Search results for: faster consolidation of trauma memory
1580 A Fast Version of the Generalized Multi-Directional Radon Transform
Authors: Ines Elouedi, Atef Hammouda
Abstract:
This paper presents a new fast version of the generalized Multi-Directional Radon Transform method. The new method uses the inverse Fast Fourier Transform to lead to a faster Generalized Radon projections. We prove in this paper that the fast algorithm leads to almost the same results of the eldest one but with a considerable lower time computation cost. The projection end result of the fast method is a parameterized Radon space where a high valued pixel allows the detection of a curve from the original image. The proposed fast inversion algorithm leads to an exact reconstruction of the initial image from the Radon space. We show examples of the impact of this algorithm on the pattern recognition domain.Keywords: fast generalized multi-directional Radon transform, curve, exact reconstruction, pattern recognition
Procedia PDF Downloads 2761579 Research on the Optimization of Satellite Mission Scheduling
Authors: Pin-Ling Yin, Dung-Ying Lin
Abstract:
Satellites play an important role in our daily lives, from monitoring the Earth's environment and providing real-time disaster imagery to predicting extreme weather events. As technology advances and demands increase, the tasks undertaken by satellites have become increasingly complex, with more stringent resource management requirements. A common challenge in satellite mission scheduling is the limited availability of resources, including onboard memory, ground station accessibility, and satellite power. In this context, efficiently scheduling and managing the increasingly complex satellite missions under constrained resources has become a critical issue that needs to be addressed. The core of Satellite Onboard Activity Planning (SOAP) lies in optimizing the scheduling of the received tasks, arranging them on a timeline to form an executable onboard mission plan. This study aims to develop an optimization model that considers the various constraints involved in satellite mission scheduling, such as the non-overlapping execution periods for certain types of tasks, the requirement that tasks must fall within the contact range of specified types of ground stations during their execution, onboard memory capacity limits, and the collaborative constraints between different types of tasks. Specifically, this research constructs a mixed-integer programming mathematical model and solves it with a commercial optimization package. Simultaneously, as the problem size increases, the problem becomes more difficult to solve. Therefore, in this study, a heuristic algorithm has been developed to address the challenges of using commercial optimization package as the scale increases. The goal is to effectively plan satellite missions, maximizing the total number of executable tasks while considering task priorities and ensuring that tasks can be completed as early as possible without violating feasibility constraints. To verify the feasibility and effectiveness of the algorithm, test instances of various sizes were generated, and the results were validated through feedback from on-site users and compared against solutions obtained from a commercial optimization package. Numerical results show that the algorithm performs well under various scenarios, consistently meeting user requirements. The satellite mission scheduling algorithm proposed in this study can be flexibly extended to different types of satellite mission demands, achieving optimal resource allocation and enhancing the efficiency and effectiveness of satellite mission execution.Keywords: mixed-integer programming, meta-heuristics, optimization, resource management, satellite mission scheduling
Procedia PDF Downloads 241578 A Systematic Review of the Transportability of Cognitive Therapy for the Treatment of PTSD among South African Survivors of Rape
Authors: Anita Padmanabhanunni
Abstract:
Trauma-focused cognitive-treatment (CT) models are among the most efficacious in treating PTSD arising from exposure to rape. However, these treatment approaches are severely under-utilised by South African mental health care practitioners owing to concerns around whether treatments developed in Western clinical contexts are transportable and applicable in routine clinical settings. One way of promoting the use of these efficacious treatments in local contexts is by identifying and appraising the evidence from local outcome studies. This paper presents the findings of a systematic review of research evidence from local outcome studies on the effectiveness of CT in the treatment of rape-related PTSD in South Africa. The study found that whilst limited research has been published in South Africa on the outcome of CT in the treatment of rape survivors, the studies that are available afford insights into the effectiveness of CT.Keywords: cognitive treatment, PTSD, South Africa, transportability
Procedia PDF Downloads 3381577 Aesthetics and Semiotics in Theatre Performance
Authors: Păcurar Diana Istina
