Search results for: weather reports
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2571

Search results for: weather reports

2481 Honey Bee (Apis Mellifera) Drone Flight Behavior Revealed by Radio Frequency Identification: Short Trips That May Help Drones Survey Weather Conditions

Authors: Vivian Wu

Abstract:

During the mating season, honeybee drones make mating fights to congregation areas where they face fierce competition to mate with a queen. Drones have developed distinct anatomical and functional features in order to optimize their chances of success. Flight activities of western honeybee (Apis mellifera) drones and foragers were monitored using radio frequency identification (RFID) to test if drones have also developed distinct flight behaviors. Drone flight durations showed a bimodal distribution dividing the flights into short flights and long flights while forager flight durations showed a left-skewed unimodal distribution. Interestingly, the short trips occurred prior to the long trips on a daily basis. The first trips of the day the drones made were primarily short trips, and the distribution significantly shifted to long trips as the drones made more trips. In contrast, forager trips showed no such shift of distribution. In addition, drones made short trips but no long mating trips on days associated with a significant drop in temperature and increase of clouds compared to the previous day. These findings suggest that drones may have developed a unique flight behavior making short trips first to survey the weather conditions before flying out to the congregation area to pursue a successful mating.

Keywords: apis mellifera, drone, flight behavior, weather, RFID

Procedia PDF Downloads 81
2480 The Comparison of the Effect of the Russian Company’s Female and Male Employees’ Self-Efficacy on the Career Success in Their Professional Activity

Authors: Julia Yalalova, Dilawar Khan Durrani

Abstract:

Subjective and objective career success is one of the vital aims that the employees of any organization want to achieve. However, career success is affected by numerous factors. This study aims to identify few of such key factors that affect career success of individual employees. To achieve this objective, this study aims at empirically analyzing that weather or not self-efficacy of employees impacts their career success. Furthermore, this study also aims to analyze whether or not work effort mediates the relationship between self-efficacy and career success. The study will also test weather emotional intelligence moderate the relationship between self-efficacy and work effort. Furthermore, gender based differences related to all the variables are also the focus of this study. The data will be analyzed using SPSS software and the results, recommendations and future implications will be discussed.

Keywords: career success, emotional intelligence, self-efficacy, work effort

Procedia PDF Downloads 287
2479 Physical and Mechanical Behavior of Compressed Earth Blocks Stabilized with Ca(OH)2 on Sub-Humid Warm Weather

Authors: D. Castillo T., Luis F. Jimenez

Abstract:

The compressed earth blocks (CEBs) constitute an alternative as a constructive element for building homes in regions with high levels of poverty and marginalization. Such is the case of Southeastern Mexico, where the population, predominantly indigene, build their houses with feeble materials like wood and palm, vulnerable to extreme weather in the area, because they do not have the financial resources to acquire concrete blocks. There are several advantages that can provide BTCs compared to traditional vibro-compressed concrete blocks, such as the availability of materials, low manufacturing cost and reduced CO2 emissions to the atmosphere for not be subjected to a burning process. However, to improve its mechanical properties and resistance to adverse weather conditions in terms of humidity and temperature of the sub-humid climate zones, it requires the use of a chemical stabilizer; in this case we chose Ca(OH)2. The stabilization method Eades-Grim was employed, according to ASTM C977-03. This method measures the optimum amount of lime required to stabilize the soil, increasing the pH to 12.4 or higher. The minimum amount of lime required in this experiment was 1% and the maximum was 10%. The employed material was clay unconsolidated low to medium plasticity (CL type according to the Unified Soil Classification System). Based on these results, the CEBs manufacturing process was determined. The obtained blocks were from 10x15x30 cm using a mixture of soil, water and lime in different proportions. Later these blocks were put to dry outdoors and subjected to several physical and mechanical tests, such as compressive strength, absorption and drying shrinkage. The results were compared with the limits established by the Mexican Standard NMX-C-404-ONNCCE-2005 for the construction of housing walls. In this manner an alternative and sustainable material was obtained for the construction of rural households in the region, with better security conditions, comfort and cost.

