Search results for: artificial neural networks; crop water stress index; canopy temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24728

Search results for: artificial neural networks; crop water stress index; canopy temperature

23558 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle

Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito

Abstract:

Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.

Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks

Procedia PDF Downloads 67
23557 Early Detection of Breast Cancer in Digital Mammograms Based on Image Processing and Artificial Intelligence

Authors: Sehreen Moorat, Mussarat Lakho

Abstract:

A method of artificial intelligence using digital mammograms data has been proposed in this paper for detection of breast cancer. Many researchers have developed techniques for the early detection of breast cancer; the early diagnosis helps to save many lives. The detection of breast cancer through mammography is effective method which detects the cancer before it is felt and increases the survival rate. In this paper, we have purposed image processing technique for enhancing the image to detect the graphical table data and markings. Texture features based on Gray-Level Co-Occurrence Matrix and intensity based features are extracted from the selected region. For classification purpose, neural network based supervised classifier system has been used which can discriminate between benign and malignant. Hence, 68 digital mammograms have been used to train the classifier. The obtained result proved that automated detection of breast cancer is beneficial for early diagnosis and increases the survival rates of breast cancer patients. The proposed system will help radiologist in the better interpretation of breast cancer.

Keywords: medical imaging, cancer, processing, neural network

Procedia PDF Downloads 259
23556 Optical Diagnostics of Corona Discharge by Laser Interferometry

Authors: N. Bendimerad, M. Lemerini, A. Guen

Abstract:

In this work, we propose to determine the density of neutral particles of an electric discharge peak - Plan types performed in air at atmospheric pressure by applying a technique based on laser interferometry. The experimental methods used so far as the shadowgraph or stereoscopy, give rather qualitative results with regard to the determination of the neutral density. The neutral rotational temperature has been subject of several studies but direct measurements of kinetic temperature are rare. The aim of our work is to determine quantitatively and experimentally depopulation with a Mach-Zehnder type interferometer. This purely optical appearance of the discharge is important when looking to know the refractive index of any gas for any physicochemical applications.

Keywords: laser source, Mach-Zehnder interferometer, refractive index, corona discharge

Procedia PDF Downloads 448
23555 Orthogonal Basis Extreme Learning Algorithm and Function Approximation

Authors: Ying Li, Yan Li

Abstract:

A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.

Keywords: neural network, orthogonal basis extreme learning, function approximation

Procedia PDF Downloads 534
23554 Micro Plasma an Emerging Technology to Eradicate Pesticides from Food Surface

Authors: Muhammad Saiful Islam Khan, Yun Ji Kim

Abstract:

Organophosphorus pesticides (OPPs) have been widely used to replace more persistent organochlorine pesticides because OPPs are more soluble in water and decompose rapidly in aquatic systems. Extensive uses of OPPs in modern agriculture are the major cause of the contamination of surface water. Regardless of the advantages gained by the application of pesticides in modern agriculture, they are a threat to the public health environment. With the aim of reducing possible health threats, several physical and chemical treatment processes have been studied to eliminate biological and chemical poisons from food stuff. In the present study, a micro-plasma device was used to reduce pesticides from the surface of food stuff. Pesticide free food items chosen in this study were perilla leaf, tomato, broccoli and blueberry. To evaluate the removal efficiency of pesticides, different washing methods were followed such as soaking with water, washing with bubbling water, washing with plasma-treated water and washing with chlorine water. 2 mL of 2000 ppm pesticide samples, namely, diazinone and chlorpyrifos were individuality inoculated on food surface and was air dried for 2 hours before treated with plasma. Plasma treated water was used in two different manners one is plasma treated water with bubbling the other one is aerosolized plasma treated water. The removal efficiency of pesticides from food surface was studied using HPLC. Washing with plasma treated water, aerosolized plasma treated water and chlorine water shows minimum 72% to maximum 87 % reduction for 4 min treatment irrespective to the types of food items and the types of pesticides sample, in case of soaking and bubbling the reduction is 8% to 48%. Washing with plasma treated water, aerosolized plasma treated water and chlorine water shows somewhat similar reduction ability which is significantly higher comparing to the soaking and bubbling washing system. The temperature effect of the washing systems was also evaluated; three different temperatures were set for the experiment, such as 22°C, 10°C and 4°C. Decreasing temperature from 22°C to 10°C shows a higher reduction in the case of washing with plasma and aerosolized plasma treated water, whereas an opposite trend was observed for the washing with chlorine water. Further temperature reduction from 10°C to 4°C does not show any significant reduction of pesticides, except for the washing with chlorine water. Chlorine water treatment shows lesser pesticide reduction with the decrease in temperature. The color changes of the treated sample were measured immediately and after one week to evaluate if there is any effect of washing with plasma treated water and with chlorine water. No significant color changes were observed for either of the washing systems, except for broccoli washing with chlorine water.

