Search results for: fluid intelligence
2552 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications
Authors: Ildar Akhmadullin, Mayank Tyagi
Abstract:
The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126℃, the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.Keywords: downhole heat exchangers, geothermal power generation, organic rankine cycle, refrigerants, working fluids
Procedia PDF Downloads 3152551 Computational Study of Flow and Heat Transfer Characteristics of an Incompressible Fluid in a Channel Using Lattice Boltzmann Method
Authors: Imdat Taymaz, Erman Aslan, Kemal Cakir
Abstract:
The Lattice Boltzmann Method (LBM) is performed to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a 2D channel with a built-in triangular prism. Both momentum and energy transport is modelled by the LBM. A uniform lattice structure with a single time relaxation rule is used. Interpolation methods are applied for obtaining a higher flexibility on the computational grid, where the information is transferred from the lattice structure to the computational grid by Lagrange interpolation. The flow is researched on for different Reynolds number, while Prandtl number is keeping constant as a 0.7. The results show how the presence of a triangular prism effects the flow and heat transfer patterns for the steady-state and unsteady-periodic flow regimes. As an evaluation of the accuracy of the developed LBM code, the results are compared with those obtained by a commercial CFD code. It is observed that the present LBM code produces results that have similar accuracy with the well-established CFD code, as an additionally, LBM needs much smaller CPU time for the prediction of the unsteady phonema.Keywords: laminar forced convection, lbm, triangular prism
Procedia PDF Downloads 3732550 MHD Stagnation-Point Flow over a Plate
Authors: H. Niranjan, S. Sivasankaran
Abstract:
Heat and mass transfer near a steady stagnation point boundary layer flow of viscous incompressible fluid through porous media investigates along a vertical plate is thoroughly studied under the presence of magneto hydrodynamic (MHD) effects. The fluid flow is steady, laminar, incompressible and in two-dimensional. The nonlinear differential coupled parabolic partial differential equations of continuity, momentum, energy and specie diffusion are converted into the non-similar boundary layer equations using similarity transformation, which are then solved numerically using the Runge-Kutta method along with shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.Keywords: MHD, porous medium, slip, convective boundary condition, stagnation point
Procedia PDF Downloads 3022549 On the Thermodynamics of Biological Cell Adhesion
Authors: Ben Nadler
Abstract:
Cell adhesion plays a vital role in many cell activities. The motivation to model cell adhesion is to study important biological processes, such as cell spreading, cell aggregation, tissue formation, and cell adhesion, which are very challenging to study by experimental methods alone. This study provides important insight into cell adhesion, which can lead to improve regenerative medicine and tissue formation techniques. In this presentation the biological cells adhesion is mediated by receptors–ligands binding and the diffusivity of the receptor on the cell membrane surface. The ability of receptors to diffuse on the cell membrane surface yields a very unique and complicated adhesion mechanism, which is exclusive to cells. The phospholipid bilayer, which is the main component in the cell membrane, shows fluid-like behavior associated with the molecules’ diffusivity. The biological cell is modeled as a fluid-like membrane with negligible bending stiffness enclosing the cytoplasm fluid. The in-plane mechanical behavior of the cell membrane is assumed to depend only on the area change, which is motivated by the fluidity of the phospholipid bilayer. In addition, the presence of receptors influences on the local mechanical properties of the cell membrane is accounted for by including stress-free area change, which depends on the receptor density. Based on the physical properties of the receptors and ligands the attraction between the receptors and ligands is modeled as a charged-nonpolar which is a noncovalent interaction. Such interaction is a short-range type, which decays fast with distance. The mobility of the receptor on the cell membrane is modeled using the diffusion equation and Fick’s law is used to model the receptor–receptor interactions. The resultant interaction force, which includes receptor–ligand and receptor–receptor interaction, is decomposed into tangential part, which governs the receptor diffusion, and normal part, which governs the cell deformation and adhesion. The formulation of the governing equations and numerical simulations will be presented. Analysis of the adhesion characteristic and properties are discussed. The roles of various thermomechanical properties of the cell, receptors and ligands on the cell adhesion are investigated.Keywords: cell adhesion, cell membrane, receptor-ligand interaction, receptor diffusion
Procedia PDF Downloads 3422548 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients
Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim
Abstract:
The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter
Procedia PDF Downloads 1452547 Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall
Authors: Sanjib Kr Pal, S. Bhattacharyya
Abstract:
Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 ≤ Ri ≤ 5), nanoparticle volume concentration (0.0 ≤ ϕ ≤ 0.2), amplitude (0.0 ≤ α ≤ 0.1) of the wavy thick- bottom wall and the wave number (ω) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection.Keywords: conjugate heat transfer, mixed convection, nano fluid, wall waviness
