Search results for: comulative distribution function
8358 DC Bus Voltage Ripple Control of Photo Voltaic Inverter in Low Voltage Ride-Trough Operation
Authors: Afshin Kadri
Abstract:
Using Renewable Energy Resources (RES) as a type of DG unit is developing in distribution systems. The connection of these generation units to existing AC distribution systems changes the structure and some of the operational aspects of these grids. Most of the RES requires to power electronic-based interfaces for connection to AC systems. These interfaces consist of at least one DC/AC conversion unit. Nowadays, grid-connected inverters must have the required feature to support the grid under sag voltage conditions. There are two curves in these conditions that show the magnitude of the reactive component of current as a function of voltage drop value and the required minimum time value, which must be connected to the grid. This feature is named low voltage ride-through (LVRT). Implementing this feature causes problems in the operation of the inverter that increases the amplitude of high-frequency components of the injected current and working out of maximum power point in the photovoltaic panel connected inverters are some of them. The important phenomenon in these conditions is ripples in the DC bus voltage that affects the operation of the inverter directly and indirectly. The losses of DC bus capacitors which are electrolytic capacitors, cause increasing their temperature and decreasing its lifespan. In addition, if the inverter is connected to the photovoltaic panels directly and has the duty of maximum power point tracking, these ripples cause oscillations around the operating point and decrease the generating energy. Using a bidirectional converter in the DC bus, which works as a buck and boost converter and transfers the ripples to its DC bus, is the traditional method to eliminate these ripples. In spite of eliminating the ripples in the DC bus, this method cannot solve the problem of reliability because it uses an electrolytic capacitor in its DC bus. In this work, a control method is proposed which uses the bidirectional converter as the fourth leg of the inverter and eliminates the DC bus ripples using an injection of unbalanced currents into the grid. Moreover, the proposed method works based on constant power control. In this way, in addition, to supporting the amplitude of grid voltage, it stabilizes its frequency by injecting active power. Also, the proposed method can eliminate the DC bus ripples in deep voltage drops, which cause increasing the amplitude of the reference current more than the nominal current of the inverter. The amplitude of the injected current for the faulty phases in these conditions is kept at the nominal value and its phase, together with the phase and amplitude of the other phases, are adjusted, which at the end, the ripples in the DC bus are eliminated, however, the generated power decreases.Keywords: renewable energy resources, voltage drop value, DC bus ripples, bidirectional converter
Procedia PDF Downloads 758357 Distribution Pattern of Faecal Egg output and Herbage Larval Populations of Gastrointestinal Nematodes in Naturally Infected Scottish Blackface Lambs in East Scotland
Authors: M. Benothman, M. Stear, S. Mitchel, O. Abuargob, R. Vijayan, Sateesh Kumar
Abstract:
Parasitic gastroenteritis caused by gastrointestinal nematodes (GIN) is a serious pathological complication in lambs. The dispersion pattern of GIN influences their transmission dynamics. There is no proper study on this aspect in Scottish Blackface lambs in Scotland. This study undertaken on 758 naturally infected, weaned, straight bred Scottish Blackface lambs in high land pasture in East Scotland extending over three months (August, September and October) in a year, and for three successive years demonstrated that the distribution of faecal egg counts (FEC) followed negative binomial distribution, with the exception of a few samples. The inverse index of dispersion (k) ranged between 0.19 ± 0.51 and 1.09 ± 0.08. Expression of low k values resulting from aggregation in a few individuals, suggested that a small proportion of animals with heavy parasitic influx significantly influenced the level of pasture contamination and parasite transmission. There was no discernible trend in the mean faecal egg count (FEC) and mean herbage larval population (HLP) in different months and in different years. Teladorsagia was the highest pasture contaminant (85.14±14.30 L3/kdh) followed by Nematodirus (53.00±13.96), Ostertagia (28.21±10.18) and Cooperia (11.43±5.55). The results of this study would be useful in instituting gastrointestinal nematode control strategies for sheep in cool temperate agro-ecological zones.Keywords: blackface lamb, faecal egg count, Gastrointestinal nematodes, herbage larval population, Scotland
Procedia PDF Downloads 4288356 Confidence Envelopes for Parametric Model Selection Inference and Post-Model Selection Inference
Authors: I. M. L. Nadeesha Jayaweera, Adao Alex Trindade
Abstract:
In choosing a candidate model in likelihood-based modeling via an information criterion, the practitioner is often faced with the difficult task of deciding just how far up the ranked list to look. Motivated by this pragmatic necessity, we construct an uncertainty band for a generalized (model selection) information criterion (GIC), defined as a criterion for which the limit in probability is identical to that of the normalized log-likelihood. This includes common special cases such as AIC & BIC. The method starts from the asymptotic normality of the GIC for the joint distribution of the candidate models in an independent and identically distributed (IID) data framework and proceeds by deriving the (asymptotically) exact distribution of the minimum. The calculation of an upper quantile for its distribution then involves the computation of multivariate Gaussian integrals, which is amenable to efficient implementation via the R package "mvtnorm". The performance of the methodology is tested on simulated data by checking the coverage probability of nominal upper quantiles and compared to the bootstrap. Both methods give coverages close to nominal for large samples, but the bootstrap is two orders of magnitude slower. The methodology is subsequently extended to two other commonly used model structures: regression and time series. In the regression case, we derive the corresponding asymptotically exact distribution of the minimum GIC invoking Lindeberg-Feller type conditions for triangular arrays and are thus able to similarly calculate upper quantiles for its distribution via multivariate Gaussian integration. The bootstrap once again provides a default competing procedure, and we find that similar comparison performance metrics hold as for the IID case. The time series case is complicated by far more intricate asymptotic regime for the joint distribution of the model GIC statistics. Under a Gaussian likelihood, the default in most