Abstract:
Structured in three chapters, the article attempts an X-ray of the theatrical aesthetics, correctly understood through the emotions generated in the intimate structure of the spectator that precedes the triggering of the viewer’s perception and not through the superposition, unfortunately common, of the notion of aesthetics with the style in which a theater show is built. The first chapter contains a brief history of the appearance of the word aesthetic, the formulation of definitions for this new term, as well as its connections with the notions of semiotics, in particular with the perception of the message transmitted. Starting with Aristotle and Plato, and reaching Magritte, their interventions should not be interpreted in the sense that the two scientific concepts can merge into one discipline. The perception that is the object of everyone’s analysis, the understanding of meaning, the decoding of the messages sent, and the triggering of feelings that culminate in pleasure, shaping the aesthetic vision, are some elements that keep semiotics and aesthetics distinct, even though they share many methods of analysis. The compositional processes of aesthetic representation and symbolic formation are analyzed in the second part of the paper from perspectives that include or do not include historical, cultural, social, and political processes. Aesthetics and the organization of its symbolic process are treated, taking into account expressive activity. The last part of the article explores the notion of aesthetics in applied theater, more specifically in the theater show. Taking the postmodern approach that aesthetics applies to the creation of an artifact and the reception of that artifact, the intervention of these elements in the theatrical system must be emphasized –that is, the analysis of the problems arising in the stages of the creation, presentation, and reception, by the public, of the theater performance. The aesthetic process is triggered involuntarily, simultaneously, or before the moment when people perceive the meaning of the messages transmitted by the work of art. The finding of this fact makes the mental process of aesthetics similar or related to that of semiotics. No matter how perceived individually, beauty, the mechanism of production can be reduced to two. The first step presents similarities to Peirce’s model, but the process between signified and signified additionally stimulates the related memory of the evaluation of beauty, adding to the meanings related to the signification itself. Then, the second step, a process of comparison, is followed, in which one examines whether the object being looked at matches the accumulated memory of beauty. Therefore, even though aesthetics is derived from the conceptual part, the judgment of beauty and, more than that, moral judgment come to be so important to the social activities of human beings that it evolves as a visible process independent of other conceptual contents.Keywords: aesthetics, semiotics, symbolic composition, subjective joints, signifying, signified
Procedia PDF Downloads 1091576 Numerical Solution Speedup of the Laplace Equation Using FPGA Hardware
Authors: Abbas Ebrahimi, Mohammad Zandsalimy
Abstract:
The main purpose of this study is to investigate the feasibility of using FPGA (Field Programmable Gate Arrays) chips as alternatives for the conventional CPUs to accelerate the numerical solution of the Laplace equation. FPGA is an integrated circuit that contains an array of logic blocks, and its architecture can be reprogrammed and reconfigured after manufacturing. Complex circuits for various applications can be designed and implemented using FPGA hardware. The reconfigurable hardware used in this paper is an SoC (System on a Chip) FPGA type that integrates both microprocessor and FPGA architectures into a single device. In the present study the Laplace equation is implemented and solved numerically on both reconfigurable hardware and CPU. The precision of results and speedups of the calculations are compared together. The computational process on FPGA, is up to 20 times faster than a conventional CPU, with the same data precision. An analytical solution is used to validate the results.Keywords: accelerating numerical solutions, CFD, FPGA, hardware definition language, numerical solutions, reconfigurable hardware
Procedia PDF Downloads 3791575 Thermally Stable Nanocrystalline Aluminum Alloys Processed by Mechanical Alloying and High Frequency Induction Heat Sintering
Authors: Hany R. Ammar, Khalil A. Khalil, El-Sayed M. Sherif
Abstract:
The as-received metal powders were used to synthesis bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys using mechanical alloying and high frequency induction heat sintering (HFIHS). The current study investigated the influence of milling time and ball-to-powder (BPR) weight ratio on the microstructural constituents and mechanical properties of the processed materials. Powder consolidation was carried out using a high frequency induction heat sintering where the processed metal powders were sintered into a dense and strong bulk material. The sintering conditions applied in this process were as follow: heating rate of 350°C/min; sintering time of 4 minutes; sintering temperature of 400°C; applied pressure of 750 Kgf/cm2 (100 MPa); cooling rate of 400°C/min and the process was carried out under vacuum of 10-3 Torr. The powders and the bulk samples were characterized using XRD and FEGSEM techniques. The mechanical properties were evaluated at various temperatures of 25°C, 100°C, 200°C, 300°C and 400°C to study the thermal stability of the processed alloys. The bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys displayed extremely high hardness values even at elevated temperatures. The Al-10%Cu-5%Ti alloy displayed the highest hardness values at room and elevated temperatures which are related to the presence of Ti-containing phases such as Al3Ti and AlCu2Ti, these phases are thermally stable and retain the high hardness values at elevated temperatures up to 400ºC.Keywords: nanocrystalline aluminum alloys, mechanical alloying, hardness, elevated temperatures
Procedia PDF Downloads 4531574 Precipitation and Age Hardening in Al-Mg-Si-(Cu) Alloys for Automotive Body Sheet
Authors: Tahar Abid, Haoues Ghouss, Abdelhamid Boubertakh
Abstract:
This present work is focused on the hardening precipitation in two AlMgSi(Cu) automotive body sheets. The effect of pre-aging, aging treatment and 0.10 wt % copper addition on the hardening response was investigated using scanning calorimetry (DSC), transmission electron microscopy (TEM), and Vickers microhardness measurements (Hv). The results reveal the apparition of α-AlFeSi, α-AlFe(Mn)Si type precipitates frequently present and witch remain stable at high temperature in Al-Mg-Si alloys. Indeed, the hardening response in both sheets is certainly due to the predominance of very fine typical phases β' and β'' as rods and needles developed during aging with and without pre-aging. The effect of pre ageing just after homogenization and quenching is to correct the undesirable effect of aging at ambient temperature by making faster alloy hardening during artificial aging.The addition of 0.10 wt % copper has allowed to refine and to enhance the precipitation hardening after quenching.Keywords: AlMgSi alloys, precipitation, hardening, activation energy
Procedia PDF Downloads 871573 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP
Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis
Abstract:
The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.Keywords: chatbot, depression diagnosis, LSTM model, natural language process
Procedia PDF Downloads 681572 Exploring Deep Neural Network Compression: An Overview
Authors: Ghorab Sara, Meziani Lila, Rubin Harvey Stuart
Abstract:
The rapid growth of deep learning has led to intricate and resource-intensive deep neural networks widely used in computer vision tasks. However, their complexity results in high computational demands and memory usage, hindering real-time application. To address this, research focuses on model compression techniques. The paper provides an overview of recent advancements in compressing neural networks and categorizes the various methods into four main approaches: network pruning, quantization, network decomposition, and knowledge distillation. This paper aims to provide a comprehensive outline of both the advantages and limitations of each method.Keywords: model compression, deep neural network, pruning, knowledge distillation, quantization, low-rank decomposition
Procedia PDF Downloads 421571 Endeavor in Management Process by Executive Dashboards: The Case of the Financial Directorship in Brazilian Navy
Authors: R. S. Quintal, J. L. Tesch Santos, M. D. Davis, E. C. de Santana, M. de F. Bandeira dos Santos
Abstract:
The objective is to identify the contributions from the introduction of the computerized system deal within the Accounting Department of Brazilian Navy Financial Directorship and its possible effects on the budgetary and financial harvest of Brazilian Navy. The relevance lies in the fact that the management process is responsible for the continuous improvement of organizational performance through higher levels of quality in their activities. Improvements in organizational processes have direct effects on crops cost, quality, reliability, flexibility and speed. The method of study of this research is the case study. The choice of case study attended, among other demands, a need for greater flexibility to study processes related to a computerized system. The sources of evidence were used literature, documentary and direct observation. Direct observation was made by monitoring the implementation of the computerized system in the Division of Management Analysis. The main findings of the study point to the fact that the computerized system may contribute significantly to the standardization of information. There was improvement of internal processes in the division of management analysis, made possible the consolidation of a standard management and performance analysis that contribute to global homogeneity in the treatment of information essential to the process of decision making. This study has limitations related to the fact the search result be subject exclusively to the case studied, and it is impossible to generalize to other organs of government.Keywords: process management, management control, business intelligence, Brazilian Navy