Procedia PDF Downloads 2542546 Employee Well-being in the Age of AI: Perceptions, Concerns, Behaviors, and Outcomes
Authors: Soheila Sadeghi
Abstract:
— The growing integration of Artificial Intelligence (AI) into Human Resources (HR) processes has transformed the way organizations manage recruitment, performance evaluation, and employee engagement. While AI offers numerous advantages—such as improved efficiency, reduced bias, and hyper-personalization—it raises significant concerns about employee well-being, job security, fairness, and transparency. The study examines how AI shapes employee perceptions, job satisfaction, mental health, and retention. Key findings reveal that: (a) while AI can enhance efficiency and reduce bias, it also raises concerns about job security, fairness, and privacy; (b) transparency in AI systems emerges as a critical factor in fostering trust and positive employee attitudes; and (c) AI systems can both support and undermine employee well-being, depending on how they are implemented and perceived. The research introduces an AI-employee well-being Interaction Framework, illustrating how AI influences employee perceptions, behaviors, and outcomes. Organizational strategies, such as (a) clear communication, (b) upskilling programs, and (c) employee involvement in AI implementation, are identified as crucial for mitigating negative impacts and enhancing positive outcomes. The study concludes that the successful integration of AI in HR requires a balanced approach that (a) prioritizes employee well-being, (b) facilitates human-AI collaboration, and (c) ensures ethical and transparent AI practices alongside technological advancement.Keywords: artificial intelligence, human resources, employee well-being, job satisfaction, organizational support, transparency in AI
Procedia PDF Downloads 292545 Computational Study of Blood Flow Analysis for Coronary Artery Disease
Authors: Radhe Tado, Ashish B. Deoghare, K. M. Pandey
Abstract:
The aim of this study is to estimate the effect of blood flow through the coronary artery in human heart so as to assess the coronary artery disease.Velocity, wall shear stress (WSS), strain rate and wall pressure distribution are some of the important hemodynamic parameters that are non-invasively assessed with computational fluid dynamics (CFD). These parameters are used to identify the mechanical factors responsible for the plaque progression and/or rupture in left coronary arteries (LCA) in coronary arteries.The initial step for CFD simulations was the construction of a geometrical model of the LCA. Patient specific artery model is constructed using computed tomography (CT) scan data with the help of MIMICS Research 19.0. For CFD analysis ANSYS FLUENT-14.5 is used.Hemodynamic parameters were quantified and flow patterns were visualized both in the absence and presence of coronary plaques. The wall pressure continuously decreased towards distal segments and showed pressure drops in stenotic segments. Areas of high WSS and high flow velocities were found adjacent to plaques deposition.Keywords: angiography, computational fluid dynamics (CFD), time-average wall shear stress (TAWSS), wall pressure, wall shear stress (WSS)
Procedia PDF Downloads 1832544 CFD-DEM Modelling and Analysis of the Continuous Separation of Sized Particles Using Inertial Microfluidics
Authors: Hui Zhu, Yuan Wang, Shibo Kuang, Aibing Yu
Abstract:
The inertial difference induced by the microfluidics inside a curved micro-channel has great potential to provide a fast, inexpensive, and portable solution to the separation of micro- and sub-micro particles in many applications such as aerosol collections, airborne bacteria and virus detections, as well as particle sortation. In this work, the separation behaviors of different sized particles inside a reported curved micro-channel have been studied by a combined approach of computational fluid dynamics for gas and discrete element model for particles (CFD-DEM). The micro-channel is operated by controlling the gas flow rates at all of its branches respectively used to load particles, introduce gas streams, collect particles of various sizes. The validity of the model has been examined by comparing by the calculated separation efficiency of different sized particles against the measurement. On this basis, the separation mechanisms of the inertial microfluidic separator are elucidated in terms of the interactions between particles, between particle and fluid, and between particle and wall. The model is then used to study the effect of feed solids concentration on the separation accuracy and efficiency. The results obtained from the present study demonstrate that the CFD-DEM approach can provide a convenient way to study the particle separation behaviors in micro-channels of various types.Keywords: CFD-DEM, inertial effect, microchannel, separation
Procedia PDF Downloads 2922543 General Mood and Emotional Regulation as Predictors of Bullying Behaviors among Adolescent Males: Basis for a Proposed Bullying Intervention Program
Authors: Angelyn Del Mundo
Abstract:
Bullying cases are a proliferating issue that schools need to address. This calls for a challenge in providing effective measures to reduce bullying. The study aimed to determine which among the socio-emotional aspects of adolescent males could predict bullying. The respondents of the study were the grades 10 and 11 level and the selection of the respondents was based on the names listed by the teachers and guidance counselors through the Student Nomination Questionnaire. The Bullying Survey Questionnaire Checklist was answered by the respondents to be able to identify their most observed bullying behavior. On the other hand, the level of their mental ability was measured through the use of Otis-Lennon School Ability Test, while their socio-emotional aspects was is classified into 2 contexts: emotional intelligence and personality traits which were determined with the use of Bar-On Emotional Quotient Inventory: Youth Version (BarOn EQ-i:YV) and the Five-Factor Personality Inventory-Children (FFPI-C). Results indicated that majority of the respondents have average level of mental ability and socio-emotional aspects. However, many students have low to markedly low level interpersonal scale. Furthermore, general mood and emotional regulation were found as predictors of bullying behaviors. These findings became the basis for a proposed bullying intervention program.Keywords: bullying, emotional intelligence, mental ability, personality traits
Procedia PDF Downloads 2822542 Development of Vapor Absorption Refrigeration System for Mini-Bus Car’s Air Conditioning: A Two-Fluid Model
Authors: Yoftahe Nigussie
Abstract:
This research explores the implementation of a vapor absorption refrigeration system (VARS) in mini-bus cars to enhance air conditioning efficiency. The conventional vapor compression refrigeration system (VCRS) in vehicles relies on mechanical work from the engine, leading to increased fuel consumption. The proposed VARS aims to utilize waste heat and exhaust gas from the internal combustion engine to cool the mini-bus cabin, thereby reducing fuel consumption and atmospheric pollution. The project involves two models: Model 1, a two-fluid vapor absorption system (VAS), and Model 2, a three-fluid VAS. Model 1 uses ammonia (NH₃) and water (H₂O) as refrigerants, where water absorbs ammonia rapidly, producing a cooling effect. The absorption cycle operates on the principle that absorbing ammonia in water decreases vapor pressure. The ammonia-water solution undergoes cycles of desorption, condensation, expansion, and absorption, facilitated by a generator, condenser, expansion valve, and absorber. The objectives of this research include reducing atmospheric pollution, minimizing air conditioning maintenance costs, lowering capital costs, enhancing fuel economy, and eliminating the need for a compressor. The comparison between vapor absorption and compression systems reveals advantages such as smoother operation, fewer moving parts, and the ability to work at lower evaporator pressures without affecting the Coefficient of Performance (COP). The proposed VARS demonstrates potential benefits for mini-bus air conditioning systems, providing a sustainable and energy-efficient alternative. By utilizing waste heat and exhaust gas, this system contributes to environmental preservation while addressing economic considerations for vehicle owners. Further research and development in this area could lead to the widespread adoption of vapor absorption technology in automotive air conditioning systems.Keywords: room, zone, space, thermal resistance
Procedia PDF Downloads 702541 Response Surface Methodology to Optimize the Performance of a Co2 Geothermal Thermosyphon
Authors: Badache Messaoud
Abstract:
Geothermal thermosyphons (GTs) are increasingly used in many heating and cooling geothermal applications owing to their high heat transfer performance. This paper proposes a response surface methodology (RSM) to investigate and optimize the performance of a CO2 geothermal thermosyphon. The filling ratio (FR), temperature, and flow rate of the heat transfer fluid are selected as the designing parameters, and heat transfer rate and effectiveness are adopted as response parameters (objective functions). First, a dedicated experimental GT test bench filled with CO2 was built and subjected to different test conditions. An RSM was used to establish corresponding models between the input parameters and responses. Various diagnostic tests were used to assess evaluate the quality and validity of the best-fit models, which explain respectively 98.9% and 99.2% of the output result’s variability. Overall, it is concluded from the RSM analysis that the heat transfer fluid inlet temperatures and the flow rate are the factors that have the greatest impact on heat transfer (Q) rate and effectiveness (εff), while the FR has only a slight effect on Q and no effect on εff. The maximal heat transfer rate and effectiveness achieved are 1.86 kW and 47.81%, respectively. Moreover, these optimal values are associated with different flow rate levels (mc level = 1 for Q and -1 for εff), indicating distinct operating regions for maximizing Q and εff within the GT system. Therefore, a multilevel optimization approach is necessary to optimize both the heat transfer rate and effectiveness simultaneously.Keywords: geothermal thermosiphon, co2, Response surface methodology, heat transfer performance
Procedia PDF Downloads 702540 CFD Analysis of Flow Regimes of Non-Newtonian Liquids in Chemical Reactor
Authors: Nenashev Yaroslav, Russkin Oleg
Abstract:
The mixing process is one of the most important and critical stages in many industrial sectors, such as chemistry, pharmaceuticals, and the food industry. When designing equipment with mixing impellers, technology developers often encounter working environments with complex physical properties and rheology. In such cases, the use of computational fluid dynamics tools is an excellent solution to mitigate risks and ensure the stable operation of the equipment. The research focuses on one of the designed reactors with mixing impellers intended for polymer synthesis. The study describes an approach to modeling reactors of similar configurations, taking into account the complex properties of the mixed liquids using the computational fluid dynamics (CFD) method. To achieve this goal, a complex 3D model was created, accurately replicating the functionality of chemical equipment. The model allows for the assessment of the hydrodynamic behavior of the reaction mixture inside the reactor, consideration of heat release due to the reaction, and the heat exchange between the reaction mixture and the cooling medium. The results indicate that the choice of the type and size of the mixing device significantly affects the efficiency of the mixing process inside the chemical reactor.Keywords: CFD, mixing, blending, chemical reactor, non-Newton liquids, polymers