packages, one needs to derive the limiting distribution of a normalized quadratic form for a realization from a stationary series. Under conditions on the process satisfied by ARMA models, a multivariate normal limit is once again achieved. The bootstrap can, however, be employed for its computation, whence we are once again in the multivariate Gaussian integration paradigm for upper quantile evaluation. Comparisons of this bootstrap-aided semi-exact method with the full-blown bootstrap once again reveal a similar performance but faster computation speeds. One of the most difficult problems in contemporary statistical methodological research is to be able to account for the extra variability introduced by model selection uncertainty, the so-called post-model selection inference (PMSI). We explore ways in which the GIC uncertainty band can be inverted to make inferences on the parameters. This is being attempted in the IID case by pivoting the CDF of the asymptotically exact distribution of the minimum GIC. For inference one parameter at a time and a small number of candidate models, this works well, whence the attained PMSI confidence intervals are wider than the MLE-based Wald, as expected.Keywords: model selection inference, generalized information criteria, post model selection, Asymptotic Theory
Procedia PDF Downloads 868355 Effects of Virtual Reality on the Upper Extremity Spasticity and Motor Function in Patients with Stroke: A Single Blinded Randomized Controlled Trial
Authors: Kasra Afsahi, Maryam Soheilifar, S. Hossein Hosseini, Omid Seyed Esmaeili, Rouzbeh Kezemi, Noushin Mehrbod, Nazanin Vahed, Tahereh Hajiahmad, Noureddin Nakhostin Ansari
Abstract:
Background: Stroke is a disabling neurological disease. Rehabilitative therapies are important treatment methods. This clinical trial was done to compare the effects of VR beside conventional rehabilitation versus conventional rehabilitation alone on spasticity and motor function in stroke patients. Materials and Methods: In this open-label randomized controlled clinical trial, 40 consecutive patients with stable first-ever ischemic stroke in the past three to 12 months that were referred to a rehabilitation clinic in Tehran, Iran, in 2020 were enrolled. After signing the informed written consent form, subjects were randomly assigned by block randomization of five in each block as cases with 1:1 into two groups of 20 cases; conventional plus VR therapy group: 45-minute conventional therapy session plus 15-minute VR therapy, and conventional group: 60-minute conventional therapy session. VR rehabilitation is designed and developed with different stages. Outcomes were modified Ashworth scale, recovery stage score for motor function, range of motion (ROM) of shoulder abduction/wrist extension, and patients’ satisfaction rate. Data were compared after study termination. Results: The satisfaction rate among the patients was significantly better in the combination group (P=0.003). Only wrist extension was varied between groups and was better in the combination group. The variables generally had a statistically significant difference (P < 0.05). Conclusion: Virtual reality plus conventional rehabilitation therapy is superior versus conventional rehabilitation alone on the wrist and elbow spasticity and motor function in patients with stroke.Keywords: stroke, virtual therapy, rehabilitation, treatment
Procedia PDF Downloads 2268354 Measurement System for Human Arm Muscle Magnetic Field and Grip Strength
Authors: Shuai Yuan, Minxia Shi, Xu Zhang, Jianzhi Yang, Kangqi Tian, Yuzheng Ma
Abstract:
The precise measurement of muscle activities is essential for understanding the function of various body movements. This work aims to develop a muscle magnetic field signal detection system based on mathematical analysis. Medical research has underscored that early detection of muscle atrophy, coupled with lifestyle adjustments such as dietary control and increased exercise, can significantly enhance muscle-related diseases. Currently, surface electromyography (sEMG) is widely employed in research as an early predictor of muscle atrophy. Nonetheless, the primary limitation of using sEMG to forecast muscle strength is its inability to directly measure the signals generated by muscles. Challenges arise from potential skin-electrode contact issues due to perspiration, leading to inaccurate signals or even signal loss. Additionally, resistance and phase are significantly impacted by adipose layers. The recent emergence of optically pumped magnetometers introduces a fresh avenue for bio-magnetic field measurement techniques. These magnetometers possess high sensitivity and obviate the need for a cryogenic environment unlike superconducting quantum interference devices (SQUIDs). They detect muscle magnetic field signals in the range of tens to thousands of femtoteslas (fT). The utilization of magnetometers for capturing muscle magnetic field signals remains unaffected by issues of perspiration and adipose layers. Since their introduction, optically pumped atomic magnetometers have found extensive application in exploring the magnetic fields of organs such as cardiac and brain magnetism. The optimal operation of these magnetometers necessitates an environment with an ultra-weak magnetic field. To achieve such an environment, researchers usually utilize a combination of active magnetic compensation technology with passive magnetic shielding technology. Passive magnetic shielding technology uses a magnetic shielding device built with high permeability materials to attenuate the external magnetic field to a few nT. Compared with more layers, the coils that can generate a reverse magnetic field to precisely compensate for the residual magnetic fields are cheaper and more flexible. To attain even lower magnetic fields, compensation coils designed by Biot-Savart law are involved to generate a counteractive magnetic field to eliminate residual magnetic fields. By solving the magnetic field expression of discrete points in the target region, the parameters that determine the current density distribution on the plane can be obtained through the conventional target field method. The current density is obtained from the partial derivative of the stream function, which can be represented by the combination of trigonometric functions. Optimization algorithms in mathematics are introduced into coil design to obtain the optimal current density distribution. A one-dimensional linear regression analysis was performed on the collected data, obtaining a coefficient of determination R2 of 0.9349 with a p-value of 0. This statistical result indicates a stable relationship between the peak-to-peak value (PPV) of the muscle magnetic field signal and the magnitude of grip strength. This system is expected to be a widely used tool for healthcare professionals to gain deeper insights into the muscle health of their patients.Keywords: muscle magnetic signal, magnetic shielding, compensation coils, trigonometric functions.