Keywords: calcium hydroxide, chemical stabilization, compressed earth blocks, sub-humid warm weather

Procedia PDF Downloads 401
2478 The Interaction of Climate Change and Human Health in Italy

Authors: Vito Telesca, Giuseppina A. Giorgio, M. Ragosta

Abstract:

The effects of extreme heat events are increasing in recent years. Humans are forced to adjust themselves to adverse climatic conditions. The impact of weather on human health has become public health significance, especially in light of climate change and rising frequency of devasting weather events (e.g., heat waves and floods). The interest of scientific community is widely known. In particular, the associations between temperature and mortality are well studied. Weather conditions are natural factors that affect the human organism. Recent works show that the temperature threshold at which an impact is seen varies by geographic area and season. These results suggest heat warning criteria should consider local thresholds to account for acclimation to local climatology as well as the seasonal timing of a forecasted heat wave. Therefore, it is very important the problem called ‘local warming’. This is preventable with adequate warning tools and effective emergency planning. Since climate change has the potential to increase the frequency of these types of events, improved heat warning systems are urgently needed. This would require a better knowledge of the full impact of extreme heat on morbidity and mortality. The majority of researchers who analyze the associations between human health and weather variables, investigate the effect of air temperature and bioclimatic indices. These indices combine air temperature, relative humidity, and wind speed and are very important to determine the human thermal comfort. Health impact studies of weather events showed that the prevention is an essential element to dramatically reduce the impact of heat waves. The summer Italian of 2012 was characterized with high average temperatures (con un +2.3°C in reference to the period 1971-2000), enough to be considered as the second hottest summer since 1800. Italy was the first among countries in Europe which adopted tools for to predict these phenomena with 72 hours in advance (Heat Health Watch Warning System - HHWWS). Furthermore, in Italy heat alert criteria relies on the different Indexes, for example Apparent temperature, Scharlau index, Thermohygrometric Index, etc. This study examines the importance of developing public health policies that protect the most vulnerable people (such as the elderly) to extreme temperatures, highlighting the factors that confer susceptibility.

Keywords: heat waves, Italy, local warming, temperature

Procedia PDF Downloads 243
2477 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application

Authors: Jui-Chien Hsieh

Abstract:

Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.

Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network

Procedia PDF Downloads 114
2476 Study on the Effect of Weather Variables on the Spider Abundance in Two Ecological Zones of Ogun State, Nigeria

Authors: Odejayi Adedayo Olugbenga, Aina Adebisi

Abstract:

Weather variables (rainfall and temperature) affect the diversity and abundance of both fauna and flora species. This study compared the weather variables with spider abundance in two ecological zones of Ogun State, Nigeria namely Ago-iwoye (Rainforest) in the Ijebu axis and Aiyetoro (Derived Savannah) in the Yewa axis. Seven study sites chosen by Simple Random Sampling in each ecosystem were used for the study. In each sampling area, a 60 m x 120 m land area was marked and sampled, spider collection techniques were; hand picking, use of sweep netting, and Pitfall trap. Adult spiders were identified to the species level. Species richness was estimated by a non-parametric species estimator while the diversity of spider species was assessed by Simpson Diversity Index and Species Richness by One-way Analysis of Variance. Results revealed that spiders were more abundant in rainforest zones than in derived savannah ecosystems. However, the pattern of spider abundance in rainforest zone and residential areas were similar. During high temperatures, the activities of spiders tended to increase according to this study. In contrast, results showed that there was a negative correlation between rainfall and spider species abundance in addition to a negative and weak correlation between rainfall and species richness. It was concluded that heavy downpour has lethal effects on both immature and sometimes matured spiders, which could lead to the extinction of some unknown species of spiders. Tree planting should be encouraged, as this shelters the spider.

Keywords: spider, abundance, species richness, species diversity

Procedia PDF Downloads 92
2475 Corporate Governance Disclosures by South African Auditing Firms

Authors: Rozanne Janet Smith

Abstract:

This article examined the corporate governance disclosures of the large and medium-sized auditing firms in South Africa. It is important that auditing firms disclose their practice of good corporate governance to the public, as they serve the public interest. The auditing profession has been criticized due to many corporate scandals in recent years. This has undermined the reputation of the profession, with experts and the public questioning whether auditing firms have corporate governance structures in place, and whether they are taking public interest into consideration. In South Africa there is no corporate governance code specifically for audit firms. Auditing firms are encouraged by IRBA to issue a transparency report in which they disclose corporate governance structures and application, but this is not compulsory in South Africa. Moreover, the information issued in these transparency reports is limited and often only focuses on audit quality, and not governance. Through a literature review it was found that the UK is one of only a few countries who has a corporate governance code for audit firms. As South Africa initially used the UK Cadbury report to develop the King IV Code, it was fitting to use the UK Audit Firm Governance Code as a benchmark to determine if audit firms in South Africa are disclosing relevant corporate governance information in their transparency reports and/or integrated reports. This study contributes to the existing body of knowledge by pursuing the following objective: To determine the improvement in the corporate governance disclosures of large and medium-sized auditing firms in South Africa through comparative research. Available data from 2019 will be used and compared to the disclosures in the 2023/2024 transparency and or integrated reports of the large and medium-sized auditing firms in South Africa. To achieve this objective a constructivist research paradigm was applied. Qualitative secondary information was gathered for the analysis. A content analysis was selected to collect the qualitative data by analyzing the integrated reports and/or transparency reports of large and medium-sized auditing firms with 20 or more partners and to determine what is disclosed on their corporate governance practices. These transparency reports and integrated reports were then read and analyzed in depth and compared to the principles stated in the UK Code. Since there are only nine medium-sized and large auditing firms in South Africa, the researcher was able to conduct the content analysis by reading each report in depth. The following six principles which are found in the UK Code were assessed for disclosure. (1) Leadership, (2) Values, (3) INED, (4) Operations, (5) Reporting, and (6) Dialogue. The results reveal that the auditing firms are not disclosing the corporate governance principles and practices to the necessary extent. Although there has been some improvement, the disclosure is not to the extent which it should be. There is still a need for a South African audit firm governance code.

Keywords: auditing firms, corporate governance, South Africa, disclosure

Procedia PDF Downloads 23
2474 Comparison of Different Reanalysis Products for Predicting Extreme Precipitation in the Southern Coast of the Caspian Sea

Authors: Parvin Ghafarian, Mohammadreza Mohammadpur Panchah, Mehri Fallahi

Abstract:

Synoptic patterns from surface up to tropopause are very important for forecasting the weather and atmospheric conditions. There are many tools to prepare and analyze these maps. Reanalysis data and the outputs of numerical weather prediction models, satellite images, meteorological radar, and weather station data are used in world forecasting centers to predict the weather. The forecasting extreme precipitating on the southern coast of the Caspian Sea (CS) is the main issue due to complex topography. Also, there are different types of climate in these areas. In this research, we used two reanalysis data such as ECMWF Reanalysis 5th Generation Description (ERA5) and National Centers for Environmental Prediction /National Center for Atmospheric Research (NCEP/NCAR) for verification of the numerical model. ERA5 is the latest version of ECMWF. The temporal resolution of ERA5 is hourly, and the NCEP/NCAR is every six hours. Some atmospheric parameters such as mean sea level pressure, geopotential height, relative humidity, wind speed and direction, sea surface temperature, etc. were selected and analyzed. Some different type of precipitation (rain and snow) was selected. The results showed that the NCEP/NCAR has more ability to demonstrate the intensity of the atmospheric system. The ERA5 is suitable for extract the value of parameters for specific point. Also, ERA5 is appropriate to analyze the snowfall events over CS (snow cover and snow depth). Sea surface temperature has the main role to generate instability over CS, especially when the cold air pass from the CS. Sea surface temperature of NCEP/NCAR product has low resolution near coast. However, both data were able to detect meteorological synoptic patterns that led to heavy rainfall over CS. However, due to the time lag, they are not suitable for forecast centers. The application of these two data is for research and verification of meteorological models. Finally, ERA5 has a better resolution, respect to NCEP/NCAR reanalysis data, but NCEP/NCAR data is available from 1948 and appropriate for long term research.

Keywords: synoptic patterns, heavy precipitation, reanalysis data, snow

Procedia PDF Downloads 123
2473 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction

Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju

Abstract:

The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.

Keywords: comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events

Procedia PDF Downloads 261
2472 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea

Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro

Abstract:

Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.

Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting

Procedia PDF Downloads 135
2471 The Effects of Molecular and Climatic Variability on the Occurrence of Aspergillus Species and Aflatoxin Production in Commercial Maize from Different Agro-climatic Regions in South Africa

Authors: Nji Queenta Ngum, Mwanza Mulunda

Abstract:

Introduction Most African research reports on the frequent aflatoxin contamination of various foodstuffs, with researchers rarely specifying which of the Aspergillus species are present in these commodities. Numerous research works provide evidence of the ability of fungi to grow, thrive, and interact with other crop species and focus on the fact that these processes are largely affected by climatic variables. South Africa is a water-stressed country with high spatio-temporal rainfall variability; moreover, temperatures have been projected to rise at a rate twice the global rate. This weather pattern change may lead to crop stress encouraging mold contamination with subsequent mycotoxin production. In this study, the biodiversity and distribution of Aspergillus species with their corresponding toxins in maize from six distinct maize producing regions with different weather patterns in South Africa were investigated. Materials And Methods By applying cultural and molecular methods, a total of 1028 maize samples from six distinct agro-climatic regions were examined for contamination by the Aspergillus species while the high performance liquid chromatography (HPLC) method was applied to analyse the level of contamination by aflatoxins. Results About 30% of the overall maize samples were contaminated by at least one Aspergillus species. Less than 30% (28.95%) of the 228 isolates subjected to the aflatoxigenic test was found to possess at least one of the aflatoxin biosynthetic genes. Furthermore, almost 20% were found to be contaminated with aflatoxins, with mean total aflatoxin concentration levels of 64.17 ppb. Amongst the contaminated samples, 59.02% had mean total aflatoxin concentration levels above the SA regulatory limit of 20ppb for animals and 10 for human consumption. Conclusion In this study, climate variables (rainfall reduction) were found to significantly (p<0.001) influence the occurrence of the Aspergillus species (especially Aspergillus fumigatus) and the production of aflatoxin in South Africa commercial maize by maize variety, year of cultivation as well as the agro-climatic region in which the maize is cultivated. This included, amongst others, a reduction in the average annual rainfall of the preceding year to about 21.27 mm, and, as opposed to other regions whose average maximum rainfall ranged between 37.24 – 44.1 mm, resulted in a significant increase in the aflatoxin contamination of maize.

Keywords: aspergillus species, aflatoxins, diversity, drought, food safety, HPLC and PCR techniques

Procedia PDF Downloads 76
2470 Wood as a Climate Buffer in a Supermarket

Authors: Kristine Nore, Alexander Severnisen, Petter Arnestad, Dimitris Kraniotis, Roy Rossebø

Abstract:

Natural materials like wood, absorb and release moisture. Thus wood can buffer indoor climate. When used wisely, this buffer potential can be used to counteract the outer climate influence on the building. The mass of moisture used in the buffer is defined as the potential hygrothermal mass, which can be an energy storage in a building. This works like a natural heat pump, where the moisture is active in damping the diurnal changes. In Norway, the ability of wood as a material used for climate buffering is tested in several buildings with the extensive use of wood, including supermarkets. This paper defines the potential of hygrothermal mass in a supermarket building. This includes the chosen ventilation strategy, and how the climate impact of the building is reduced. The building is located above the arctic circle, 50m from the coastline, in Valnesfjord. It was built in 2015, has a shopping area, including toilet and entrance, of 975 m². The climate of the area is polar according to the Köppen classification, but the supermarket still needs cooling on hot summer days. In order to contribute to the total energy balance, wood needs dynamic influence to activate its hygrothermal mass. Drying and moistening of the wood are energy intensive, and this energy potential can be exploited. Examples are to use solar heat for drying instead of heating the indoor air, and raw air with high enthalpy that allow dry wooden surfaces to absorb moisture and release latent heat. Weather forecasts are used to define the need for future cooling or heating. Thus, the potential energy buffering of the wood can be optimized with intelligent ventilation control. The ventilation control in Valnesfjord includes the weather forecast and historical data. That is a five-day forecast and a two-day history. This is to prevent adjustments to smaller weather changes. The ventilation control has three zones. During summer, the moisture is retained to dampen for solar radiation through drying. In the winter time, moist air let into the shopping area to contribute to the heating. When letting the temperature down during the night, the moisture absorbed in the wood slow down the cooling. The ventilation system is shut down during closing hours of the supermarket in this period. During the autumn and spring, a regime of either storing the moisture or drying out to according to the weather prognoses is defined. To ensure indoor climate quality, measurements of CO₂ and VOC overrule the low energy control if needed. Verified simulations of the Valnesfjord building will build a basic model for investigating wood as a climate regulating material also in other climates. Future knowledge on hygrothermal mass potential in materials is promising. When including the time-dependent buffer capacity of materials, building operators can achieve optimal efficiency of their ventilation systems. The use of wood as a climate regulating material, through its potential hygrothermal mass and connected to weather prognoses, may provide up to 25% energy savings related to heating, cooling, and ventilation of a building.

