as function of listeria to nanoparticle concentration ratio. The maximum capture efficiency of 30% was obtained and the 24-hour plate-culture method allowed the detection of initial sample concentration of only 16 cfu/ml. The device was also very efficient in concentrating the sample from a 10 ml initial volume. Specifically, 280% concentration efficiency was achieved in 17 minutes only, demonstrating the suitability of the system for food safety applications. In addition, flexible design and low-cost fabrication process will allow rapid sample preparation for applications beyond food and water safety, including point-of-care diagnosis.

Keywords: array of pillars, bacteria isolation, immunomagnetic sample preparation, polymer microfluidic device

Procedia PDF Downloads 282
647 Dynamic Modeling of Advanced Wastewater Treatment Plants Using BioWin

Authors: Komal Rathore, Aydin Sunol, Gita Iranipour, Luke Mulford

Abstract:

Advanced wastewater treatment plants have complex biological kinetics, time variant influent flow rates and long processing times. Due to these factors, the modeling and operational control of advanced wastewater treatment plants become complicated. However, development of a robust model for advanced wastewater treatment plants has become necessary in order to increase the efficiency of the plants, reduce energy costs and meet the discharge limits set by the government. A dynamic model was designed using the Envirosim (Canada) platform software called BioWin for several wastewater treatment plants in Hillsborough County, Florida. Proper control strategies for various parameters such as mixed liquor suspended solids, recycle activated sludge and waste activated sludge were developed for models to match the plant performance. The models were tuned using both the influent and effluent data from the plant and their laboratories. The plant SCADA was used to predict the influent wastewater rates and concentration profiles as a function of time. The kinetic parameters were tuned based on sensitivity analysis and trial and error methods. The dynamic models were validated by using experimental data for influent and effluent parameters. The dissolved oxygen measurements were taken to validate the model by coupling them with Computational Fluid Dynamics (CFD) models. The Biowin models were able to exactly mimic the plant performance and predict effluent behavior for extended periods. The models are useful for plant engineers and operators as they can take decisions beforehand by predicting the plant performance with the use of BioWin models. One of the important findings from the model was the effects of recycle and wastage ratios on the mixed liquor suspended solids. The model was also useful in determining the significant kinetic parameters for biological wastewater treatment systems.

Keywords: BioWin, kinetic modeling, flowsheet simulation, dynamic modeling

Procedia PDF Downloads 155
646 Polyethylene Terephthalate Plastic Degradation by Fungus Rasamsonia Emersonii

Authors: Naveen Kumar

Abstract:

Microplastics, tiny plastic particles less than 5 mm in size formed by the disposal and breakdown of industrial and consumer products, have become a primary environmental concern due to their ubiquitous presence and application in the environment and their potential to cause harm to the ecosystem, wildlife and human health. In this, we study the ability of the fungus Rasamsonia emersonii IMI 393752 to degrade the rigid microplastics of Coke bottles. Microplastics were extracted from Coke bottles and incubated with Rasamsonia emersonii in Sabouraud dextrose agar media. Microplastics were pre-sterilized without altering the chemistry of microplastic. Preliminary analysis was performed by observing radial growth assessment of microplastic-containing media enriched with fungi vs. control. The assay confirmed no impedance or change in the fungi's growth pattern and rate by introducing microplastics. The degradation of the microplastics was monitored over time using microscopy and FTIR, and biodegradation/deterioration on the plastic surface was observed. Furthermore, the liquid assay was performed. HPLC and GCMS will be conducted to check the biodegradation and presence of enzyme release by fungi to counteract the presence of microplastics. These findings have important implications for managing plastic waste, as they suggest that fungi such as Rasamsonia emersonii can potentially degrade microplastics safely and effectively. However, further research to optimise the conditions for microplastic degradation by Rasamsonia emersonii and to develop strategies for scaling up the process for industrial applications will be beneficial.

Keywords: bioremediation, mycoremediation, plastic degradtion, polyethylene terephthalate

Procedia PDF Downloads 97
645 Salmon Diseases Connectivity between Fish Farm Management Areas in Chile

Authors: Pablo Reche

Abstract:

Since 1980’s aquaculture has become the biggest economic activity in southern Chile, being Salmo salar and Oncorhynchus mykiss the main finfish species. High fish density makes both species prone to contract diseases, what drives the industry to big losses, affecting greatly the local economy. Three are the most concerning infective agents, the infectious salmon anemia virus (ISAv), the bacteria Piscirickettsia salmonis and the copepod Caligus rogercresseyi. To regulate the industry the government arranged the salmon farms within management areas named as barrios, which coordinate the fallowing periods and antibiotics treatments of their salmon farms. In turn, barrios are gathered into larger management areas, named as macrozonas whose purpose is to minimize the risk of disease transmission between them and to enclose the outbreaks within their boundaries. However, disease outbreaks still happen and transmission to neighbor sites enlarges the initial event. Salmon disease agents are mostly transported passively by local currents. Thus, to understand how transmission occurs it must be firstly studied the physical environment. In Chile, salmon farming takes place in the inner seas of the southernmost regions of western Patagonia, between 41.5ºS-55ºS. This coastal marine system is characterised by western winds, latitudinally modulated by the position of the South-Eats Pacific high-pressure centre, high precipitation rates and freshwater inflows from the numerous glaciers (including the largest ice cap out of Antarctic and Greenland). All of these forcings meet in a complex bathymetry and coastline system - deep fjords, shallow sills, narrow straits, channels, archipelagos, inlets, and isolated inner seas- driving an estuarine circulation (fast outflows westwards on surface and slow deeper inflows eastwards). Such a complex system is modelled on the numerical model MIKE3, upon whose 3D current fields particle-track-biological models (one for each infective agent) are decoupled. Each agent biology is parameterized by functions for maturation and mortality (reproduction not included). Such parameterizations are depending upon environmental factors, like temperature and salinity, so their lifespan will depend upon the environmental conditions those virtual agents encounter on their way while passively transported. CLIC (Connectivity-Langrangian–IFOP-Chile) is a service platform that supports the graphical visualization of the connectivity matrices calculated from the particle trajectories files resultant of the particle-track-biological models. On CLIC users can select, from a high-resolution grid (~1km), the areas the connectivity will be calculated between them. These areas can be barrios and macrozonas. Users also can select what nodes of these areas are allowed to release and scatter particles from, depth and frequency of the initial particle release, climatic scenario (winter/summer) and type of particle (ISAv, Piscirickettsia salmonis, Caligus rogercresseyi plus an option for lifeless particles). Results include probabilities downstream (where the particles go) and upstream (where the particles come from), particle age and vertical distribution, all of them aiming to understand how currently connectivity works to eventually propose a minimum risk zonation for aquaculture purpose. Preliminary results in Chiloe inner sea shows that the risk depends not only upon dynamic conditions but upon barrios location with respect to their neighbors.

Keywords: aquaculture zonation, Caligus rogercresseyi, Chilean Patagonia, coastal oceanography, connectivity, infectious salmon anemia virus, Piscirickettsia salmonis

Procedia PDF Downloads 157
644 Anti-Nutritional Factors, In-Vitro Trypsin, Chymotrypsin and Peptidase Multi Enzyme Protein Digestibility of Some Melon (Egusi) Seeds and Their Protein Isolates

Authors: Joan O. Ogundele, Aladesanmi A. Oshodi, Adekunle I. Amoo

Abstract:

Abstract In-vitro multi-enzyme protein digestibility (IVMPD) and some anti-nutritional factors (ANF) of five melon (egusi) seed flours (MSF) and their protein isolates (PI) were carried out. Their PI have potentials comparable to that of soya beans. It is important to know the IVMPD and ANF of these protein sources as to ensure their safety when adapted for use as alternate protein sources to substitute for cow milk, which is relatively expensive in Nigeria. Standard methods were used to produce PI of Citrullus colocynthis, Citrullus vulgaris, African Wine Kettle gourd (Lageneria siceraria I), Basket Ball gourd (Lagenaria siceraria II) and Bushel Giant Gourd (Lageneria siceraria III) seeds and to determine the ANF and IVMPD of the MSF and PI unheated and at 37oC. Multi-enzymes used were trypsin, chymotrypsin and peptidase. IVMPD of MSF ranged from (70.67±0.70) % (C. vulgaris) to (72.07± 1.79) % (L.siceraria I) while for their PI ranged from 74.33% (C.vulgaris) to 77.55% (L.siceraria III). IVMPD of the PI were higher than those of MSF. Heating increased IVMPD of MSF with average value of 79.40% and those of PI with average of 84.14%. ANF average in MSF are tannin (0.11mg/g), phytate (0.23%). Differences in IVMPD of MSF and their PI at different temperatures may arise from processing conditions that alter the release of amino acids from proteins by enzymatic processes. ANF in MSF were relatively low, but were found to be lower in the PI, therefor making the PI safer for human consumption as an alternate source of protein.

Keywords: Anti-nutrients, Enzymatic protein digestibility, Melon (egusi)., Protein Isolates.

Procedia PDF Downloads 123
643 Greening the Blue: Enzymatic Degradation of Commercially Important Biopolymer Dextran Using Dextranase from Bacillus Licheniformis KIBGE-IB25

Authors: Rashida Rahmat Zohra, Afsheen Aman, Shah Ali Ul Qader

Abstract:

Commercially important biopolymer, dextran, is enzymatically degraded into lower molecular weight fractions of vast industrial potential. Various organisms are associated with dextranase production, among which fungal, yeast and bacterial origins are used for commercial production. Dextranases are used to remove contaminating dextran in sugar processing industry and also used in oral care products for efficient removal of dental plaque. Among the hydrolytic products of dextran, isomaltooligosaccharides have prebiotic effect in humans and reduces the cariogenic effect of sucrose in oral cavity. Dextran derivatives produced by hydrolysis of high molecular polymer are also conjugated with other chemical and metallic compounds for usage in pharmaceutical, fine chemical industry, cosmetics, and food industry. Owing to the vast application of dextran and dextranases, current study focused on purification and analysis of kinetic parameters of dextranase from a newly isolated strain of Bacillus licheniformis KIBGE-IB25. Dextranase was purified up to 35.75 folds with specific activity of 1405 U/mg and molecular weight of 158 kDa. Analysis of kinetic parameters revealed that dextranase performs optimum cleavage of low molecular weight dextran (5000 Da, 0.5%) at 35ºC in 15 min at pH 4.5 with a Km and Vmax of 0.3738 mg/ml and 182.0 µmol/min, respectively. Thermal stability profiling of dextranase showed that it retained 80% activity up to 6 hours at 30-35ºC and remains 90% active at pH 4.5. In short, the dextranase reported here performs rapid cleavage of substrate at mild operational conditions which makes it an ideal candidate for dextran removal in sugar processing industry and for commercial production of low molecular weight oligosaccharides.

Keywords: Bacillus licheniformis, dextranase, gel permeation chromatograpy, enzyme purification, enzyme kinetics

Procedia PDF Downloads 440
642 Oil Extraction from Microalgae Dunalliela sp. by Polar and Non-Polar Solvents

Authors: A. Zonouzi, M. Auli, M. Javanmard Dakheli, M. A. Hejazi

Abstract:

Microalgae are tiny photosynthetic plants. Nowadays, microalgae are being used as nutrient-dense foods and sources of fine chemicals. They have significant amounts of lipid, carotenoids, vitamins, protein, minerals, chlorophyll, and pigments. Oil extraction from algae is a hotly debated topic currently because introducing an efficient method could decrease the process cost. This can determine the sustainability of algae-based foods. Scientific research works show that solvent extraction using chloroform/methanol (2:1) mixture is one of the efficient methods for oil extraction from algal cells, but both methanol and chloroform are toxic solvents, and therefore, the extracted oil will not be suitable for food application. In this paper, the effect of two food grade solvents (hexane and hexane/ isopropanol) on oil extraction yield from microalgae Dunaliella sp. was investigated and the results were compared with chloroform/methanol (2:1) extraction yield. It was observed that the oil extraction yield using hexane, hexane/isopropanol (3:2) and chloroform/methanol (2:1) mixture were 5.4, 13.93, and 17.5 (% w/w, dry basis), respectively. The fatty acid profile derived from GC illustrated that the palmitic (36.62%), oleic (18.62%), and stearic acids (19.08%) form the main portion of fatty acid composition of microalgae Dunalliela sp. oil. It was concluded that, the addition of isopropanol as polar solvent could increase the extraction yield significantly. Isopropanol solves cell wall phospholipids and enhances the release of intercellular lipids, which improves accessing of hexane to fatty acids.

Keywords: fatty acid profile‎, microalgae‎, oil extraction‎, polar solvent‎

Procedia PDF Downloads 379
641 LHCII Proteins Phosphorylation Changes Involved in the Dark-Chilling Response in Plant Species with Different Chilling Tolerance

Authors: Malgorzata Krysiak, Anna Wegrzyn, Maciej Garstka, Radoslaw Mazur

Abstract:

Under constantly fluctuating environmental conditions, the thylakoid membrane protein network evolved the ability to dynamically respond to changing biotic and abiotic factors. One of the most important protective mechanism is rearrangement of the chlorophyll-protein (CP) complexes, induced by protein phosphorylation. In a temperate climate, low temperature is one of the abiotic stresses that heavily affect plant growth and productivity. The aim of this study was to determine the role of LHCII antenna complex phosphorylation in the dark-chilling response. The study included an experimental model based on dark-chilling at 4 °C of detached chilling sensitive (CS) runner bean (Phaseolus coccineus L.) and chilling tolerant (CT) garden pea (Pisum sativum L.) leaves. This model is well described in the literature as used for the analysis of chilling impact without any additional effects caused by light. We examined changes in thylakoid membrane protein phosphorylation, interactions between phosphorylated LHCII (P-LHCII) and CP complexes, and their impact on the dynamics of photosystem II (PSII) under dark-chilling conditions. Our results showed that the dark-chilling treatment of CS bean leaves induced a substantial increase of phosphorylation of LHCII proteins, as well as changes in CP complexes composition and their interaction with P-LHCII. The PSII photochemical efficiency measurements showed that in bean, PSII is overloaded with light energy, which is not compensated by CP complexes rearrangements. On the contrary, no significant changes in PSII photochemical efficiency, phosphorylation pattern and CP complexes interactions were observed in CT pea. In conclusion, our results indicate that different responses of the LHCII phosphorylation to chilling stress take place in CT and CS plants, and that kinetics of LHCII phosphorylation and interactions of P-LHCII with photosynthetic complexes may be crucial to chilling stress response. Acknowledgments: presented work was financed by the National Science Centre, Poland grant No.: 2016/23/D/NZ3/01276

Keywords: LHCII, phosphorylation, chilling stress, pea, runner bean

Procedia PDF Downloads 141