Procedia PDF Downloads 558353 Stress Variation of Underground Building Structure during Top-Down Construction
Authors: Soo-yeon Seo, Seol-ki Kim, Su-jin Jung
Abstract:
In the construction of a building, it is necessary to minimize construction period and secure enough work space for stacking of materials during the construction especially in city area. In this manner, various top-down construction methods have been developed and widely used in Korea. This paper investigates the stress variation of underground structure of a building constructed by using SPS (Strut as Permanent System) known as a top-down method in Korea through an analytical approach. Various types of earth pressure distribution related to ground condition were considered in the structural analysis of an example structure at each step of the excavation. From the analysis, the most high member force acting on beams was found when the ground type was medium sandy soil and a stress concentration was found in corner area.Keywords: construction of building, top-down construction method, earth pressure distribution, member force, stress concentration
Procedia PDF Downloads 3028352 Effect of Motor Imagery of Truncal Exercises on Trunk Function and Balance in Early Stroke: A Randomized Controlled Trial
Authors: Elsa Reethu, S. Karthik Babu, N. Syed
Abstract:
Background: Studies in the past focused on the additional benefits of action observation in improving upper and lower limb functions and improving activities of daily living when administered along with conventional therapy. Nevertheless, there is a paucity of literature proving the effects of motor imagery of truncal exercise in improving trunk control in patients with stroke. Aims/purpose: To study the effect of motor imagery of truncal exercises on trunk function and balance in early stroke. Methods: A total of 24 patients were included in the study. 12 were included in the experimental group and 12 were included in control group Trunk function was measured using Trunk Control Test (TCT), Trunk Impairment Scale Verheyden (TIS Verheyden) and Trunk Impairment Scale Fujiwara (TIS Fujiwara). The balance was assessed using Brunel Balance Assessment (BBA) and Tinetti POMA. For the experimental group, each session was for 30 minutes of physical exercises and 15 minutes of motor imagery, once a day, six times a week for 3 weeks and prior to the exercise session, patients viewed a video tape of all the trunk exercises to be performed for 15minutes. The control group practiced the trunk exercises alone for the same duration. Measurements were taken before, after and 4 weeks after intervention. Results: The effect of treatment in motor imagery group showed better improvement when compared with control group when measured after 3 weeks on values of static sitting balance, dynamic balance, total TIS (Verheyden) score, BBA, Tinetti balance and gait with a large effect size of 0.86, 1.99, 1.69, 1.06, 1.63 and 0.97 respectively. The moderate effect size was seen in values of TIS Fujiwara (0.58) and small effect size was seen on TCT (0.12) and TIS coordination component (0.13).at the end of 4 weeks after intervention, the large effect size was identified on values of dynamic balance (2.06), total TIS score (1.59) and Tinetti balance (1.24). The moderate effect size was observed on BBA (0.62) and Tinetti gait (0.72). Conclusion: Trunk motor imagery is effective in improving trunk function and balance in patients with stroke and has a carryover effect in the aspects of mobility. The therapy gain that was observed during the time of discharge was seen to be maintained at the follow-up levels.Keywords: stroke, trunk rehabilitation, trunk function, balance, motor imagery
Procedia PDF Downloads 2998351 Multi Tier Data Collection and Estimation, Utilizing Queue Model in Wireless Sensor Networks
Authors: Amirhossein Mohajerzadeh, Abolghasem Mohajerzadeh
Abstract:
In this paper, target parameter is estimated with desirable precision in hierarchical wireless sensor networks (WSN) while the proposed algorithm also tries to prolong network lifetime as much as possible, using efficient data collecting algorithm. Target parameter distribution function is considered unknown. Sensor nodes sense the environment and send the data to the base station called fusion center (FC) using hierarchical data collecting algorithm. FC builds underlying phenomena based on collected data. Considering the aggregation level, x, the goal is providing the essential infrastructure to find the best value for aggregation level in order to prolong network lifetime as much as possible, while desirable accuracy is guaranteed (required sample size is fully depended on desirable precision). First, the sample size calculation algorithm is discussed, second, the average queue length based on M/M[x]/1/K queue model is determined and it is used for energy consumption calculation. Nodes can decrease transmission cost by aggregating incoming data. Furthermore, the performance of the new algorithm is evaluated in terms of lifetime and estimation accuracy.Keywords: aggregation, estimation, queuing, wireless sensor network
Procedia PDF Downloads 1868350 Bioclimatic Niches of Endangered Garcinia indica Species on the Western Ghats: Predicting Habitat Suitability under Current and Future Climate
Authors: Malay K. Pramanik
Abstract:
In recent years, climate change has become a major threat and has been widely documented in the geographic distribution of many plant species. However, the impacts of climate change on the distribution of ecologically vulnerable medicinal species remain largely unknown. The identification of a suitable habitat for a species under climate change scenario is a significant step towards the mitigation of biodiversity decline. The study, therefore, aims to predict the impact of current, and future climatic scenarios on the distribution of the threatened Garcinia indica across the northern Western Ghats using Maximum Entropy (MaxEnt) modelling. The future projections were made for the year 2050 and 2070 with all Representative Concentration Pathways (RCPs) scenario (2.6, 4.5, 6.0, and 8.5) using 56 species occurrence data, and 19 bioclimatic predictors from the BCC-CSM1.1 model of the Intergovernmental Panel for Climate Change’s (IPCC) 5th assessment. The bioclimatic variables were minimised to a smaller number of variables after a multicollinearity test, and their contributions were assessed using jackknife test. The AUC value of 0.956 ± 0.023 indicates that the model performs with excellent accuracy. The study identified that temperature seasonality (39.5 ± 3.1%), isothermality (19.2 ± 1.6%), and annual precipitation (12.7 ± 1.7%) would be the major influencing variables in the current and future distribution. The model predicted 10.5% (19318.7 sq. km) of the study area as moderately to very highly suitable, while 82.60% (151904 sq. km) of the study area was identified as ‘unsuitable’ or ‘very low suitable’. Our predictions of climate change impact on habitat suitability suggest that there will be a drastic reduction in the suitability by 5.29% and 5.69% under RCP 8.5 for 2050 and 2070, respectively. Finally, the results signify that the model might be an effective tool for biodiversity protection, ecosystem management, and species re-habitation planning under future climate change scenarios.Keywords: Garcinia Indica, maximum entropy modelling, climate change, MaxEnt, Western Ghats, medicinal plants