Keywords: climate buffer, energy, hygrothermal mass, ventilation, wood, weather forecast

Procedia PDF Downloads 215
2469 Data-Driven Crop Advisory – A Use Case on Grapes

Authors: Shailaja Grover, Purvi Tiwari, Vigneshwaran S. R., U. Dinesh Kumar

Abstract:

In India, grapes are one of the most important horticulture crops. Grapes are most vulnerable to downy mildew, which is one of the most devasting diseases. In the absence of a precise weather-based advisory system, farmers spray pesticides on their crops extensively. There are two main challenges associated with using these pesticides. Firstly, most of these sprays were panic sprays, which could have been avoided. Second, farmers use more expensive "Preventive and Eradicate" chemicals than "Systemic, Curative and Anti-sporulate" chemicals. When these chemicals are used indiscriminately, they can enter the fruit and cause health problems such as cancer. This paper utilizes decision trees and predictive modeling techniques to provide grape farmers with customized advice on grape disease management. This model is expected to reduce the overall use of chemicals by approximately 50% and the cost by around 70%. Most of the grapes produced will have relatively low residue levels of pesticides, i.e., below the permissible level.

Keywords: analytics in agriculture, downy mildew, weather based advisory, decision tree, predictive modelling

Procedia PDF Downloads 74
2468 Analysis of Traffic Crashes on Rural Roads in Oman

Authors: Mohammed Bakhit Kashoob, Mohammed Salim Al-Maashani, Ahmed Abdullah Al-Marhoon

Abstract:

Fatalities of Road Traffic Crashes (RTCs) on rural roads are usually higher than that on urban roads. The likelihood of traffic accidents may increase with the presence of factors that are associated with the rural type of community such as long-distance, road type, road geometry (e.g., curves and steepens), poor lighting, terrain, obstacles (e.g., animals crossing, boulders or tree branches), heavy truck traffic, weather conditions, and road flaws. Most of these factors are present on the rural roads of Oman. As many cities in Oman are surrounded by mountains and connected by rural roads, this is of great concern. In this paper, the causes of traffic crashes on rural roads in Oman are analyzed. The fatality rate of traffic deaths on rural roads is compared with the fatality rate on urban roads for different regions in Oman. Statistical data and police reports show that the leading cause of RTCs and deaths on rural roads is vehicle speeding, especially on long-distance roads. It is shown that crashes on rural roads result in higher fatalities than crashes on urban roads. In comparison to speed, the numbers of RTCs and deaths that resulted from other causes are small.

Keywords: causes of traffic crashes, road safety, road traffic crash, rural roads

Procedia PDF Downloads 166
2467 The Dependency of the Solar Based Disinfection on the Microbial Quality of the Source Water

Authors: M. T. Amina, A. A. Alazba, U. Manzoor

Abstract:

Solar disinfection (SODIS) is a viable method for household water treatment and is recommended by the World Health Organization as cost effective approach that can be used without special skills. The efficiency of both SODIS and solar collector disinfection (SOCODIS) system was evaluated using four different sources of water including stored rainwater, storm water, ground water and treated sewage. Samples with naturally occurring microorganisms were exposed to sunlight for about 8-9 hours in 2-L polyethylene terephthalate bottles under similar experimental conditions. Total coliform (TC), Escherichia coli (E. coli) and heterotrophic plate counts (HPC) were used as microbial water quality indicators for evaluating the disinfection efficiency at different sunlight intensities categorized as weak, mild and strong weathers. Heterotrophic bacteria showed lower inactivation rates compared to E. coli and TC in both SODIS and SOCODIS system. The SOCODIS system at strong weather was the strongest disinfection system in this study and the complete inactivation of HPC was observed after 8-9 hours of exposure with SODIS being ineffective for HPC. At moderate weathers, however, the SOCODIS system did not show complete inactivation of HPC due to very high concentrations (up to 5x10^7 CFU/ml) in both storm water and treated sewage. SODIS even remained ineffective for the complete inactivation of E. coli due to its high concentrations of about 2.5x10^5 in treated sewage compared with other waters even after 8-9 hours of exposure. At weak weather, SODIS was not effective at all while SOCODIS system, though incomplete, showed good disinfection efficiency except for HPC and to some extent for high E. coli concentrations in storm water. Largest reduction of >5 log occurred for TC when used stored rainwater even after 6 hours of exposure in the case of SOCODIS system at strong weather. The lowest E. coli and HPC reduction of ~2 log was observed in SODIS system at weak weather. Further tests with varying pH and turbidity are required to understand the effects of reaction parameters that could be a step forward towards maximizing the disinfection efficiency of such systems for the complete inactivation of naturally occurring E. coli or HPC at moderate or even at weak weathers.