Keywords: chlorpyrifos, diazinone, pesticides, micro plasma

Procedia PDF Downloads 187
23553 Numerical Analysis on the Effect of Abrasive Parameters on Wall Shear Stress and Jet Exit Kinetic Energy

Authors: D. Deepak, N. Yagnesh Sharma

Abstract:

Abrasive Water Jet (AWJ) machining is a relatively new nontraditional machine tool used in machining of fiber reinforced composite. The quality of machined surface depends on jet exit kinetic energy which depends on various operating and material parameters. In the present work the effect abrasive parameters such as its size, concentration and type on jet kinetic energy is investigated using computational fluid dynamics (CFD). In addition, the effect of these parameters on wall shear stress developed inside the nozzle is also investigated. It is found that for the same operating parameters, increase in the abrasive volume fraction (concentration) results in significant decrease in the wall shear stress as well as the jet exit kinetic energy. Increase in the abrasive particle size results in marginal decrease in the jet exit kinetic energy. Numerical simulation also indicates that garnet abrasives produce better jet exit kinetic energy than aluminium oxide and silicon carbide.

Keywords: abrasive water jet machining, jet kinetic energy, operating pressure, wall shear stress, Garnet abrasive

Procedia PDF Downloads 377
23552 Farmers' Perspective on Soil Health in the Indian Punjab: A Quantitative Analysis of Major Soil Parameters

Authors: Sukhwinder Singh, Julian Park, Dinesh Kumar Benbi

Abstract:

Although soil health, which is recognized as one of the key determinants of sustainable agricultural development, can be measured by a range of physical, chemical and biological parameters, the widely used parameters include pH, electrical conductivity (EC), organic carbon (OC), plant available phosphorus (P) and potassium (K). Soil health is largely affected by the occurrence of natural events or human activities and can be improved by various land management practices. A database of 120 soil samples collected from farmers’ fields spread across three major agro-climatic zones of Punjab suggested that the average pH, EC, OC, P and K was 8.2 (SD = 0.75, Min = 5.5, Max = 9.1), 0.27 dS/m (SD = 0.17, Min = 0.072 dS/m, Max = 1.22 dS/m), 0.49% (SD = 0.20, Min = 0.06%, Max = 1.2%), 19 mg/kg soil (SD = 22.07, Min = 3 mg/kg soil, Max = 207 mg/kg soil) and 171 mg/kg soil (SD = 47.57, Min = 54 mg/kg soil, Max = 288 mg/kg soil), respectively. Region-wise, pH, EC and K were the highest in south-western district of Ferozpur whereas farmers in north-eastern district of Gurdaspur had the best soils in terms of OC and P. The soils in the central district of Barnala had lower OC, P and K than the respective overall averages while its soils were normal but skewed towards alkalinity. Besides agro-climatic conditions, the size of landholding and farmer education showed a significant association with Soil Fertility Index (SFI), a composite index calculated using the aforementioned parameters’ normalized weightage. All the four stakeholder groups cited the current cropping patterns, burning of rice crop residue, and imbalanced use of chemical fertilizers for change in soil health. However, the current state of soil health in Punjab is unclear, which needs further investigation based on temporal data collected from the same field to see the short and long-term impacts of various crop combinations and varied cropping intensity levels on soil health.

Keywords: soil health, punjab agriculture, sustainability, soil fertility index

Procedia PDF Downloads 362
23551 Impact of Fluoride Contamination on Soil and Water at North 24 Parganas, West Bengal, India

Authors: Rajkumar Ghosh

Abstract:

Fluoride contamination is a growing concern in various regions across the globe, including North 24 Parganas in West Bengal, India. The presence of excessive fluoride in the environment can have detrimental effects on crops, soil quality, and water resources. This note aims to shed light on the implications of fluoride contamination and its impact on the agricultural sector in North 24 Parganas. The agricultural lands in North 24 Parganas have been significantly affected by fluoride contamination, leading to adverse consequences for crop production. Excessive fluoride uptake by plants can hinder their growth, reduce crop yields, and impact the quality of agricultural produce. Certain crops, such as paddy, vegetables, and fruits, are more susceptible to fluoride toxicity, resulting in stunted growth, leaf discoloration, and reduced nutritional value. Fluoride-contaminated water, often used for irrigation, contributes to the accumulation of fluoride in the soil. Over time, this can lead to soil degradation and reduced fertility. High fluoride levels can alter soil pH, disrupt the availability of essential nutrients, and impair microbial activity critical for nutrient cycling. Consequently, the overall health and productivity of the soil are compromised, making it increasingly challenging for farmers to sustain agricultural practices. Fluoride contamination in North 24 Parganas extends beyond the soil and affects water resources as well. The excess fluoride seeps into groundwater, making it unsafe for consumption. Long-term consumption of fluoride-contaminated water can lead to various health issues, including dental and skeletal fluorosis. These health concerns pose significant risks to the local population, especially those reliant on contaminated water sources for their daily needs. Addressing fluoride contamination requires concerted efforts from various stakeholders, including government authorities, researchers, and farmers. Implementing appropriate water treatment technologies, such as defluoridation units, can help reduce fluoride levels in drinking water sources. Additionally, promoting alternative irrigation methods and crop diversification strategies can aid in mitigating the impact of fluoride on agricultural productivity. Furthermore, creating awareness among farmers about the adverse effects of fluoride contamination and providing access to alternative water sources are crucial steps toward safeguarding the health of the community and sustaining agricultural activities in the region. Fluoride contamination poses significant challenges to crop production, soil health, and water resources in North 24 Parganas, West Bengal. It is imperative to prioritize efforts to address this issue effectively and implement appropriate measures to mitigate fluoride contamination. By adopting sustainable practices and promoting awareness, the community can work towards restoring the agricultural productivity, soil quality and ensuring access to safe drinking water in the region.