Procedia PDF Downloads 352539 The Physical Impact of Nano-Layer Due to Dispersions of Carbon Nano-Tubes through an Absorbent Channel: A Numerical Nano-Fluid Flow Model
Authors: Muhammad Zubair Akbar Qureshi, Abdul Bari Farooq
Abstract:
The intention of the current study to analyze the significance of nano-layer in incompressible magneto-hydrodynamics (MHD) flow of a Newtonian nano-fluid consisting of carbon nano-materials has been considered through an absorbent channel with moving porous walls. Using applicable similarity transforms, the governing equations are converted into a system of nonlinear ordinary differential equations which are solved by using the 4th-order Runge-Kutta technique together with shooting methodology. The phenomena of nano-layer have also been modeled mathematically. The inspiration behind this segment is to reveal the behavior of involved parameters on velocity and temperature profiles. A detailed table is presented in which the effects of involved parameters on shear stress and heat transfer rate are discussed. Specially presented the impact of the thickness of the nano-layer and radius of the particle on the temperature profile. We observed that due to an increase in the thickness of the nano-layer, the heat transfer rate increases rapidly. The consequences of this research may be advantageous to the applications of biotechnology and industrial motive.Keywords: carbon nano-tubes, magneto-hydrodynamics, nano-layer, thermal conductivity
Procedia PDF Downloads 1282538 The Role of Artificial Intelligence in Patent Claim Interpretation: Legal Challenges and Opportunities
Authors: Mandeep Saini
Abstract:
The rapid advancement of Artificial Intelligence (AI) is transforming various fields, including intellectual property law. This paper explores the emerging role of AI in interpreting patent claims, a critical and highly specialized area within intellectual property rights. Patent claims define the scope of legal protection granted to an invention, and their precise interpretation is crucial in determining the boundaries of the patent holder's rights. Traditionally, this interpretation has relied heavily on the expertise of patent examiners, legal professionals, and judges. However, the increasing complexity of modern inventions, especially in fields like biotechnology, software, and electronics, poses significant challenges to human interpretation. Introducing AI into patent claim interpretation raises several legal and ethical concerns. This paper addresses critical issues such as the reliability of AI-driven interpretations, the potential for algorithmic bias, and the lack of transparency in AI decision-making processes. It considers the legal implications of relying on AI, particularly regarding accountability for errors and the potential challenges to AI interpretations in court. The paper includes a comparative study of AI-driven patent claim interpretations versus human interpretations across different jurisdictions to provide a comprehensive analysis. This comparison highlights the variations in legal standards and practices, offering insights into how AI could impact the harmonization of international patent laws. The paper proposes policy recommendations for the responsible use of AI in patent law. It suggests legal frameworks that ensure AI tools complement, rather than replace, human expertise in patent claim interpretation. These recommendations aim to balance the benefits of AI with the need for maintaining trust, transparency, and fairness in the legal process. By addressing these critical issues, this research contributes to the ongoing discourse on integrating AI into the legal field, specifically within intellectual property rights. It provides a forward-looking perspective on how AI could reshape patent law, offering both opportunities for innovation and challenges that must be carefully managed to protect the integrity of the legal system.Keywords: artificial intelligence (ai), patent claim interpretation, intellectual property rights, algorithmic bias, natural language processing, patent law harmonization, legal ethics
Procedia PDF Downloads 212537 CFD Simulation on Gas Turbine Blade and Effect of Twisted Hole Shape on Film Cooling Effectiveness
Authors: Thulodin Mat Lazim, Aminuddin Saat, Ammar Fakhir Abdulwahid, Zaid Sattar Kareem
Abstract:
Film cooling is one of the cooling systems investigated for the application to gas turbine blades. Gas turbines use film cooling in addition to turbulence internal cooling to protect the blades outer surface from hot gases. The present study concentrates on the numerical investigation of film cooling performance for a row of twisted cylindrical holes in modern turbine blade. The adiabatic film effectiveness and the heat transfer coefficient are determined numerical on a flat plate downstream of a row of inclined different cross section area hole exit by using Computational Fluid Dynamics (CFD). The swirling motion of the film coolant was induced the twisted angle of film cooling holes, which inclined an angle of α toward the vertical direction and surface of blade turbine. The holes angle α of the impingement mainstream was changed from 90°, 65°, 45°, 30° and 20°. The film cooling effectiveness on surface of blade turbine wall was measured by using 3D Computational Fluid Dynamics (CFD). Results showed that the effectiveness of rectangular twisted hole has the effectiveness among other cross section area of the hole at blowing ratio (0.5, 1, 1.5 and 2).Keywords: turbine blade cooling, film cooling, geometry shape of hole, turbulent flow