Keywords: efficiency, microbial, SODIS, SOCODIS, weathers

Procedia PDF Downloads 263
2466 Impact of Drought in Farm Level Income in the United States

Authors: Anil Giri, Kyle Lovercamp, Sankalp Sharma

Abstract:

Farm level incomes fluctuate significantly due to extreme weather events such as drought. In the light of recent extreme weather events it is important to understand the implications of extreme weather events, flood and drought, on farm level incomes. This study examines the variation in farm level incomes for the United States in drought and no- drought years. Factoring heterogeneity in different enterprises (crop, livestock) and geography this paper analyzes the impact of drought in farm level incomes at state and national level. Livestock industry seems to be affected more by the lag in production of input feed for production, crops, as preliminary results show. Furthermore, preliminary results also show that while crop producers are not affected much due to drought, as price and quantity effect worked on opposite direction with same magnitude, that was not the case for livestock and horticulture enterprises. Results also showed that even when price effect was not as high the crop insurance component helped absorb much of shock for crop producers. Finally, the effect was heterogeneous for different states more on the coastal states compared Midwest region. This study should generate a lot of interest from policy makers across the world as some countries are actively seeking to increase subsidies in their agriculture sector. This study shows how subsidies absorb the shocks for one enterprise more than others. Finally, this paper should also be able to give an insight to economists to design/recommend policies such that it is optimal given the production level of different enterprises in different countries.

Keywords: farm level income, United States, crop, livestock

Procedia PDF Downloads 281
2465 Quantifying Freeway Capacity Reductions by Rainfall Intensities Based on Stochastic Nature of Flow Breakdown

Authors: Hoyoung Lee, Dong-Kyu Kim, Seung-Young Kho, R. Eddie Wilson

Abstract:

This study quantifies a decrement in freeway capacity during rainfall. Traffic and rainfall data were gathered from Highway Agencies and Wunderground weather service. Three inter-urban freeway sections and its nearest weather stations were selected as experimental sites. Capacity analysis found reductions of maximum and mean pre-breakdown flow rates due to rainfall. The Kruskal-Wallis test also provided some evidence to suggest that the variance in the pre-breakdown flow rate is statistically insignificant. Potential application of this study lies in the operation of real time traffic management schemes such as Variable Speed Limits (VSL), Hard Shoulder Running (HSR), and Ramp Metering System (RMS), where speed or flow limits could be set based on a number of factors, including rainfall events and their intensities.

Keywords: capacity randomness, flow breakdown, freeway capacity, rainfall

Procedia PDF Downloads 381
2464 Short-Term Forecast of Wind Turbine Production with Machine Learning Methods: Direct Approach and Indirect Approach

Authors: Mamadou Dione, Eric Matzner-lober, Philippe Alexandre

Abstract:

The Energy Transition Act defined by the French State has precise implications on Renewable Energies, in particular on its remuneration mechanism. Until then, a purchase obligation contract permitted the sale of wind-generated electricity at a fixed rate. Tomorrow, it will be necessary to sell this electricity on the Market (at variable rates) before obtaining additional compensation intended to reduce the risk. This sale on the market requires to announce in advance (about 48 hours before) the production that will be delivered on the network, so to be able to predict (in the short term) this production. The fundamental problem remains the variability of the Wind accentuated by the geographical situation. The objective of the project is to provide, every day, short-term forecasts (48-hour horizon) of wind production using weather data. The predictions of the GFS model and those of the ECMWF model are used as explanatory variables. The variable to be predicted is the production of a wind farm. We do two approaches: a direct approach that predicts wind generation directly from weather data, and an integrated approach that estimâtes wind from weather data and converts it into wind power by power curves. We used machine learning techniques to predict this production. The models tested are random forests, CART + Bagging, CART + Boosting, SVM (Support Vector Machine). The application is made on a wind farm of 22MW (11 wind turbines) of the Compagnie du Vent (that became Engie Green France). Our results are very conclusive compared to the literature.

Keywords: forecast aggregation, machine learning, spatio-temporal dynamics modeling, wind power forcast

Procedia PDF Downloads 217
2463 A Critical Genre Analysis of Negative Parts in CSR Reports

Authors: Shuai Liu

Abstract:

In corporate social responsibility (CSR) reporting, companies are expected to present both the positive and negative parts of the social and environmental impacts of their performance. This study investigates how the companies that listed in fortune 500 respond to this challenge by analyzing the representations of negative part especially the safety performance. It has found that in the level of genre analysis, it presented 3 major moves and 11 steps in terms of the interdiscursivity analysis. It was made up of three dominant discourse.. The study calls for greater focus on the internal and external analysis of the negative aspect of aspects of companies’ self-disclosure.