Keywords: fluoride contamination, drinking water, toxicity, soil health

Procedia PDF Downloads 111
23550 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images

Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu

Abstract:

Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.

Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning

Procedia PDF Downloads 186
23549 Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (ΔG) for Gene Silencing

Authors: Reena Murali, David Peter S.

Abstract:

The small interfering RNA (siRNA) alters the regulatory role of mRNA during gene expression by translational inhibition. Recent studies shows that up regulation of mRNA cause serious diseases like Cancer. So designing effective siRNA with good knockdown effects play an important role in gene silencing. Various siRNA design tools had been developed earlier. In this work, we are trying to analyze the existing good scoring second generation siRNA predicting tools and to optimize the efficiency of siRNA prediction by designing a computational model using Artificial Neural Network and whole stacking energy (ΔG), which may help in gene silencing and drug design in cancer therapy. Our model is trained and tested against a large data set of siRNA sequences. Validation of our results is done by finding correlation coefficient of experimental versus observed inhibition efficacy of siRNA. We achieved a correlation coefficient of 0.727 in our previous computational model and we could improve the correlation coefficient up to 0.753 when the threshold of whole tacking energy is greater than or equal to -32.5 kcal/mol.

Keywords: artificial neural network, double stranded RNA, RNA interference, short interfering RNA

Procedia PDF Downloads 526
23548 Plant Water Relations and Forage Quality in Leucaena leucocephala (Lam.) de Wit and Acacia saligna (Labill.) as Affected by Salinity Stress

Authors: Maher J. Tadros

Abstract:

This research was conducted to study the effect of different salinity concentrations on the plant water relation and forage quality on two multipurpose forest trees species seedlings Leucaena leucocephala (Lam.) de wit and Acacia saligna (Labill.). Five different salinity concentrations mixture between sodium chloride and calcium chloride (v/v, 1:1) were applied. The control (Distilled Water), 2000, 4000, 6000, and 8000 ppm were used to water the seedlings for 3 months. The research results presented showed a marked variation among the two species in response to salinity. The Leucaena was able to withstand the highest level of salinity compared to Acacia all over the studied parameters except in the relative water content. Although all the morphological characteristics studied for the two species showed a marked decrease under the different salinity concentrations, except the shoot/root ratio that showed a trend of increase. The water stress measure the leaf water potential was more negative with as the relative water content increase under that saline conditions compared to the control. The forage quality represented by the crude protein and nitrogen content were low at 6000 ppm compared to the 8000 ppm in L. Leucocephala that increased compared that level in A. saligna. Also the results showed that growing both Leucaena and Acacia provide a good source of forage when that grow under saline condition which will be of great benefits to the agricultural sector especially in the arid and semiarid areas were these species can provide forage with high quality forage all year around when grown under irrigation with saline. This research recommended such species to be utilized and grown for forages under saline conditions.

Keywords: plant water relations, growth performance, salinity stress, protein content, forage quality, multipurpose trees

Procedia PDF Downloads 393
23547 A Review on Water Models of Surface Water Environment

Authors: Shahbaz G. Hassan

Abstract:

Water quality models are very important to predict the changes in surface water quality for environmental management. The aim of this paper is to give an overview of the water qualities, and to provide directions for selecting models in specific situation. Water quality models include one kind of model based on a mechanistic approach, while other models simulate water quality without considering a mechanism. Mechanistic models can be widely applied and have capabilities for long-time simulation, with highly complexity. Therefore, more spaces are provided to explain the principle and application experience of mechanistic models. Mechanism models have certain assumptions on rivers, lakes and estuaries, which limits the application range of the model, this paper introduces the principles and applications of water quality model based on the above three scenarios. On the other hand, mechanistic models are more easily to compute, and with no limit to the geographical conditions, but they cannot be used with confidence to simulate long term changes. This paper divides the empirical models into two broad categories according to the difference of mathematical algorithm, models based on artificial intelligence and models based on statistical methods.