Procedia PDF Downloads 5412536 Value-Based Argumentation Frameworks and Judicial Moral Reasoning
Authors: Sonia Anand Knowlton
Abstract:
As the use of Artificial Intelligence is becoming increasingly integrated in virtually every area of life, the need and interest to logically formalize the law and judicial reasoning is growing tremendously. The study of argumentation frameworks (AFs) provides promise in this respect. AF’s provide a way of structuring human reasoning using a formal system of non-monotonic logic. P.M. Dung first introduced this framework and demonstrated that certain arguments must prevail and certain arguments must perish based on whether they are logically “attacked” by other arguments. Dung labelled the set of prevailing arguments as the “preferred extension” of the given argumentation framework. Trevor Bench-Capon’s Value-based Argumentation Frameworks extended Dung’s AF system by allowing arguments to derive their force from the promotion of “preferred” values. In VAF systems, the success of an attack from argument A to argument B (i.e., the triumph of argument A) requires that argument B does not promote a value that is preferred to argument A. There has been thorough discussion of the application of VAFs to the law within the computer science literature, mainly demonstrating that legal cases can be effectively mapped out using VAFs. This article analyses VAFs from a jurisprudential standpoint to provide a philosophical and theoretical analysis of what VAFs tell the legal community about the judicial reasoning, specifically distinguishing between legal and moral reasoning. It highlights the limitations of using VAFs to account for judicial moral reasoning in theory and in practice.Keywords: nonmonotonic logic, legal formalization, computer science, artificial intelligence, morality
Procedia PDF Downloads 742535 Concept for Determining the Focus of Technology Monitoring Activities
Authors: Guenther Schuh, Christina Koenig, Nico Schoen, Markus Wellensiek
Abstract:
Identification and selection of appropriate product and manufacturing technologies are key factors for competitiveness and market success of technology-based companies. Therefore many companies perform technology intelligence (TI) activities to ensure the identification of evolving technologies at the right time. Technology monitoring is one of the three base activities of TI, besides scanning and scouting. As the technological progress is accelerating, more and more technologies are being developed. Against the background of limited resources it is therefore necessary to focus TI activities. In this paper, we propose a concept for defining appropriate search fields for technology monitoring. This limitation of search space leads to more concentrated monitoring activities. The concept will be introduced and demonstrated through an anonymized case study conducted within an industry project at the Fraunhofer Institute for Production Technology. The described concept provides a customized monitoring approach, which is suitable for use in technology-oriented companies especially those that have not yet defined an explicit technology strategy. It is shown in this paper that the definition of search fields and search tasks are suitable methods to define topics of interest and thus to direct monitoring activities. Current as well as planned product, production and material technologies as well as existing skills, capabilities and resources form the basis of the described derivation of relevant search areas. To further improve the concept of technology monitoring the proposed concept should be extended during future research e.g. by the definition of relevant monitoring parameters.Keywords: monitoring radar, search field, technology intelligence, technology monitoring
Procedia PDF Downloads 4742534 Early Diagnosis of Alzheimer's Disease Using a Combination of Images Processing and Brain Signals
Authors: E. Irankhah, M. Zarif, E. Mazrooei Rad, K. Ghandehari
Abstract:
Alzheimer's prevalence is on the rise, and the disease comes with problems like cessation of treatment, high cost of treatment, and the lack of early detection methods. The pathology of this disease causes the formation of protein deposits in the brain of patients called plaque amyloid. Generally, the diagnosis of this disease is done by performing tests such as a cerebrospinal fluid, CT scan, MRI, and spinal cord fluid testing, or mental testing tests and eye tracing tests. In this paper, we tried to use the Medial Temporal Atrophy (MTA) method and the Leave One Out (LOO) cycle to extract the statistical properties of the three Fz, Pz, and Cz channels of ERP signals for early diagnosis of this disease. In the process of CT scan images, the accuracy of the results is 81% for the healthy person and 88% for the severe patient. After the process of ERP signaling, the accuracy of the results for a healthy person in the delta band in the Cz channel is 81% and in the alpha band the Pz channel is 90%. In the results obtained from the signal processing, the results of the severe patient in the delta band of the Cz channel were 89% and in the alpha band Pz channel 92%.Keywords: Alzheimer's disease, image and signal processing, LOO cycle, medial temporal atrophy