Keywords: CSR reports, negative parts, critical genre analysis, interdiscursivity

Procedia PDF Downloads 427
2462 Forecasting of Scaffolding Work Comfort Parameters Based on Data from Meteorological Stations

Authors: I. Szer, J. Szer, M. Pieńko, A. Robak, P. Jamińska-Gadomska

Abstract:

Work at height, such as construction works on scaffoldings, is associated with a considerable risk. Scaffolding workers are usually exposed to changing weather conditions what can additionally increase the risk of dangerous situations. Therefore, it is very important to foresee the risk of adverse conditions to which the worker may be exposed. The data from meteorological stations may be used to asses this risk. However, the dependency between weather conditions on a scaffolding and in the vicinity of meteorological station, should be determined. The paper presents an analysis of two selected environmental parameters which have influence on the behavior of workers – air temperature and wind speed. Measurements of these parameters were made between April and November of 2016 on ten scaffoldings located in different parts of Poland. They were compared with the results taken from the meteorological stations located closest to the studied scaffolding. The results gathered from the construction sites and meteorological stations were not the same, but statistical analyses have shown that they were correlated.

Keywords: scaffolding, health and safety at work, temperature, wind velocity

Procedia PDF Downloads 173
2461 Study of ANFIS and ARIMA Model for Weather Forecasting

Authors: Bandreddy Anand Babu, Srinivasa Rao Mandadi, C. Pradeep Reddy, N. Ramesh Babu

Abstract:

In this paper quickly illustrate the correlation investigation of Auto-Regressive Integrated Moving and Average (ARIMA) and daptive Network Based Fuzzy Inference System (ANFIS) models done by climate estimating. The climate determining is taken from University of Waterloo. The information is taken as Relative Humidity, Ambient Air Temperature, Barometric Pressure and Wind Direction utilized within this paper. The paper is carried out by analyzing the exhibitions are seen by demonstrating of ARIMA and ANIFIS model like with Sum of average of errors. Versatile Network Based Fuzzy Inference System (ANFIS) demonstrating is carried out by Mat lab programming and Auto-Regressive Integrated Moving and Average (ARIMA) displaying is produced by utilizing XLSTAT programming. ANFIS is carried out in Fuzzy Logic Toolbox in Mat Lab programming.

Keywords: ARIMA, ANFIS, fuzzy surmising tool stash, weather forecasting, MATLAB

Procedia PDF Downloads 419
2460 The Development of a Precision Irrigation System for Durian

Authors: Chatrabhuti Pipop, Visessri Supattra, Charinpanitkul Tawatchai

Abstract:

Durian is one of the top agricultural products exported by Thailand. There is the massive market potential for the durian industry. While the global demand for Thai durians, especially the demand from China, is very high, Thailand's durian supply is far from satisfying strong demand. Poor agricultural practices result in low yields and poor quality of fruit. Most irrigation systems currently used by the farmers are fixed schedule or fixed rates that ignore actual weather conditions and crop water requirements. In addition, the technologies emerging are too difficult and complex and prices are too high for the farmers to adopt and afford. Many farmers leave the durian trees to grow naturally. With improper irrigation and nutrient management system, durians are vulnerable to a variety of issues, including stunted growth, not flowering, diseases, and death. Technical development or research for durian is much needed to support the wellbeing of the farmers and the economic development of the country. However, there are a limited number of studies or development projects for durian because durian is a perennial crop requiring a long time to obtain the results to report. This study, therefore, aims to address the problem of durian production by developing an autonomous and precision irrigation system. The system is designed and equipped with an industrial programmable controller, a weather station, and a digital flow meter. Daily water requirements are computed based on weather data such as rainfall and evapotranspiration for daily irrigation with variable flow rates. A prediction model is also designed as a part of the system to enhance the irrigation schedule. Before the system was installed in the field, a simulation model was built and tested in a laboratory setting to ensure its accuracy. Water consumption was measured daily before and after the experiment for further analysis. With this system, the crop water requirement is precisely estimated and optimized based on the data from the weather station. Durian will be irrigated at the right amount and at the right time, offering the opportunity for higher yield and higher income to the farmers.