Keywords: empirical models, mathematical, statistical, water quality

Procedia PDF Downloads 264
23546 A Comparison of Methods for Neural Network Aggregation

Authors: John Pomerat, Aviv Segev

Abstract:

Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.

Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning

Procedia PDF Downloads 162
23545 Effect of Pollution and Ethylene-Diurea on Bean Plants Grown in KSA

Authors: Abdel Rahman A. Alzandi

Abstract:

The primary objectives of this investigation were to examine the interactive effects of three air quality treatments, ethylene-diurea (EDU) and two irrigation conditions on physiological characteristics of kidney beans (Phaseolus vulgaris L.) during its whole growth. These plants were grown in 12-open top chambers (OTC's). Ethylene-diurea (EDU) was used as a factor to evaluate O3 pollution impact on plant growth. The air quality treatments consisted of charcoal filtered (CF) air, nonfiltered (NF) air and ambient air (AA) were irrigated and non- irrigated. Leaf samples were collected from upper canopy positions six times (pre- EDU addition, week after four EDU's addition, at the time of harvesting). Maximal differences in leaf carbohydrate, N contents, pigments and total lipids were observed in response to moisture conditions in presence and absence of EDU applications. Significant reduction were noted for air quality treatments regarding carbohydrate and pigment fractions but not for all cases of leaf N and lipid contents under O3 effects only. Minimal differences were found for first EDU application while maximal ones were recorded at 200 mg l-1 of treatments. The EDU treatments stimulated carbohydrate and pigment contents at the upper canopy position with higher levels for both NF and AA compared to untreated conditions. The NF and AA treatments caused lower total carbohydrate and pigment contents in the canopy position before harvesting of EDU applications. The stimulation in leaf carbohydrates by the EDU treatment, compared to the non-treated EDU of AA and NF treatments, provides a rational explanation for the counteracting effects of EDU against moderate exposures to O3 regarding grain yields in C3 plants.

Keywords: leaf contents, moisture relations, EDU additions, global climate change, kidney bean

Procedia PDF Downloads 350
23544 Analyzing and Predicting the CL-20 Detonation Reaction Mechanism Based on Artificial Intelligence Algorithm

Authors: Kaining Zhang, Lang Chen, Danyang Liu, Jianying Lu, Kun Yang, Junying Wu

Abstract:

In order to solve the problem of a large amount of simulation and limited simulation scale in the first-principle molecular dynamics simulation of energetic material detonation reaction, we established an artificial intelligence model for analyzing and predicting the detonation reaction mechanism of CL-20 based on the first-principle molecular dynamics simulation of the multiscale shock technique (MSST). We employed principal component analysis to identify the dominant charge features governing molecular reactions. We adopted the K-means clustering algorithm to cluster the reaction paths and screen out the key reactions. We introduced the neural network algorithm to construct the mapping relationship between the charge characteristics of the molecular structure and the key reaction characteristics so as to establish a calculation method for predicting detonation reactions based on the charge characteristics of CL-20 and realize the rapid analysis of the reaction mechanism of energetic materials.

Keywords: energetic material detonation reaction, first-principle molecular dynamics simulation of multiscale shock technique, neural network, CL-20

Procedia PDF Downloads 113
23543 Performance Analysis of a Shell and Tube Heat Exchanger in the Organic Rankine Cycle Power Plant

Authors: Yogi Sirodz Gaos, Irvan Wiradinata

Abstract:

In the 500 kW Organic Rankine Cycle (ORC) power plant in Indonesia, an AFT (according to the Tubular Exchanger Manufacturers Association – TEMA) type shell and tube heat exchanger device is used as a pre-heating system for the ORC’s hot water circulation system. The pre-heating source is a waste heat recovery of the brine water, which is tapped from a geothermal power plant. The brine water itself has 5 MWₜₕ capacities, with average temperature of 170ᵒC, and 7 barg working pressure. The aim of this research is to examine the performance of the heat exchanger in the ORC system in a 500 kW ORC power plant. The data for this research were collected during the commissioning on the middle of December 2016. During the commissioning, the inlet temperature and working pressure of the brine water to the shell and tube type heat exchanger was 149ᵒC, and 4.4 barg respectively. Furthermore, the ΔT for the hot water circulation of the ORC system to the heat exchanger was 27ᵒC, with the inlet temperature of 140ᵒC. The pressure in the hot circulation system was dropped slightly from 7.4ᵒC to 7.1ᵒC. The flow rate of the hot water circulation was 80.5 m³/h. The presentation and discussion of a case study on the performance of the heat exchanger on the 500 kW ORC system is presented as follows: (1) the heat exchange duty is 2,572 kW; (2) log mean temperature of the heat exchanger is 13.2ᵒC; (3) the actual overall thermal conductivity is 1,020.6 W/m².K (4) the required overall thermal conductivity is 316.76 W/m².K; and (5) the over design for this heat exchange performance is 222.2%. An analysis of the heat exchanger detailed engineering design (DED) is briefly discussed. To sum up, this research concludes that the shell and tube heat exchangers technology demonstrated a good performance as pre-heating system for the ORC’s hot water circulation system. Further research need to be conducted to examine the performance of heat exchanger system on the ORC’s hot water circulation system.