Procedia PDF Downloads 1548349 Using GIS and AHP Model to Explore the Parking Problem in Khomeinishahr
Authors: Davood Vatankhah, Reza Mokhtari Malekabadi, Mohsen Saghaei
Abstract:
Function of urban transportation systems depends on the existence of the required infrastructures, appropriate placement of different components, and the cooperation of these components with each other. Establishing various neighboring parking spaces in city neighborhood in order to prevent long-term and inappropriate parking of cars in the allies is one of the most effective operations in reducing the crowding and density of the neighborhoods. Every place with a certain application attracts a number of daily travels which happen throughout the city. A large percentage of the people visiting these places go to these travels by their own cars; therefore, they need a space to park their cars. The amount of this need depends on the usage function and travel demand of the place. The study aims at investigating the spatial distribution of the public parking spaces, determining the effective factors in locating, and their combination in GIS environment in Khomeinishahr of Isfahan city. Ultimately, the study intends to create an appropriate pattern for locating parking spaces, determining the request for parking spaces of the traffic areas, choosing the proper places for providing the required public parking spaces, and also proposing new spots in order to promote quality and quantity aspects of the city in terms of enjoying public parking spaces. Regarding the method, the study is based on applied purpose and regarding nature, it is analytic-descriptive. The population of the study includes people of the center of Khomeinishahr which is located on Northwest of Isfahan having about 5000 hectares of geographic area and the population of 241318 people are in the center of Komeinishahr. In order to determine the sample size, Cochran formula was used and according to the population of 26483 people of the studied area, 231 questionnaires were used. Data analysis was carried out by usage of SPSS software and after estimating the required space for parking spaces, initially, the effective criteria in locating the public parking spaces are weighted by the usage of Analytic Hierarchical Process in the Arc GIS software. Then, appropriate places for establishing parking spaces were determined by fuzzy method of Order Weighted Average (OWA). The results indicated that locating of parking spaces in Khomeinishahr have not been carried out appropriately and per capita of the parking spaces is not desirable in relation to the population and request; therefore, in addition to the present parking lots, 1434 parking lots are needed in the area of the study for each day; therefore, there is not a logical proportion between parking request and the number of parking lots in Khomeinishahr.Keywords: GIS, locating, parking, khomeinishahr
Procedia PDF Downloads 3078348 Collagen Deposition in Lung Parenchyma Driven by Depletion of LYVE-1+ Macrophages Protects Emphysema and Loss of Airway Function
Authors: Yinebeb Mezgebu Dagnachew, Hwee Ying Lim, Liao Wupeng, Sheau Yng Lim, Lim Sheng Jie Natalie, Veronique Angeli
Abstract:
Collagen is essential for maintaining lung structure and function, and its remodeling has been associated with respiratory diseases, including chronic obstructive pulmonary disease (COPD). However, the cellular mechanisms driving collagen remodeling and the functional implications of this process in the pathophysiology of pulmonary diseases remain poorly understood. Using a mouse model of Lyve-1 expressing macrophage depletion, we found that the absence of this subpopulation of tissue-resident macrophage led to the preferential deposition of type I collagen fibers around the alveoli and bronchi in the steady state. Further analysis by polarized light microscopy revealed that the collagen fibers accumulating in the lungs depleted of Lyve-1+ macrophages were thicker and crosslinked. A decrease in MMP-9 gene expression and proteolytic activity, together with an increase in Col1a1, Timp-3 and Lox gene expression, accompanied the collagen alterations. Next, we investigated the effect of the collagen remodeling on the pathophysiology of COPD and airway function in mouse lacking Lyve-1+ macrophage exposed chronically to cigarette smoke (CS), a well-established animal model of COPD. We showed that the deposition of collagen protected mouse against the destruction of alveoli (emphysema) and bronchi thickening after CS exposure and prevented loss of airway function. Thus, we demonstrate that interstitial Lyve-1+ macrophages regulate the composition, amount, and architecture of the collagen network in the lungs and that such collagen remodeling functionally impacts the development of COPD. This study further supports the potential of targeting collagen as a promising approach to treating respiratory diseases.Keywords: lung, extracellular matrix, chronic obstructive pulmonary disease, matrix metalloproteinases, collagen
Procedia PDF Downloads 368347 An Intelligent Decision Support System Approach for New Product Development by Using QFD and Its Application in Metal Plating Industry
Authors: Ufuk Cebeci, Onur Doğan
Abstract:
New product becomes critical in competitive environment shortening a product's lifecycle due to the rapidly changing technology and increasing consumer requirements. Quality Function Deployment is one of the first steps of NPD process. The study presents an intelligent QFD application in metal plating industry. For application, an intelligent decision support system was developed. By intelligent system, house of quality was drawn and some calculations were shown. According to the results, some recommendations are given to end user. One of the purposes of this system is to give some advices to firms which do not know technical details of QFD and guide them about first steps of the new product development process.Keywords: intelligent decision support systems, metal plating, quality function deployment, QFD software, new product development
Procedia PDF Downloads 3968346 Computational Modeling of Thermal Comfort and CO2 Distribution in Common Room-Lecture Room by Using Hybrid Air Ventilation System, Thermoelectric-PV-Silica Gel under IAQ Standard
Authors: Jirod Chaisan, Somchai Maneewan, Chantana Punlek, Ninnart Rachapradit, Surapong Chirarattananon, Pattana Rakkwamsuk
Abstract:
In this paper, simulation modeling of heat transfer, air flow and distribution emitted from CO2 was performed in a regenerated air. The study room was divided in 3 types: common room, small lecture room and large lecture room under evaluated condition in two case: released and unreleased CO2 including of used hybrid air ventilation system for regenerated air under Thailand climate conditions. The carbon dioxide was located on the center of the room and released rate approximately 900-1200 ppm corresponded with indoor air quality standard (IAQs). The indoor air in the thermal comfort zone was calculated and simulated with the numerical method that using real data from the handbook guideline. The results of the study showed that in the case of hybrid air ventilation system explained thermal and CO2 distribution due to the system was adapted significantly in the comfort zone. The results showed that when CO2 released on the center of the other room, the CO2 high concentration in comfort zone so used hybrid air ventilation that decreased CO2 with regeneration air including of reduced temperature indoor. However, the study is simulation modeling and guideline only so the future should be the experiment of hybrid air ventilation system for evaluated comparison of the systems.Keywords: air ventilation, indoor air quality, thermal comfort, thermoelectric, photovoltaic, dehumidify