Procedia PDF Downloads 2361570 CNC Milling-Drilling Machine Cutting Tool Holder
Authors: Hasan Al Dabbas
Abstract:
In this paper, it is addressed that the mechanical machinery captures a major share of innovation in drilling and milling chucks technology. Users demand higher speeds in milling because they are cutting more aluminum and are relying on higher speeds to eliminate secondary finishing operations. To meet that demand, milling-machine builders have enhanced their machine’s rigidity. Moreover, faster cutting has caught up with boring mills. Cooling these machine’s internal components is a challenge at high speeds. Another trend predicted that it is more use of controlled axes to let the machines do many more operations on 5 sides without having to move or re-fix the work. Advances of technology in mechanical engineering have helped to make high-speed machining equipment. To accompany these changes in milling and drilling machines chucks, the demand of easiest software is increased. An open architecture controller is being sought that would allow flexibility and information exchange.Keywords: drilling, milling, chucks, cutting edges, tools, machines
Procedia PDF Downloads 5701569 Efficient Pre-Processing of Single-Cell Assay for Transposase Accessible Chromatin with High-Throughput Sequencing Data
Authors: Fan Gao, Lior Pachter
Abstract:
The primary tool currently used to pre-process 10X Chromium single-cell ATAC-seq data is Cell Ranger, which can take very long to run on standard datasets. To facilitate rapid pre-processing that enables reproducible workflows, we present a suite of tools called scATAK for pre-processing single-cell ATAC-seq data that is 15 to 18 times faster than Cell Ranger on mouse and human samples. Our tool can also calculate chromatin interaction potential matrices, and generate open chromatin signal and interaction traces for cell groups. We use scATAK tool to explore the chromatin regulatory landscape of a healthy adult human brain and unveil cell-type specific features, and show that it provides a convenient and computational efficient approach for pre-processing single-cell ATAC-seq data.Keywords: single-cell, ATAC-seq, bioinformatics, open chromatin landscape, chromatin interactome
Procedia PDF Downloads 1551568 The Traffic Congestion in Biskra in Algeria
Authors: Selatnia Khaled Grine Ikram
Abstract:
The city of Biskra, like other Algerian cities, knows of urban traffic congestion. The concentration of investments especially in the secondary and tertiary sectors in the Wilaya has attracted a large rural population. The latter, combined with the high rate of natural growing, favored the imbalance of the spatial frame of wilayal system and consequently the traffic congestion of the primate city (Biskra). This urban disease is explained by a two-tier development. The capital of Wilaya growing faster than its others centers body and takes measurements of proportion to the whole. The consequences can only be negative. The pressure on the roads, the growth of the fleet, overloading of equipment and activities have become the characteristics of the city of Biskra, which can no longer meet the needs of its inhabitants. This research attempts to show the relationship between urban congestion of the primate city and the imbalance of the spatial structure of the micro-regional urban system.Keywords: traffic congestion, spatial structure, pressure on the roads, equipment and activities
Procedia PDF Downloads 6751567 Design Patterns for Emergency Management Processes
Authors: Tomáš Ludík, Jiří Barta, Josef Navrátil
Abstract:
Natural or human made disasters have a significant negative impact on the environment. At the same time there is an extensive effort to support management and decision making in emergency situations by information technologies. Therefore the purpose of the paper is to propose a design patterns applicable in emergency management, enabling better analysis and design of emergency management processes and therefore easier development and deployment of information systems in the field of emergency management. It will be achieved by detailed analysis of existing emergency management legislation, contingency plans, and information systems. The result is a set of design patterns focused at emergency management processes that enable easier design of emergency plans or development of new information system. These results will have a major impact on the development of new information systems as well as to more effective and faster solving of emergencies.Keywords: analysis and design, Business Process Modelling Notation, contingency plans, design patterns, emergency management
Procedia PDF Downloads 4831566 Designing an Intelligent Voltage Instability System in Power Distribution Systems in the Philippines Using IEEE 14 Bus Test System