Keywords: shell and tube, heat exchanger, organic Rankine cycle, performance, commissioning

Procedia PDF Downloads 143
23542 Studies on the Effect of Bio-Methanated Distillery Spentwash on Soil Properties and Crop Yields

Authors: S. K. Gali

Abstract:

Spentwash, An effluent of distillery is an environmental pollutant because of its high load of pollutants (pH: 2-4; BOD>40,000 mg/l, COD>100,000mg/l and TDS >70,000mg/l). But However, after subjecting it to primary treatment (bio-methanation), Its pollutant load gets drastically reduced (pH: 7.5-8.5, BOD<10,000 mg/l) and could be disposed off safely as a source of organic matter and plant nutrients for crop production. With the consent of State Pollution Control Board, the distilleries in Karnataka are taking up ‘one time controlled land application’ of bio-methanated spentwash in farmers’ fields. A monitoring study was undertaken in Belgaum district of Karnataka State with an objective of studying the effect of land application of bio-methanated spent wash of a distillery on soil properties and crop growth. The treated spentwash was applied uniformly to the fallow dry lands in different farmers’ fields during summer, 2012 at recommended rate (based on nitrogen requirement of crops). The application was made at least a fortnight before sowing/planting operations. The analysis of soils collected before land application of spentwash and after harvest of crops revealed that there was no adverse effect of applied spentwash on soil characteristics. A slight build up in soluble salts was observed but, however all the soils recorded EC of less than 2.0 dSm-1. An increase in soil organic carbon (SOC) and available nitrogen (N) by about 10 to 30 % was observed in the spentwash applied soils. The presence of good amount of biodegradable organics in the treated spentwash (BOD of 6550 mg/l) contributed for increase in SOC and N. A substantial build up in available potassium (K) status (50 to 200%) was observed due to spentwash application. This was attributed to the high K content in spentwash (6950 mg/l). The growth of crops in the spentwash applied fields was higher and farmers could get nearly 10 to 20 per cent higher yields, especially in sugarcane and corn. The analysis of ground water samples showed that the quality of water was not affected due to land application of treated spentwash. Apart from realizing higher crop yields, the farmers were able to save money on N and K fertilisers as the applied spentwash met the crop requirement. Hence, it could be concluded that the bio-methanated distillery spentwash can be gainfully utilized in crop production without polluting the environment.

Keywords: bio-methanation, pollutant, potassium status, soil organic carbon

Procedia PDF Downloads 392
23541 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals

Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou

Abstract:

In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.

Keywords: continuous wavelet transform, convolution neural net-work, gated recurrent unit, health indicators, remaining useful life

Procedia PDF Downloads 133
23540 Toxicological Risk Analysis in Different Crops and Vegetables Exposed to High Fluoride-Contaminated Water

Authors: Pankaj Kumar

Abstract:

Despite few works reported about fluoride enrichment in the groundwater, no studies have done on exposure analysis for biological components in Patan district, Gujarat, Western India. Considering its vital importance, this study strives to quantify the bioaccumulation of fluoride in seven different crops and vegetables, viz. Spinach and Mustard leaves, Cauliflower, Wheat grains, Amaranth seed, Radish, and Garlic grown in the potentially fluoride contaminated area. Result shows that the order for fluoride accumulation among different analyzed plants are spinach (63.3 mg/kg) > mustard (48.9 mg/kg) > cauliflower (41.1 mg/kg) > radish (35.7 mg/kg) > garlic (33.2 mg/kg) > amaranth seed (26.7 mg/kg) > wheat (22.5 mg/kg). Fluoride concentration was highest in leafy vegetable, whereas the lowest was in wheat grains. Finally, estimated daily intake (EDI) and hazard index (HI) were calculated for local consumers of different age group, where it was found that young people (4-15 years) are at the highest risk of fluorosis. This study is relevant for better crop management, like substituting crops with woody plants, flowers, and people awareness.

Keywords: fluoride, bioaccumulation, health risk, water

Procedia PDF Downloads 119
23539 Performance Comparison of Outlier Detection Techniques Based Classification in Wireless Sensor Networks

Authors: Ayadi Aya, Ghorbel Oussama, M. Obeid Abdulfattah, Abid Mohamed

Abstract:

Nowadays, many wireless sensor networks have been distributed in the real world to collect valuable raw sensed data. The challenge is to extract high-level knowledge from this huge amount of data. However, the identification of outliers can lead to the discovery of useful and meaningful knowledge. In the field of wireless sensor networks, an outlier is defined as a measurement that deviates from the normal behavior of sensed data. Many detection techniques of outliers in WSNs have been extensively studied in the past decade and have focused on classic based algorithms. These techniques identify outlier in the real transaction dataset. This survey aims at providing a structured and comprehensive overview of the existing researches on classification based outlier detection techniques as applicable to WSNs. Thus, we have identified key hypotheses, which are used by these approaches to differentiate between normal and outlier behavior. In addition, this paper tries to provide an easier and a succinct understanding of the classification based techniques. Furthermore, we identified the advantages and disadvantages of different classification based techniques and we presented a comparative guide with useful paradigms for promoting outliers detection research in various WSN applications and suggested further opportunities for future research.