Procedia PDF Downloads 4838345 The Effect of Impact on the Knee Joint Due to the Shocks during Double Impact Phase of Gait Cycle
Authors: Jobin Varghese, V. M. Akhil, P. K. Rajendrakumar, K. S. Sivanandan
Abstract:
The major contributor to the human locomotion is the knee flexion and extension. During heel strike, a huge amount of energy is transmitted through the leg towards knee joint, which in fact is damped at heel and leg muscles. During high shocks, although it is damped to a certain extent, the balance force transmits towards knee joint which could damage the knee. Due to the vital function of the knee joint, it should be protected against damage due to additional load acting on it. This work concentrates on the development of spring mass damper system which exactly replicates the stiffness at the heel and muscles and the objective function is optimized to minimize the force acting at the knee joint. Further, the data collected using force plate are put into the model to verify its integrity and are found to be in good agreement.Keywords: spring, mass, damper, knee joint
Procedia PDF Downloads 2698344 Reconstructing the Segmental System of Proto-Graeco-Phrygian: a Bottom-Up Approach
Authors: Aljoša Šorgo
Abstract:
Recent scholarship on Phrygian has begun to more closely examine the long-held belief that Greek and Phrygian are two very closely related languages. It is now clear that Graeco-Phrygian can be firmly postulated as a subclade of the Indo-European languages. The present paper will focus on the reconstruction of the phonological and phonetic segments of Proto-Graeco-Phrygian (= PGPh.) by providing relevant correspondence sets and reconstructing the classes of segments. The PGPh. basic vowel system consisted of ten phonemic oral vowels: */a e o ā ē ī ō ū/. The correspondences of the vowels are clear and leave little open to ambiguity. There were four resonants and two semi-vowels in PGPh.: */r l m n i̯ u̯/, which could appear in both a consonantal and a syllabic function, with the distribution between the two still being phonotactically predictable. Of note is the fact that the segments *m and *n seem to have merged when their phonotactic position would see them used in a syllabic function. Whether the segment resulting from this merger was a nasalized vowel (most likely *[ã]) or a syllabic nasal *[N̥] (underspecified for place of articulation) cannot be determined at this stage. There were three fricatives in PGPh.: */s h ç/. *s and *h are easily identifiable. The existence of *ç, which may seem unexpected, is postulated on the basis of the correspondence Gr. ὄς ~ Phr. yos/ιος. It is of note that Bozzone has previously proposed the existence of *ç ( < PIE *h₁i̯-) in an early stage of Greek even without taking into account Phrygian data. Finally, the system of stops in PGPh. distinguished four places of articulation (labial, dental, velar, and labiovelar) and three phonation types. The question of which three phonation types were actually present in PGPh. is one of great importance for the ongoing debate on the realization of the three series in PIE. Since the matter is still very much in dispute, we ought to, at this stage, endeavour to reconstruct the PGPh. system without recourse to the other IE languages. The three series of correspondences are: 1. Gr. T (= tenuis) ~ Phr. T; 2. Gr. D (= media) ~ Phr. T; 3. Gr. TA (= tenuis aspirata) ~ Phr. M. The first series must clearly be reconstructed as composed of voiceless stops. The second and third series are more problematic. With a bottom-up approach, neither the second nor the third series of correspondences are compatible with simple modal voicing, and the reflexes differ greatly in voice onset time. Rather, the defining feature distinguishing the two series was [±spread glottis], with ancillary vibration of the vocal cords. In PGPh. the second series was undergoing further spreading of the glottis. As the two languages split, this process would continue, but be affected by dissimilar changes in VOT, which was ultimately phonemicized in both languages as the defining feature distinguishing between their series of stops.Keywords: bottom-up reconstruction, Proto-Graeco-Phrygian, spread glottis, syllabic resonant
Procedia PDF Downloads 488343 Functions and Pathophysiology of the Ventricular System: Review of the Underlying Basic Physics
Authors: Mohamed Abdelrahman Abdalla
Abstract:
Apart from their function in producing CSF, the brain ventricles have been recognized as the mere remnant of the embryological neural tube with no clear role. The lack of proper definition of the function of the brain ventricles and the central spinal canal has made it difficult to ascertain the pathophysiology of its different disease conditions or to treat them. This study aims to review the simple physics that could explain the basic function of the CNS ventricular system and to suggest new ways of approaching its pathology. There are probably more physical factors to consider than only the pressure. Monro-Killie hypothesis focuses on volume and subsequently pressure to direct our surgical management in different disease conditions. However, the enlarged volume of the ventricles in normal pressure hydrocephalus does not move any blood or brain outside the skull. Also, in idiopathic intracranial hypertension, the very high intracranial pressure rarely causes brain herniation. On this note, the continuum of the intracranial cavity with the spinal canal makes it a whole unit and hence the defect in the theory. In this study, adding different factors to the equation like brain and CSF density and positions of the brain in space, in addition to the volume and pressure, aims to identify how the ventricles are important in the CNS homeostasis. In addition, increasing the variables that we analyze to treat different CSF pathological conditions should increase our understanding and hence accuracy of treatment of such conditions.Keywords: communicating hydrocephalus, functions of the ventricles, idiopathic intracranial hypertension physics of CSF
Procedia PDF Downloads 1058342 Whitnall’s Sling Will Be an Alternative Method for the Surgical Correction of Poor Function Ptosis
Authors: Titap Yazicioglu
Abstract:
To examine the results of two different surgery in patients with severe ptosis and poor levator function. The records of 10 bilateral congenital ptosis patients, who underwent Whitnall’s sling surgery on one eyelid and frontalis sling surgery on the other were analyzed retrospectively. All patients had severe congenital ptosis(>4mm) and poor levator function (LF<4mm). Data regarding eyelid position, cosmetic outcomes, and postoperative complications were evaluated. All patients were assessed for a minimum of one year with regard to the amount of correction, residual ptosis and lagophthalmos. The study consisted of 10 patients, with an average age of 9.2±2.4 years. Preoperative diagnosis for all patients was noted as, the average LF was 3.4±0.51mm, vertical lid height was 3.5±0.52 mm and margin reflex distance-1 (MRD-1) was 0.4±0.51mm. The mean vertical lid height was measured as 7.1±0.73 mm in the frontalis sling group and 7.2±0.63 mm in the Whitnall’s sling group at the postoperative 1st month control. However, in patients with Whitnall’s sling, revision was performed with frontalis sling surgery due to failure in vertical lid height in the late postoperative period, and an average of 7.5±0.52 mm was achieved. Satisfactory results were obtained in all patients. Although postoperative lagophthalmitis developed in the frontalis sling group, none of them developed exposure keratitis. Granuloma was observed as sling infection in 2(20%) of the patients. Although Whitnall’s sling technique provides a natural look appearance without interfering with the functional result, we did not find it as successful as frontalis sling surgery in severe ptosis.Keywords: congenital ptosis, frontalis suspension, Whitnall ligament, complications
Procedia PDF Downloads 1048341 The Impact of Space Charges on the Electromechanical Constraints in HVDC Power Cable Containing Defects
Authors: H. Medoukali, B. Zegnini
Abstract:
Insulation techniques in high-voltage cables rely heavily on chemically synapsed polyethylene. The latter may contain manufacturing defects such as small cavities, for example. The presence of the cavity affects the distribution of the electric field at the level of the insulating layer; this change in the electric field is affected by the presence of different space charge densities within the insulating material. This study is carried out by performing simulations to determine the distribution of the electric field inside the insulator. The simulations are based on the creation of a two-dimensional model of a high-voltage cable of 154 kV using the COMSOL Multiphysics software. Each time we study the effect of changing the space charge density of on the electromechanical Constraints.Keywords: COMSOL multiphysics, electric field, HVDC, microcavities, space charges, XLPE
Procedia PDF Downloads 1318340 Utility of Executive Function Training in Typically Developing Adolescents and Special Populations: A Systematic Review of the Literature
Authors: Emily C. Shepard, Caroline Sweeney, Jessica Grimm, Sophie Jacobs, Lauren Thompson, Lisa L. Weyandt
Abstract:
Adolescence is a critical phase of development in which individuals are prone to more risky behavior while also facing potentially life-changing decisions. The balance of increased behavioral risk and responsibility indicates the importance of executive functioning ability. In recent years, executive function training has emerged as a technique to enhance this cognitive ability. The aim of the present systematic review was to discuss the reported efficacy of executive functioning training techniques among adolescents. After reviewing 3110 articles, a total of 24 articles were identified which examined the role of executive functioning training techniques among adolescents (age 10-19). Articles retrieved demonstrated points of comparison across psychiatric and medical diagnosis, location of training, and stage of adolescence. Typically developing samples, as well as those with attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), conduct disorder, and physical health concerns were found, allowing for the comparison of the efficacy of techniques considering physical and psychological heterogeneity. Among typically developing adolescents, executive functioning training yielded nonsignificant or low effect size improvements in executive functioning, and in some cases executive functioning ability was decreased following the training. In special populations, including those with ADHD, (ASD), conduct disorder, and physical health concerns significant differences and larger effect sizes in executive functioning were seen following treatment, particularly among individuals with ADHD. Future research is needed to identify the long-term efficacy of these treatments, as well as their generalizability to real-world conditions.Keywords: adolescence, attention-deficit hyperactivity disorder, executive function, executive function training, traumatic brain injury
Procedia PDF Downloads 1888339 Synthesis and Characterization of LiCoO2 Cathode Material by Sol-Gel Method
Authors: Nur Azilina Abdul Aziz, Tuti Katrina Abdullah, Ahmad Azmin Mohamad
Abstract:
Lithium-transition metals and some of their oxides, such as LiCoO2, LiMn2O2, LiFePO4, and LiNiO2 have been used as cathode materials in high performance lithium-ion rechargeable batteries. Among the cathode materials, LiCoO2 has potential to been widely used as a lithium-ion battery because of its layered crystalline structure, good capacity, high cell voltage, high specific energy density, high power rate, low self-discharge, and excellent cycle life. This cathode material has been widely used in commercial lithium-ion batteries due to its low irreversible capacity loss and good cycling performance. However, there are several problems that interfere with the production of material that has good electrochemical properties, including the crystallinity, the average particle size and particle size distribution. In recent years, synthesis of nanoparticles has been intensively investigated. Powders prepared by the traditional solid-state reaction have a large particle size and broad size distribution. On the other hand, solution method can reduce the particle size to nanometer range and control the particle size distribution. In this study, LiCoO2 was synthesized using the sol–gel preparation method, which Lithium acetate and Cobalt acetate were used as reactants. The stoichiometric amounts of the reactants were dissolved in deionized water. The solutions were stirred for 30 hours using magnetic stirrer, followed by heating at 80°C under vigorous stirring until a viscous gel was formed. The as-formed gel was calcined at 700°C for 7 h under a room atmosphere. The structural and morphological analysis of LiCoO2 was characterized using X-ray diffraction and Scanning electron microscopy. The diffraction pattern of material can be indexed based on the α-NaFeO2 structure. The clear splitting of the hexagonal doublet of (006)/(102) and (108)/(110) in this patterns indicates materials are formed in a well-ordered hexagonal structure. No impurity phase can be seen in this range probably due to the homogeneous mixing of the cations in the precursor. Furthermore, SEM micrograph of the LiCoO2 shows the particle size distribution is almost uniform while particle size is between 0.3-0.5 microns. In conclusion, LiCoO2 powder was successfully synthesized using the sol–gel method. LiCoO2 showed a hexagonal crystal structure. The sample has been prepared clearly indicate the pure phase of LiCoO2. Meanwhile, the morphology of the sample showed that the particle size and size distribution of particles is almost uniform.Keywords: cathode material, LiCoO2, lithium-ion rechargeable batteries, Sol-Gel method
Procedia PDF Downloads 3728338 Fat-Tail Test of Regulatory DNA Sequences
Authors: Jian-Jun Shu
Abstract:
The statistical properties of CRMs are explored by estimating similar-word set occurrence distribution. It is observed that CRMs tend to have a fat-tail distribution for similar-word set occurrence. Thus, the fat-tail test with two fatness coefficients is proposed to distinguish CRMs from non-CRMs, especially from exons. For the first fatness coefficient, the separation accuracy between CRMs and exons is increased as compared with the existing content-based CRM prediction method – fluffy-tail test. For the second fatness coefficient, the computing time is reduced as compared with fluffy-tail test, making it very suitable for long sequences and large data-base analysis in the post-genome time. Moreover, these indexes may be used to predict the CRMs which have not yet been observed experimentally. This can serve as a valuable filtering process for experiment.Keywords: statistical approach, transcription factor binding sites, cis-regulatory modules, DNA sequences
Procedia PDF Downloads 2898337 Development of Numerical Method for Mass Transfer across the Moving Membrane with Selective Permeability: Approximation of the Membrane Shape by Level Set Method for Numerical Integral
Authors: Suguru Miyauchi, Toshiyuki Hayase
Abstract:
Biological membranes have selective permeability, and the capsules or cells enclosed by the membrane show the deformation by the osmotic flow. This mass transport phenomenon is observed everywhere in a living body. For the understanding of the mass transfer in a body, it is necessary to consider the mass transfer phenomenon across the membrane as well as the deformation of the membrane by a flow. To our knowledge, in the numerical analysis, the method for mass transfer across the moving membrane has not been established due to the difficulty of the treating of the mass flux permeating through the moving membrane with selective permeability. In the existing methods for the mass transfer across the membrane, the approximate delta function is used to communicate the quantities on the interface. The methods can reproduce the permeation of the solute, but cannot reproduce the non-permeation. Moreover, the computational accuracy decreases with decreasing of the permeable coefficient of the membrane. This study aims to develop the numerical method capable of treating three-dimensional problems of mass transfer across the moving flexible membrane. One of the authors developed the numerical method with high accuracy based on the finite element method. This method can capture the discontinuity on the membrane sharply due to the consideration of the jumps in concentration and concentration gradient in the finite element discretization. The formulation of the method takes into account the membrane movement, and both permeable and non-permeable membranes can be treated. However, searching the cross points of the membrane and fluid element boundaries and splitting the fluid element into sub-elements are needed for the numerical integral. Therefore, cumbersome operation is required for a three-dimensional problem. In this paper, we proposed an improved method to avoid the search and split operations, and confirmed its effectiveness. The membrane shape was treated implicitly by introducing the level set function. As the construction of the level set function, the membrane shape in one fluid element was expressed by the shape function of the finite element method. By the numerical experiment, it was found that the shape function with third order appropriately reproduces the membrane shapes. The same level of accuracy compared with the previous method using search and split operations was achieved by using a number of sampling points of the numerical integral. The effectiveness of the method was confirmed by solving several model problems.Keywords: finite element method, level set method, mass transfer, membrane permeability
Procedia PDF Downloads 2498336 On the PTC Thermistor Model with a Hyperbolic Tangent Electrical Conductivity
Authors: M. O. Durojaye, J. T. Agee
Abstract:
This paper is on the one-dimensional, positive temperature coefficient (PTC) thermistor model with a hyperbolic tangent function approximation for the electrical conductivity. The method of asymptotic expansion was adopted to obtain the steady state solution and the unsteady-state response was obtained using the method of lines (MOL) which is a well-established numerical technique. The approach is to reduce the partial differential equation to a vector system of ordinary differential equations and solve numerically. Our analysis shows that the hyperbolic tangent approximation introduced is well suitable for the electrical conductivity. Numerical solutions obtained also exhibit correct physical characteristics of the thermistor and are in good agreement with the exact steady state solutions.Keywords: electrical conductivity, hyperbolic tangent function, PTC thermistor, method of lines
Procedia PDF Downloads 3208335 A Self-Directed Home Yoga Program for Women with Breast Cancer during Chemotherapy
Authors: Hiroko Komatsu, Kaori Yagasaki
Abstract:
Background: Cancer-related cognitive impairment is a common problem seen in cancer patients undergoing chemotherapy. Physical activity may show beneficial effects on the cognitive function in such patients. Therefore, we have developed a self-directed home yoga program for cancer patients with cognitive symptoms during chemotherapy. This program involves a DVD presenting a combination of yoga courses based on patient preferences to be practiced at home. This study was performed to examine the feasibility of this program. In addition, we also examined changes in cognitive function and quality of life (QOL) in these patients participating in the program. Methods: This prospective feasibility study was conducted in a 500-bed general hospital in Tokyo, Japan. The study population consisted of breast cancer patients undergoing chemotherapy as the initial therapy. This feasibility study used a convenience sample with estimation of recruitment rate in a single facility with the availability of trained nurses and physicians to ensure safe yoga intervention. The aim of the intervention program was to improve cognitive function by means of both physical and mental activation via yoga, consisting of physical practice, breathing exercises, and meditation. Information on the yoga program was provided as a booklet, with an instructor-guided group yoga class during the orientation, and a self-directed home yoga program on DVD with yoga logs. Results: The recruitment rate was 44.7%, and the study population consisted of 18 women with a mean age of 43.9 years. This study showed high rates of retention, adherence, and acceptability of the yoga program. Improvements were only observed in the cognitive aspects of fatigue, and there were serious adverse events during the program. Conclusion: The self-directed home yoga program discussed here was both feasible and safe for breast cancer patients showing cognitive symptoms during chemotherapy. The patients also rated the program as useful, interesting, and satisfactory. Participation in the program was associated with improvements in cognitive fatigue but not cognitive function.Keywords: yoga, cognition, breast cancer, chemotherapy, quality of life
Procedia PDF Downloads 2568334 Particle and Photon Trajectories near the Black Hole Immersed in the Nonstatic Cosmological Background
Authors: Elena M. Kopteva, Pavlina Jaluvkova, Zdenek Stuchlik