Authors: Pocholo Rodriguez, Anne Bernadine Ocampo, Ian Benedict Chan, Janric Micah Gray
Abstract:
The state of an electric power system may be classified as either stable or unstable. The borderline of stability is at any condition for which a slight change in an unfavourable direction of any pertinent quantity will cause instability. Voltage instability in power distribution systems could lead to voltage collapse and thus power blackouts. The researchers will present an intelligent system using back propagation algorithm that can detect voltage instability and output voltage of a power distribution and classify it as stable or unstable. The researchers’ work is the use of parameters involved in voltage instability as input parameters to the neural network for training and testing purposes that can provide faster detection and monitoring of the power distribution system.Keywords: back-propagation algorithm, load instability, neural network, power distribution system
Procedia PDF Downloads 4321565 The Impact of Neuroscience Knowledge on the Field of Education
Authors: Paula Andrea Segura Delgado, Martha Helena Ramírez-Bahena
Abstract:
Research on how the brain learns has a transcendental application in the educational context. It is crucial for teacher training to understand the nature of brain changes and their direct influence on learning processes. This communication is based on a literature review focused on neuroscience, neuroeducation, and the impact of digital technology on the human brain. Information was gathered from both English and Spanish language sources, using online journals, books and reports. The general objective was to analyze the role of neuroscience knowledge in enriching our understanding of the learning process. In fact, the authors have focused on the impact of digital technology on the human brain as well as its influence in the field of education..Neuroscience knowledge can contribute significantly to improving the training of educators and therefore educational practices. Education as an instrument of change and school as an agent of socialization, it is necessary to understand what it aims to transform: the human brain. Understanding the functioning of the human brain has important repercussions on education: this elucidates cognitive skills, psychological processes and elements that influence the learning process (memory, executive functions, emotions and the circadian cycle); helps identify psychological and neurological deficits that can impede learning processes (dyslexia, autism, hyperactivity); It allows creating environments that promote brain development and contribute to the advancement of brain capabilities in alignment with the stages of neurobiological development. The digital age presents diverse opportunities to every social environment. The frequent use of digital technology (DT) has had a significant and abrupt impact on both the cognitive abilities and physico-chemical properties of the brain, significantly influencing educational processes. Hence, educational community, with the insights from advances in neuroscience, aspire to identify the positive and negative effects of digital technology on the human brain. This knowledge helps ensure the alignment of teacher training and practices with these findings. The knowledge of neuroscience enables teachers to develop teaching methods that are aligned with the way the brain works. For example, neuroscience research has shown that digital technology is having a significant impact on the human brain (addition, anxiety, high levels of dopamine, circadian cycle disorder, decrease in attention, memory, concentration, problems with their social relationships). Therefore, it is important to understand the nature of these changes, their impact on the learning process, and how educators should effectively adapt their approaches based on these brain's changes.Keywords: digital technology, learn process, neuroscience knowledge, neuroeducation, training proffesors
Procedia PDF Downloads 591564 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series
Authors: Mohammad H. Fattahi
Abstract:
Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. The noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.Keywords: chaotic behavior, wavelet, noise reduction, river flow
Procedia PDF Downloads 4661563 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments
Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz
Abstract:
Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.Keywords: LSTMs, streamflow, hyperparameters, hydrology
Procedia PDF Downloads 691562 An Approach for Reducing Morphological Operator Dataset and Recognize Optical Character Based on Significant Features
Authors: Ashis Pradhan, Mohan P. Pradhan
Abstract:
Pattern Matching is useful for recognizing character in a digital image. OCR is one such technique which reads character from a digital image and recognizes them. Line segmentation is initially used for identifying character in an image and later refined by morphological operations like binarization, erosion, thinning, etc. The work discusses a recognition technique that defines a set of morphological operators based on its orientation in a character. These operators are further categorized into groups having similar shape but different orientation for efficient utilization of memory. Finally the characters are recognized in accordance with the occurrence of frequency in hierarchy of significant pattern of those morphological operators and by comparing them with the existing database of each character.Keywords: binary image, morphological patterns, frequency count, priority, reduction data set and recognition
Procedia PDF Downloads 4111561 On Dialogue Systems Based on Deep Learning
Authors: Yifan Fan, Xudong Luo, Pingping Lin
Abstract:
Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.Keywords: dialogue management, response generation, deep learning, evaluation
Procedia PDF Downloads 1651560 A Conjugate Gradient Method for Large Scale Unconstrained Optimization
Authors: Mohammed Belloufi, Rachid Benzine, Badreddine Sellami
Abstract:
Conjugate gradient methods is useful for solving large scale optimization problems in scientific and engineering computation, characterized by the simplicity of their iteration and their low memory requirements. It is well known that the search direction plays a main role in the line search method. In this paper, we propose a search direction with the Wolfe line search technique for solving unconstrained optimization problems. Under the above line searches and some assumptions, the global convergence properties of the given methods are discussed. Numerical results and comparisons with other CG methods are given.Keywords: unconstrained optimization, conjugate gradient method, strong Wolfe line search, global convergence
Procedia PDF Downloads 4191559 Modeling and Analysis of a Cycling Prosthetic
Authors: John Tolentino, Yong Seok Park
Abstract:
There are currently many people living with limb loss in the USA. The main causes for amputation can range from vascular disease, to trauma, or cancer. This number is expected increase over the next decade. Many patients have a single prosthetic for the first year but end up getting a second one to accommodate their changing physique. Afterwards, the prosthesis gets replaced every three to five years depending on how often it is used. This could cost the patient up to $500,000 throughout their lifetime. Complications do not end there, however. Due to the absence of nerves, it becomes more difficult to traverse terrain with a prosthetic. Moving on an incline or decline becomes difficult, thus curbs and stairs can be a challenge. Certain physical activities, such as cycling, could be even more strenuous. It will need to be relearned to accommodate for the change in weight, center of gravity, and transfer of energy from the leg to the pedal. The purpose of this research project is to develop a new, alternate below-knee cycling prosthetic using Dieter & Schmidt’s design process approach. It will be subjected to fatigue analysis under dynamic loading to observe the limitations as well as the strengths and weaknesses of the prosthetic. Benchmark comparisons will be made between existing prosthetics and the proposed one, examining the benefits and disadvantages. The resulting prosthetic will be 3D printed using acrylonitrile butadiene styrene (ABS) or polycarbonate (PC) plastic.Keywords: 3D Printing, Cycling, Prosthetic design, Synthetic design.
Procedia PDF Downloads 1401558 Learning Based on Computer Science Unplugged in Computer Science Education: Design, Development, and Assessment
Authors: Eiko Takaoka, Yoshiyuki Fukushima, Koichiro Hirose, Tadashi Hasegawa
Abstract:
Although all high school students in Japan are required to learn informatics, many of them do not learn this topic sufficiently. In response to this situation, we propose a support package for high school informatics classes. To examine what students learned and if they sufficiently understood the context of the lessons, a questionnaire survey was distributed to 186 students. We analyzed the results of the questionnaire and determined the weakest units, which were “basic computer configuration” and “memory and secondary storage”. We then developed a package for teaching these units. We propose that our package be applied in high school classrooms.Keywords: computer science unplugged, computer science outreach, high school curriculum, experimental evaluation
Procedia PDF Downloads 3861557 Feasibility Study of Wireless Communication for the Control and Monitoring of Rotating Electrical Machine
Authors: S. Ben Brahim, T. H. Vuong, J. David, R. Bouallegue, M. Pietrzak-David
Abstract:
Electrical machine monitoring is important to protect motor from unexpected problems. Today, using wireless communication for electrical machines is interesting for both real time monitoring and diagnostic purposes. In this paper, we propose a system based on wireless communication IEEE 802.11 to control electrical machine. IEEE 802.11 standard is recommended for this type of applications because it provides a faster connection, better range from the base station, and better security. Therefore, our contribution is to study a new technique to control and monitor the rotating electrical machines (motors, generators) using wireless communication. The reliability of radio channel inside rotating electrical machine is also discussed. Then, the communication protocol, software and hardware design used for the proposed system are presented in detail and the experimental results of our system are illustrated.Keywords: control, DFIM machine, electromagnetic field, EMC, IEEE 802.11, monitoring, rotating electrical machines, wireless communication
Procedia PDF Downloads 6931556 Intelligent Grading System of Apple Using Neural Network Arbitration
Authors: Ebenezer Obaloluwa Olaniyi
Abstract:
In this paper, an intelligent system has been designed to grade apple based on either its defective or healthy for production in food processing. This paper is segmented into two different phase. In the first phase, the image processing techniques were employed to extract the necessary features required in the apple. These techniques include grayscale conversion, segmentation where a threshold value is chosen to separate the foreground of the images from the background. Then edge detection was also employed to bring out the features in the images. These extracted features were then fed into the neural network in the second phase of the paper. The second phase is a classification phase where neural network employed to classify the defective apple from the healthy apple. In this phase, the network was trained with back propagation and tested with feed forward network. The recognition rate obtained from our system shows that our system is more accurate and faster as compared with previous work.Keywords: image processing, neural network, apple, intelligent system
Procedia PDF Downloads 3961555 High-Voltage Resonant Converter with Extreme Load Variation: Design Criteria and Applications
Authors: Jose A. Pomilio, Olavo Bet, Mateus P. Vieira
Abstract:
The power converter that feeds high-frequency, high-voltage transformers must be carefully designed due to parasitic components, mainly the secondary winding capacitance and the leakage inductance, that introduces resonances in relatively low-frequency range, next to the switching frequency. This paper considers applications in which the load (resistive) has an unpredictable behavior, changing from open to short-circuit condition faster than the output voltage control loop could react. In this context, to avoid over voltage and over current situations, that could damage the converter, the transformer or the load, it is necessary to find an operation point that assure the desired output voltage in spite of the load condition. This can done adjusting the frequency response of the transformer adding an external inductance, together with selecting the switching frequency to get stable output voltage independently of the load.Keywords: high-voltage transformer, resonant converter, soft-commutation, external inductance
Procedia PDF Downloads 4761554 Governance of Inter-Organizational Research Cooperation
Authors: Guenther Schuh, Sebastian Woelk
Abstract:
Companies face increasing challenges in research due to higher costs and risks. The intensifying technology complexity and interdisciplinarity require unique know-how. Therefore, companies need to decide whether research shall be conducted internally or externally with partners. On the other hand, research institutes meet increasing efforts to achieve good financing and to maintain high research reputation. Therefore, relevant research topics need to be identified and specialization of competency is necessary. However, additional competences for solving interdisciplinary research projects are also often required. Secured financing can be achieved by bonding industry partners as well as public fundings. The realization of faster and better research drives companies and research institutes to cooperate in organized research networks, which are managed by an administrative organization. For an effective and efficient cooperation, necessary processes, roles, tools and a set of rules need to be determined. The goal of this paper is to show the state-of-art research and to propose a governance framework for organized research networks.Keywords: interorganizational cooperation, design of network governance, research network
Procedia PDF Downloads 3671553 Rapid Sexual and Reproductive Health Pathways for Women Accessing Drug and Alcohol Treatment
Authors: Molly Parker
Abstract:
Unintended pregnancy rates in Australia are amongst the highest in the developed world. Women with Substance Use Disorder often have riskier sexual behavior with nil contraceptive use and face disproportionately higher unintended pregnancies and Sexually Transmitted Infections, alongside Substance Use in Pregnancy (SUP) climbing at an alarming rate. In an inner-city Drug and Alcohol (D&A) service, significant barriers to sexual and reproductive health services have been identified, aligning with research. Rapid pathways were created for women seeking D&A treatment to be referred to Sexual and Reproductive Health services for the administration of Long-acting reversible contraception (LARC) and sexual health screening. For clients attending a D&A service, this is an opportunistic time to offer sexual and reproductive health services. Collaboration and multidisciplinary team input between D&A and sexual health and reproductive services are paramount, with rapid referral pathways being identified as the main strategy to improve access to sexual and reproductive health support for this population. With this evidence, a rapid referral pathway was created for women using the D&A service to access LARC, particularly in view of fertility often returning once stable on D&A treatment. A closed-ended survey was used for D&A staff to identify gaps in reproductive health knowledge and views of referral accessibility. Results demonstrated a lack of knowledge of contraception and appropriate referral processes. A closed-ended survey for clients was created to establish the need and access to services and to quantify data. A follow-up data collection will be reviewed to access uptake and satisfaction of the intervention from clients. Sexual health screening access was also identified as a deficit, particularly concerning due to the higher rates of STIs in this cohort. A rapid referral pathway will be undergoing implementation, reducing risks of untreated STIS both pre and post-conception. Similarly, pre and post-intervention structured surveys will be used to identify client satisfaction from the pathway. Although currently in progress, the research and pathway aim to be completed by December 2023. This research and implementation of sexual and reproductive health pathways from the D&A service have significant health and well-being benefits to clients and the wider community, including possible fetal/infancy outcomes. Women now have rapid access to sexual and reproductive health services, with the aim of reducing unplanned pregnancies, poor outcomes associated with SUP, client/staff trauma from termination of pregnancy, and client/staff trauma following the assumption of care of the child due to substance use, the financial cost for out of home care as required, the poor outcomes of untreated STIs to the fetus in pregnancy and the spread of STIs in the wider community. As evidence suggests, the implementation of a streamlined referral process is required between D&A and sexual and reproductive health services and has positive feedback from both clinicians and clients in improving care.Keywords: substance use in pregnancy, drug and alcohol, substance use disorder, sexual health, reproductive health, contraception, long-acting reversible contraception, neonatal abstinence syndrome, FASD, sexually transmitted infections, sexually transmitted infections pregnancy
Procedia PDF Downloads 631552 Particle Concentration Distribution under Idling Conditions in a Residential Underground Garage
Authors: Yu Zhao, Shinsuke Kato, Jianing Zhao
Abstract:
Particles exhausted from cars have an adverse impacts on human health. The study developed a three-dimensional particle dispersion numerical model including particle coagulation to simulate the particle concentration distribution under idling conditions in a residential underground garage. The simulation results demonstrate that particle disperses much faster in the vertical direction than that in horizontal direction. The enhancement of particle dispersion in the vertical direction due to the increase of cars with engine running is much stronger than that in the car exhaust direction. Particle dispersion from each pair of adjacent cars has little influence on each other in the study. Average particle concentration after 120 seconds exhaust is 1.8-4.5 times higher than the initial total particles at ambient environment. Particle pollution in the residential underground garage is severe.Keywords: dispersion, idling conditions, particle concentration, residential underground garage
Procedia PDF Downloads 5481551 11-Round Impossible Differential Attack on Midori64
Authors: Zhan Chen, Wenquan Bi
Abstract:
This paper focuses on examining the strength of Midori against impossible differential attack. The Midori family of light weight block cipher orienting to energy-efficiency is proposed in ASIACRYPT2015. Using a 6-round property, the authors implement an 11-round impossible differential attack on Midori64 by extending two rounds on the top and three rounds on the bottom. There is enough key space to consider pre-whitening keys in this attack. An impossible differential path that minimises the key bits involved is used to reduce computational complexity. Several additional observations such as partial abort technique are used to further reduce data and time complexities. This attack has data complexity of 2 ⁶⁹·² chosen plaintexts, requires 2 ¹⁴·⁵⁸ blocks of memory and 2 ⁹⁴·⁷ 11- round Midori64 encryptions.Keywords: cryptanalysis, impossible differential, light weight block cipher, Midori
Procedia PDF Downloads 274