Procedia PDF Downloads 1982533 Integrating AI in Education: Enhancing Learning Processes and Personalization
Authors: Waleed Afandi
Abstract:
Artificial intelligence (AI) has rapidly transformed various sectors, including education. This paper explores the integration of AI in education, emphasizing its potential to revolutionize learning processes, enhance teaching methodologies, and personalize education. We examine the historical context of AI in education, current applications, and the potential challenges and ethical considerations associated with its implementation. By reviewing a wide range of literature, this study aims to provide a comprehensive understanding of how AI can be leveraged to improve educational outcomes and the future directions of AI-driven educational innovations. Additionally, the paper discusses the impact of AI on student engagement, teacher support, and administrative efficiency. Case studies highlighting successful AI applications in diverse educational settings are presented, showcasing the practical benefits and real-world implications. The analysis also addresses potential disparities in access to AI technologies and suggests strategies to ensure equitable implementation. Through a balanced examination of the promises and pitfalls of AI in education, this study seeks to inform educators, policymakers, and technologists about the optimal pathways for integrating AI to foster an inclusive, effective, and innovative educational environment.Keywords: artificial intelligence, education, personalized learning, teaching methodologies, educational outcomes, AI applications, student engagement, teacher support, administrative efficiency, equity in education
Procedia PDF Downloads 312532 Heat Transfer Enhancement Due to the Optimal Porosity in Plate Heat Exchangers with Sinusoidal Plates
Authors: Hossein Shokouhmand, Seyyed Mostafa Saadat
Abstract:
In this paper, the effect of thermal dispersion on the performance of plate heat exchangers (PHEs) with sinusoidal plates is investigated. In this regard, the PHE is considered as a porous medium. The important property of a porous medium is porosity that is defined as the total fluid volume divided by the total volume occupied by the solid and fluid. A 2D array of parallel sinusoidal plates with laminar periodically developed forced convection and single-phase constant property flows and conduction in a homogenous solid phase in two directions is considered. The array of flows is counter and the flows heat capacities are equal. Numerical study of conjugate heat transfer and axial conduction in the solid phase with different plate thicknesses showed that there is an optimal porosity in which the efficiency of heat transfer is up to 4% more than the time when the porosity is near one. It is shown that the optimal porosity at zero angle of inclination depends both on Reynolds number and the aspect ratio. The optimal porosity increased while either the Reynolds number or waviness of plates increased.Keywords: plate heat exchanger, optimal porosity, efficiency, aspect ratio
Procedia PDF Downloads 4052531 Region-Specific Secretory Protein, α2M, in Male Reproductive Tract of the Blue Crab And Its Dynamics during Sperm transit towards Female Spermatheca
Authors: Thanyaporn Senarai, Rapeepun Vanichviriyakit, Shinji Miyata, Chihiro Sato, Prapee Sretarugsa, Wattana Weerachatyanukul, Ken Kitajima
Abstract:
In this study, we characterized a region-specific 250 kDa protein that was secreted of MSD fluid, which is believed to play dual functions in forming a spermatophoric wall for sperm physical protection, and in sperm membrane modification as part of sperm maturation process. The partial amino acid sequence and N-terminal sequencing revealed that the MSD-specific 250 kDa protein showed a high similarity with a plasma-rich protein, α-2 macroglobulin (α2M), so termed pp-α2M. This protein was a large glycoprotein contained predominantly mannose and GlcNAc. The expression of pp-α2M mRNA was detected in spermatic duct (SD), androgenic gland (AG) and hematopoietic tissue, while the protein expression was rather specific to the apical cytoplasm of MSD epithelium. The secretory pp-α2M in MSD fluid was acquired onto the MSD sperm membrane and was also found within the matrix of the acrosome. Distally, pp-α2M was removed from spermathecal sperm membrane, while its level kept constant in the sperm AC. Together the results indicate that pp-α2M is a 250 kDa region-specific secretory protein which plays roles in sperm physical protection and also acts as maturation factor in the P. pelagicus sperm.Keywords: alpha-2 macroglobulin, blue swimming crab, sperm maturation, spermatic duct
Procedia PDF Downloads 3292530 Short Answer Grading Using Multi-Context Features
Authors: S. Sharan Sundar, Nithish B. Moudhgalya, Nidhi Bhandari, Vineeth Vijayaraghavan
Abstract:
Automatic Short Answer Grading is one of the prime applications of artificial intelligence in education. Several approaches involving the utilization of selective handcrafted features, graphical matching techniques, concept identification and mapping, complex deep frameworks, sentence embeddings, etc. have been explored over the years. However, keeping in mind the real-world application of the task, these solutions present a slight overhead in terms of computations and resources in achieving high performances. In this work, a simple and effective solution making use of elemental features based on statistical, linguistic properties, and word-based similarity measures in conjunction with tree-based classifiers and regressors is proposed. The results for classification tasks show improvements ranging from 1%-30%, while the regression task shows a stark improvement of 35%. The authors attribute these improvements to the addition of multiple similarity scores to provide ensemble of scoring criteria to the models. The authors also believe the work could reinstate that classical natural language processing techniques and simple machine learning models can be used to achieve high results for short answer grading.Keywords: artificial intelligence, intelligent systems, natural language processing, text mining