Keywords: bayesian networks, classification-based approaches, KPCA, neural networks, one-class SVM, outlier detection, wireless sensor networks

Procedia PDF Downloads 496
23538 An Approach towards Smart Future: Ict Infrastructure Integrated into Urban Water Networks

Authors: Ahsan Ali, Mayank Ostwal, Nikhil Agarwal

Abstract:

Abstract—According to a World Bank report, millions of people across the globe still do not have access to improved water services. With uninterrupted growth of cities and urban inhabitants, there is a mounting need to safeguard the sustainable expansion of cities. Efficient functioning of the urban components and high living standards of the residents are needed to be ensured. The water and sanitation network of an urban development is one of its most essential parts of its critical infrastructure. The growth in urban population is leading towards increased water demand, and thus, the local water resources are severely strained. 'Smart water' is referred to water and waste water infrastructure that is able to manage the limited resources and the energy used to transport it. It enables the sustainable consumption of water resources through co-ordinate water management system, by integrating Information Communication Technology (ICT) solutions, intended at maximizing the socioeconomic benefits without compromising the environmental values. This paper presents a case study from a medium sized city in North-western Pakistan. Currently, water is getting contaminated due to the proximity between water and sewer pipelines in the study area, leading to public health issues. Due to unsafe grey water infiltration, the scarce ground water is also getting polluted. This research takes into account the design of smart urban water network by integrating ICT (Information and Communication Technology) with urban water network. The proximity between the existing water supply network and sewage network is analyzed and a design of new water supply system is proposed. Real time mapping of the existing urban utility networks will be projected with the help of GIS applications. The issue of grey water infiltration is addressed by providing sustainable solutions with the help of locally available materials, keeping in mind the economic condition of the area. To deal with the current growth of urban population, it is vital to develop new water resources. Hence, distinctive and cost effective procedures to harness rain water would be suggested as a part of the research study experiment.

Keywords: GIS, smart water, sustainability, urban water management

Procedia PDF Downloads 217
23537 Artificial Intelligence and Personhood: An African Perspective

Authors: Meshandren Naidoo, Amy Gooden

Abstract:

The concept of personhood extending from the moral status of an artificial intelligence system has been explored – but predominantly from a Western conception of personhood. African personhood, however, is distinctly different from Western personhood in that communitarianism is central rather than individualism. Given the decolonization projects happening in Africa, it’s paramount to consider these views. This research demonstrates that the African notion of personhood may extend for an artificial intelligent system where the pre-conditions are met.

Keywords: artificial intelligence, ethics, law, personhood, policy

Procedia PDF Downloads 129
23536 Thermal Regulation of Channel Flows Using Phase Change Material

Authors: Kira Toxopeus, Kamran Siddiqui

Abstract:

Channel flows are common in a wide range of engineering applications. In some types of channel flows, particularly the ones involving chemical or biological processes, the control of the flow temperature is crucial to maintain the optimal conditions for the chemical reaction or to control the growth of biological species. This often becomes an issue when the flow experiences temperature fluctuations due to external conditions. While active heating and cooling could regulate the channel temperature, it may not be feasible logistically or economically and is also regarded as a non-sustainable option. Thermal energy storage utilizing phase change material (PCM) could provide the required thermal regulation sustainably by storing the excess heat from the channel and releasing it back as required, thus regulating the channel temperature within a range in the proximity of the PCM melting temperature. However, in designing such systems, the configuration of the PCM storage within the channel is critical as it could influence the channel flow dynamics, which would, in turn, affect the heat exchange between the channel fluid and the PCM. The present research is focused on the investigation of the flow dynamical behavior in the channel during heat transfer from the channel flow to the PCM thermal energy storage. Offset vertical columns in a narrow channel were used that contained the PCM. Two different column shapes, square and circular, were considered. Water was used as the channel fluid that entered the channel at a temperature higher than that of the PCM melting temperature. Hence, as the water was passing through the channel, the heat was being transferred from the water to the PCM, causing the PCM to store the heat through a phase transition from solid to liquid. Particle image velocimetry (PIV) was used to measure the two-dimensional velocity field of the channel flow as it flows between the PCM columns. Thermocouples were also attached to the PCM columns to measure the PCM temperature at three different heights. Three different water flow rates (0.5, 0.75 and 1.2 liters/min) were considered. At each flow rate, experiments were conducted at three different inlet water temperatures (28ᵒC, 33ᵒC and 38ᵒC). The results show that the flow rate and the inlet temperature influenced the flow behavior inside the channel.