Abstract:
The question of constructing a consistent model of the cosmological black hole remains to be unsolved and still attracts the interest of cosmologists as far as it is important in a wide set of research problems including the problem of the black hole horizon dynamics, the problem of interplay between cosmological expansion and local gravity, the problem of structure formation in the early universe etc. In this work, the model of the cosmological black hole is built on the basis of the exact solution of the Einstein equations for the spherically symmetric inhomogeneous dust distribution in the approach of the mass function use. Possible trajectories for massive particles and photons near the black hole immersed in the nonstatic dust cosmological background are investigated in frame of the obtained model. The reference system of distant galaxy comoving to cosmological expansion combined with curvature coordinates is used, so that the resulting metric becomes nondiagonal and involves both proper ‘cosmological’ time and curvature spatial coordinates. For this metric the geodesic equations are analyzed for the test particles and photons, and the respective trajectories are built.Keywords: exact solutions for Einstein equations, Lemaitre-Tolman-Bondi solution, cosmological black holes, particle and photon trajectories
Procedia PDF Downloads 3388333 Wind Power Potential in Selected Algerian Sahara Regions
Authors: M. Dahbi, M. Sellam, A. Benatiallah, A. Harrouz
Abstract:
The wind energy is one of the most significant and rapidly developing renewable energy sources in the world and it provides a clean energy resource, which is a promising alternative in the short term in Algeria The main purpose of this paper is to compared and discuss the wind power potential in three sites located in sahara of Algeria (south west of Algeria) and to perform an investigation on the wind power potential of desert of Algeria. In this comparative, wind speed frequency distributions data obtained from the web site SODA.com are used to calculate the average wind speed and the available wind power. The Weibull density function has been used to estimate the monthly power wind density and to determine the characteristics of monthly parameters of Weibull for these three sites. The annual energy produced by the BWC XL.1 1KW wind machine is obtained and compared. The analysis shows that in the south west of Algeria, at 10 m height, the available wind power was found to vary between 136.59 W/m2 and 231.04 W/m2. The highest potential wind power was found at Adrar, with 21h per day and the mean wind speed is above 6 m/s. Besides, it is found that the annual wind energy generated by that machine lie between 512 KWh and 1643.2 kWh. However, the wind resource appears to be suitable for power production on the sahara and it could provide a viable substitute to diesel oil for irrigation pumps and rural electricity generation.Keywords: Weibull distribution, parameters of Wiebull, wind energy, wind turbine, operating hours
Procedia PDF Downloads 4938332 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset
Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli
Abstract:
Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence
Procedia PDF Downloads 768331 Magneto-Transport of Single Molecular Transistor Using Anderson-Holstein-Caldeira-Leggett Model
Authors: Manasa Kalla, Narasimha Raju Chebrolu, Ashok Chatterjee
Abstract:
We have studied the quantum transport properties of a single molecular transistor in the presence of an external magnetic field using the Keldysh Green function technique. We also used the Anderson-Holstein-Caldeira-Leggett Model to describe the single molecular transistor that consists of a molecular quantum dot (QD) coupled to two metallic leads and placed on a substrate that acts as a heat bath. The phonons are eliminated by the Lang-Firsov transformation and the effective Hamiltonian is used to study the effect of an external magnetic field on the spectral density function, Tunneling Current, Differential Conductance and Spin polarization. A peak in the spectral function corresponds to a possible excitation. In the presence of a magnetic field, the spin-up and spin-down states are degenerate and this degeneracy is lifted by the magnetic field leading to the splitting of the central peak of the spectral function. The tunneling current decreases with increasing magnetic field. We have observed that even the differential conductance peak in the zero magnetic field curve is split in the presence electron-phonon interaction. As the magnetic field is increased, each peak splits into two peaks. And each peak indicates the existence of an energy level. Thus the number of energy levels for transport in the bias window increases with the magnetic field. In the presence of the electron-phonon interaction, Differential Conductance in general gets reduced and decreases faster with the magnetic field. As magnetic field strength increases, the spin polarization of the current is increasing. Our results show that a strongly interacting QD coupled to metallic leads in the presence of external magnetic field parallel to the plane of QD acts as a spin filter at zero temperature.Keywords: Anderson-Holstein model, Caldeira-Leggett model, spin-polarization, quantum dots
Procedia PDF Downloads 1818330 Reduction of Planar Transformer AC Resistance Using a Planar Litz Wire Structure
Authors: Hamed Belloumi, Aymen Ammouri, Ferid Kourda
Abstract:
A new trend in power converters is to design planar transformer that aim for low profile. However, at high frequency, the planar transformer ac losses become significant due to the proximity and skin effects. In this paper, the design and implementation of a novel planar litz conductor is presented in order to equalize the flux linkage and improving the current distribution. The developed PCB litz wire structure minimizes the losses in a similar way to the conventional multi stranded litz wires. In order to further illustrate the eddy current effect in different arrangements, a finite-element analysis (FEA) tool is used to analyze current distribution inside the conductors. Finally, the proposed planar transformer has been integrated in an electronic stage to test at high signal levels.Keywords: planar transformer, finite-element analysis (FEA), winding losses, planar litz wire
Procedia PDF Downloads 5108329 Brain-Motor Disablement: Using Virtual Reality-Based Therapeutic Simulations
Authors: Vince Macri, Jakub Petioky, Paul Zilber
Abstract:
Virtual-reality-based technology, i.e. video-game-like simulations (collectively, VRSims) are used in therapy for a variety of medical conditions. The purpose of this paper is to contribute to a discussion on criteria for selecting VRSims to augment treatment of survivors of acquired brain injury. Specifically, for treatments to improve or restore brain motor function in upper extremities affected by paresis or paralysis. Six uses of virtual reality are reviewed video games for entertainment, training simulations, unassisted or device-assisted movements of affected or unaffected extremities displayed in virtual environments and virtual anatomical interactivity.Keywords: acquired brain injury, brain-motor function, virtual anatomical interactivity, therapeutic simulations
Procedia PDF Downloads 585