Procedia PDF Downloads 1332529 Investigation of the Effects of Visually Disabled and Typical Development Students on Their Multiple Intelligence by Applying Abacus and Right Brain Training
Authors: Sidika Di̇lşad Kaya, Ahmet Seli̇m Kaya, Ibrahi̇m Eri̇k, Havva Yaldiz, Yalçin Kaya
Abstract:
The aim of this study was to reveal the effects of right brain development on reading, comprehension, learning and concentration levels and rapid processing skills in students with low vision and students with standard development, and to explore the effects of right and left brain integration on students' academic success and the permanence of the learned knowledge. A total of 68 students with a mean age of 10.01±0.12 were included in the study, 58 of them with standard development, 9 partially visually impaired and 1 totally visually disabled student. The student with a total visual impairment could not participate in the reading speed test due to her total visual impairment. The following data were measured in the participant students before the project; Reading speed measurement in 1 minute, Reading comprehension questions, Burdon attention test, 50 questions of math quiz timed with a stopwatch. Participants were trained for 3 weeks, 5 days a week, for a total of two hours a day. In this study, right-brain developing exercises were carried out with the use of an abacus, and it was aimed to develop both mathematical and attention of students with questions prepared with numerical data taken from fairy tale activities. Among these problems, the study was supported with multiple-choice, 5W (what, where, who, why, when?), 1H (how?) questions along with true-false and fill-in-the-blank activities. By using memory cards, students' short-term memories were strengthened, photographic memory studies were conducted and their visual intelligence was supported. Auditory intelligence was supported by aiming to make calculations by using the abacus in the minds of the students with the numbers given aurally. When calculating the numbers by touching the real abacus, the development of students' tactile intelligence is enhanced. Research findings were analyzed in SPSS program, Kolmogorov Smirnov test was used for normality analysis. Since the variables did not show normal distribution, Wilcoxon test, one of the non-parametric tests, was used to compare the dependent groups. Statistical significance level was accepted as 0.05. The reading speed of the participants was 83.54±33.03 in the pre-test and 116.25±38.49 in the post-test. Narration pre-test 69.71±25.04 post-test 97.06±6.70; BURDON pretest 84.46±14.35 posttest 95.75±5.67; rapid math processing skills pretest 90.65±10.93, posttest 98.18±2.63 (P<0.05). It was determined that the pre-test and post-test averages of students with typical development and students with low vision were also significant for all four values (p<0.05). As a result of the data obtained from the participants, it is seen that the study was effective in terms of measurement parameters, and the findings were statistically significant. Therefore, it is recommended to use the method widely.Keywords: Abacus, reading speed, multiple intelligences, right brain training, visually impaired
Procedia PDF Downloads 1822528 Exploring the Prebiotic Potential of Glucosamine
Authors: Shilpi Malik, Ramneek Kaur, Archita Gupta, Deepshikha Yadav, Ashwani Mathur, Manisha Singh
Abstract:
Glucosamine (GS) is the most abundant naturally occurring amino monosaccharide and is normally produced in human body via cellular glucose metabolism. It is regarded as the building block of cartilage matrix and is also an essential component of cartilage matrix repair mechanism. Besides that, it can also be explored for its prebiotic potential as many bacterial species are known to utilize the amino sugar by acquiring them to form peptidoglycans and lipopolysaccharides in the bacterial cell wall. Glucosamine can therefore be considered for its fermentation by bacterial species present in the gut. Current study is focused on exploring the potential of glucosamine as prebiotic. The studies were done to optimize considerable concentration of GS to reach GI tract and being fermented by the complex gut microbiota and food grade GS was added to various Simulated Fluids of Gastro-Intestinal Tract (GIT) such as Simulated Saliva, Gastric Fluid (Fast and Fed State), Colonic fluid, etc. to detect its degradation. Since it was showing increase in microbial growth (CFU) with time, GS was Further, encapsulated to increase its residential time in the gut, which exhibited improved resistance to the simulated Gut conditions. Moreover, prepared microspehres were optimized and characterized for their encapsulation efficiency and toxicity. To further substantiate the prebiotic activity of Glucosamine, studies were also performed to determine the effect of Glucosamine on the known probiotic bacterial species, i.e. Lactobacillus delbrueckii (MTCC 911) and Bifidobacteriumbifidum (MTCC 5398). Culture conditions for glucosamine will be added in MRS media in anaerobic tube at 0.20%, 0.40%, 0.60%, 0.80%, and 1.0%, respectively. MRS media without GS was included in this experiment as the control. All samples were autoclaved at 118° C for 15 min. Active culture was added at 5% (v/v) to each anaerobic tube after cooling to room temperature and incubated at 37° C then determined biomass and pH and viable count at incubation 18h. The experiment was completed in triplicate and the results were presented as Mean ± SE (Standard error).The experimental results are conclusive and suggest Glucosamine to hold prebiotic properties.Keywords: gastro intestinal tract, microspheres, peptidoglycans, simulated fluid