Keywords: channel flow, phase change material, thermal energy storage, thermal regulation

Procedia PDF Downloads 140
23535 Artificial Intelligence and Police

Authors: Mehrnoosh Abouzari

Abstract:

Artificial intelligence has covered all areas of human life and has helped or replaced many jobs. One of the areas of application of artificial intelligence in the police is to detect crime, identify the accused or victim and prove the crime. It will play an effective role in implementing preventive justice and creating security in the community, and improving judicial decisions. This will help improve the performance of the police, increase the accuracy of criminal investigations, and play an effective role in preventing crime and high-risk behaviors in society. This article presents and analyzes the capabilities and capacities of artificial intelligence in police and similar examples used worldwide to prove the necessity of using artificial intelligence in the police. The main topics discussed include the performance of artificial intelligence in crime detection and prediction, the risk capacity of criminals and the ability to apply arbitray institutions, and the introduction of artificial intelligence programs implemented worldwide in the field of criminal investigation for police.

Keywords: police, artificial intelligence, forecasting, prevention, software

Procedia PDF Downloads 206
23534 Seed Germination and Recovery Responses of Suaeda Heterophylla to Abiotic Stresses

Authors: Abdul Hameed, Muhammad Zaheer Ahmed, Salman Gulzar, Bilquees Gul, Jan Alam, Ahmad K. Hegazy, Abdel Rehman A. Alatar, M. Ajmal Khan

Abstract:

Seed germination and recovery from salt stress of an annual halophyte Suaeda heterophylla (Kar. and Kir.) Bunge to different iso-osmotic concentrations (0, -0.46, -0.92, -1.38, -1.84, and -2.30 MPa) of NaCl and PEG-6000 at 15/25, 20/30 and 25/35°C in both 12-h temperature and light regimes and in complete darkness were studied. Maximum number of seeds germinated in distilled water and increase in concentrations of both NaCl and PEG-6000 decreased germination at all temperature regimes, light and dark conditions, with higher inhibition in NaCl than PEG-6000. Recovery of germination and viability of seeds were lower in NaCl than PEG-6000 both in the light and dark. Moderate alternate temperatures (20/30°C) and 12-h photoperiod were found to be the optimal for seed germination and recovery. Better seed germination of S. heterophylla when osmotic potential caused both by NaCl and PEG 6000 is lower, temperature regime of 20/30°C and light regime is for 12 h.

Keywords: seed germination, abiotic stresses, Suaeda heterophylla, molecular biology

Procedia PDF Downloads 438
23533 Growth and Yield Response of an Indian Wheat Cultivar (HD 2967) to Ozone and Water Stress in Open-Top Chambers with Emphasis on Its Antioxidant Status, Photosynthesis and Nutrient Allocation

Authors: Annesha Ghosh, S. B. Agrawal

Abstract:

Agricultural sector is facing a serious threat due to climate change and exacerbation of different atmospheric pollutants. Tropospheric ozone (O₃) is considered as a dynamic air pollutant imposing substantial phytotoxicity to natural vegetations and agriculture worldwide. Naturally, plants are exposed to different environmental factors and their interactions. Amongst such interactions, studies related to O₃ and water stress are still rare. In the present experiment, wheat cultivar HD2967 were grown in open top chambers (OTC) under two O₃ concentration; ambient O₃ level (A) and elevated O₃ (E) (ambient + 20 ppb O₃) along with two different water supply; well-watered (W) and 50% water stress conditions (WS), with an aim to assess the individual and interactive effect of two most prevailing stress factors in Indo-Gangetic Plains of India. Exposure to elevated O₃ dose caused early senescence symptoms and reduction in growth and biomass of the test cultivar. The adversity was more pronounced under the combined effect of EWS. Significant reduction of stomatal conductance (gs) and assimilation rate were observed under combined stress condition compared to the control (AW). However, plants grown under individual stress conditions displayed higher gs, biomass, and antioxidant defense mechanism compared to the plants grown under the presence of combined stresses. Higher induction in most of the enzyme activities of catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), peroxidase (POD) and superoxide dismutase (SOD) was displayed by HD 2967 under EW while, under the presence of combined stresses (EWS), a moderate increment of APX and CAT activity was observed only at its vegetative phase. Furthermore, variations in nutrient uptake and redistribution to different plants parts were also observed in the present study. Reduction in water availability has checked nutrient uptake (N, K, P, Ca, Cu, Mg, Zn) in above-ground parts (leaf) and below-ground parts (root). On the other hand, carbon (C) accumulation with subsequent C-N ratio was observed to be higher in the leaves under EWS. Such major nutrient check and limitation in carbon fixation due to lower gs under combined stress conditions might have weakened the defense mechanisms of the test cultivar. Grain yield was significantly reduced under EWS followed by AWS and EW as compared to their control, exhibiting an additive effect on the grain yield.