Procedia PDF Downloads 3322527 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning
Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag
Abstract:
The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling
Procedia PDF Downloads 912526 Non-Centrifugal Cane Sugar Production: Heat Transfer Study to Optimize the Use of Energy
Authors: Fabian Velasquez, John Espitia, Henry Hernadez, Sebastian Escobar, Jader Rodriguez
Abstract:
Non-centrifuged cane sugar (NCS) is a concentrated product obtained through the evaporation of water contain from sugarcane juice inopen heat exchangers (OE). The heat supplied to the evaporation stages is obtained from the cane bagasse through the thermochemical process of combustion, where the thermal energy released is transferred to OE by the flue gas. Therefore, the optimization of energy usage becomes essential for the proper design of the production process. For optimize the energy use, it is necessary modeling and simulation of heat transfer between the combustion gases and the juice and to understand the major mechanisms involved in the heat transfer. The main objective of this work was simulated heat transfer phenomena between the flue gas and open heat exchangers using Computational Fluid Dynamics model (CFD). The simulation results were compared to field measured data. Numerical results about temperature profile along the flue gas pipeline at the measurement points are in good accordance with field measurements. Thus, this study could be of special interest in design NCS production process and the optimization of the use of energy.Keywords: mathematical modeling, design variables, computational fluid dynamics, overall thermal efficiency
Procedia PDF Downloads 1252525 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning
Authors: Xingyu Gao, Qiang Wu
Abstract:
Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.Keywords: patent influence, interpretable machine learning, predictive models, SHAP
Procedia PDF Downloads 502524 A Tool to Measure Efficiency and Trust Towards eXplainable Artificial Intelligence in Conflict Detection Tasks
Authors: Raphael Tuor, Denis Lalanne
Abstract:
The ATM research community is missing suitable tools to design, test, and validate new UI prototypes. Important stakes underline the implementation of both DSS and XAI methods into current systems. ML-based DSS are gaining in relevance as ATFM becomes increasingly complex. However, these systems only prove useful if a human can understand them, and thus new XAI methods are needed. The human-machine dyad should work as a team and should understand each other. We present xSky, a configurable benchmark tool that allows us to compare different versions of an ATC interface in conflict detection tasks. Our main contributions to the ATC research community are (1) a conflict detection task simulator (xSky) that allows to test the applicability of visual prototypes on scenarios of varying difficulty and outputting relevant operational metrics (2) a theoretical approach to the explanations of AI-driven trajectory predictions. xSky addresses several issues that were identified within available research tools. Researchers can configure the dimensions affecting scenario difficulty with a simple CSV file. Both the content and appearance of the XAI elements can be customized in a few steps. As a proof-of-concept, we implemented an XAI prototype inspired by the maritime field.Keywords: air traffic control, air traffic simulation, conflict detection, explainable artificial intelligence, explainability, human-automation collaboration, human factors, information visualization, interpretability, trajectory prediction
Procedia PDF Downloads 1602523 Detection of Hepatitis B by the Use of Artifical Intelegence
Authors: Shizra Waris, Bilal Shoaib, Munib Ahmad
Abstract:
Background; The using of clinical decision support systems (CDSSs) may recover unceasing disease organization, which requires regular visits to multiple health professionals, treatment monitoring, disease control, and patient behavior modification. The objective of this survey is to determine if these CDSSs improve the processes of unceasing care including diagnosis, treatment, and monitoring of diseases. Though artificial intelligence is not a new idea it has been widely documented as a new technology in computer science. Numerous areas such as education business, medical and developed have made use of artificial intelligence Methods: The survey covers articles extracted from relevant databases. It uses search terms related to information technology and viral hepatitis which are published between 2000 and 2016. Results: Overall, 80% of studies asserted the profit provided by information technology (IT); 75% of learning asserted the benefits concerned with medical domain;25% of studies do not clearly define the added benefits due IT. The CDSS current state requires many improvements to hold up the management of liver diseases such as HCV, liver fibrosis, and cirrhosis. Conclusion: We concluded that the planned model gives earlier and more correct calculation of hepatitis B and it works as promising tool for calculating of custom hepatitis B from the clinical laboratory data.Keywords: detection, hapataties, observation, disesese
Procedia PDF Downloads 156