Keywords: antioxidants, open-top chambers, ozone, water stress, wheat, yield

Procedia PDF Downloads 117
23532 The Neurofunctional Dissociation between Animal and Tool Concepts: A Network-Based Model

Authors: Skiker Kaoutar, Mounir Maouene

Abstract:

Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from McRae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.

Keywords: animals, tools, network, semantics, small-worls, resilience to damage

Procedia PDF Downloads 543
23531 The Mechanical Response of a Composite Propellant under Harsh Conditions

Authors: Xin Tong, Jin-sheng Xu, Xiong Chen, Ya Zheng

Abstract:

The aim of this paper is to study the mechanical properties of HTPB (Hydroxyl-terminated polybutadiene) composite propellant under harsh conditions. It describes two tests involving uniaxial tensile tests of various strain rates (ranging from 0.0005 s-1 to 1.5 s-1), temperatures (ranging from 223 K to 343 K) and high-cycle fatigue tests under low-temperature (223 K, frequencies were set at 50, 100, 150 Hz) using DMA (Dynamic Mechanical Analyzer). To highlight the effect of small pre-strain on fatigue properties of HTPB propellant, quasi-static stretching was carried out before fatigue loading, and uniaxial tensile tests at constant strain rates were successively applied. The results reveal that flow stress of propellant increases with reduction in temperature and rise in strain rate, and the strain rate-temperature equivalence relationship could be described by TTSP (time-temperature superposition principle) incorporating a modified WLF equation. Moreover, the rate of performance degradations and damage accumulation of propellant during fatigue tests increased with increasing strain amplitude and loading frequencies, while initial quasi-static loading has a negative effect on fatigue properties by comparing stress-strain relations after fatigue tests.

Keywords: fatigue, HTPB propellant, tensile properties, time-temperature superposition principle

Procedia PDF Downloads 294
23530 Investigation of Pollution and the Physical and Chemical Condition of Polour River, East of Tehran, Iran

Authors: Azita Behbahaninia

Abstract:

This research has been carried out to determine the water quality and physico-chemical properties Polour River, one of the most branch of Haraz River. Polour River was studied for a period of one year Samples were taken from different stations along the main branch of River polour. In water samples determined pH, DO, SO4, Cl, PO4, NO3, EC, BOD, COD, Temprature, color and number of Caliform per liter. ArcGIS was used for the zoning of phosphate concentration in the polour River basin. The results indicated that the river is polluted in polour village station, because of discharge domestic wastewater and also river is polluted in Ziar village station, because of agricultural wastewater and water is contaminated in aquaculture station, because of fish ponds wastewater. Statistical analysis shows that between independent traits and coliform regression relationship is significant at the 1% level. Coefficient explanation index indicated independent traits control 80% coliform and 20 % is for unknown parameters. The causality analysis showed Temperature (0.6) has the most positive and direct effect on coliform and sulfate has direct and negative effect on coliform. The results of causality analysis and the results of the regression analysis are matched and other forms direct and indirect effects were negligible and ignorable. Kruskal-Wallis test showed, there is different between sampling stations and studied characters. Between stations for temperature, DO, COD, EC, sulfate and coliform is at 1 % and for phosphate 5 % level of significance.

Keywords: coliform, GIS, pollution, phosphate, river

Procedia PDF Downloads 468
23529 Cardio Autonomic Response during Mental Stress in the Wards of Normal and Hypertensive Parents

Authors: Sheila R. Pai, Rekha D. Kini, Amrutha Mary

Abstract:

Objective: To assess and compare the cardiac autonomic activity after mental stress among the wards of normal and hypertensive parents. Methods: The study included 67 subjects, 30 of them had a parental history of hypertension and rest 37 had normotensive parents. Subjects were divided into control group (wards of normotensive parents) and Study group (wards of hypertensive parents). The height, weight were noted, and Body Mass Index (BMI) was also calculated. The mental stress test was carried out. Blood pressure (BP) and electro cardiogram (ECG) was recorded during normal breathing and after mental stress test. Heart rate variability (HRV) analysis was done by time domain method HRV was recorded and analyzed by the time-domain method. Analysis of HRV in the time-domain was done using the software version 1.1 AIIMS, New Delhi. The data obtained was analyzed using student’s t-test followed by Mann-Whitney U-test and P < 0.05 was considered significant. Results: There was no significant difference in systolic blood pressure and diastolic blood pressure (DBP) between study group and control group following mental stress. In the time domain analysis, the mean value of pNN50 and RMSSD of the study group was not significantly different from the control group after the mental stress test. Conclusion: The study thus concluded that there was no significant difference in HRV between study group and control group following mental stress.

Keywords: heart rate variability, time domain analysis, mental stress, hypertensive

Procedia PDF Downloads 273