Keywords: Durian, precision irrigation, precision agriculture, smart farm

Procedia PDF Downloads 118
2459 Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather

Authors: Patience Muchini, Electdom Matandiroya, Emmanuel Mashonjowa

Abstract:

A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Geomagnetically induced currents have been studied in other regions and have been noted to affect the power grid network. In Zimbabwe, grid failures have been experienced, but it is yet to be proven if these failures have been due to GICs. The purpose of this paper is to characterize geomagnetically induced currents with a power grid network. This paper analyses data collected, which is geomagnetic data, which includes the Kp index, DST index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs.

Keywords: adverse space weather, DST index, geomagnetically induced currents, KP index, reactive power

Procedia PDF Downloads 114
2458 Localization of Geospatial Events and Hoax Prediction in the UFO Database

Authors: Harish Krishnamurthy, Anna Lafontant, Ren Yi

Abstract:

Unidentified Flying Objects (UFOs) have been an interesting topic for most enthusiasts and hence people all over the United States report such findings online at the National UFO Report Center (NUFORC). Some of these reports are a hoax and among those that seem legitimate, our task is not to establish that these events confirm that they indeed are events related to flying objects from aliens in outer space. Rather, we intend to identify if the report was a hoax as was identified by the UFO database team with their existing curation criterion. However, the database provides a wealth of information that can be exploited to provide various analyses and insights such as social reporting, identifying real-time spatial events and much more. We perform analysis to localize these time-series geospatial events and correlate with known real-time events. This paper does not confirm any legitimacy of alien activity, but rather attempts to gather information from likely legitimate reports of UFOs by studying the online reports. These events happen in geospatial clusters and also are time-based. We look at cluster density and data visualization to search the space of various cluster realizations to decide best probable clusters that provide us information about the proximity of such activity. A random forest classifier is also presented that is used to identify true events and hoax events, using the best possible features available such as region, week, time-period and duration. Lastly, we show the performance of the scheme on various days and correlate with real-time events where one of the UFO reports strongly correlates to a missile test conducted in the United States.

Keywords: time-series clustering, feature extraction, hoax prediction, geospatial events

Procedia PDF Downloads 376
2457 Anticorrosive Polyurethane Clear Coat with Self-Cleaning Character

Authors: Nihit Madireddi, P. A. Mahanwar

Abstract:

We have aimed to produce a self-cleaning transparent polymer coating with polyurethane (PU) matrix as the latter is highly solvent, chemical and weather resistant having good mechanical properties. Nano-silica modified by 1H, 1H, 2H, 2H-perflurooctyltriethoxysilane was incorporated into the PU matrix for attaining self-cleaning ability through hydrophobicity. The modification was confirmed by particle size analysis and scanning electron microscopy (SEM). Thermo-gravimetric (TGA) studies were carried to ascertain the grafting of silane onto the silica. Several coating formulations were prepared by varying the silica loading content and compared to a commercial equivalent. The effect of dispersion and the morphology of the coated films were assessed by SEM analysis. All coating standardized tests like solvent resistance, adhesion, flexibility, acid, alkali, gloss etc. have been performed as per ASTM standards. Water contact angle studies were conducted to analyze the hydrophobic character of the coating. In addition, the coatings were also subjected to salt spray and accelerated weather testing to analyze the durability of the coating.

Keywords: FAS, nano-silica, PU clear coat, self-cleaning

Procedia PDF Downloads 311
2456 Genre Analysis of Postgraduate Theses and Dissertations: Case of Statement of the Problem

Authors: H. Mashhady, H. A. Manzoori, M. Doosti, M. Fatollahi

Abstract:

This study reports a descriptive research in the form of a genre analysis of postgraduates' theses and dissertations at three Iranian universities, including Ferdowsi, Tehran, and Tarbiat Moddares universities. The researchers sought to depict the generic structure of “statement of the problem” section of PhD dissertations and MA theses. Moreover, researchers desired to find any probable variety based on the year the dissertations belonged, to see weather genre-consciousness developed among Iranian postgraduates. To obtain data, “statement of the problem” section of 90 Ph.D. dissertations and MA theses from 2001 to 2013 in Teaching English as a Foreign Language (TEFL) at above-mentioned universities was selected. Frequency counts was employed for the quantitative method of data analysis, while genre analysis was used as the qualitative method. Inter-rater reliability was found to be about 0.93. Results revealed that students in different degrees at each of these universities used various generic structures for writing “statement of the problem”. Moreover, comparison of different time periods (2001-2006, and 2007-2013) revealed that postgraduates in the second time period, regardless of their degree and university, employed more similar generic structures which can be optimistically attributed to a general raise in genre awareness.

Keywords: genre, genre analysis, Ph.D. and MA dissertations, statement of the problem, generic structure

Procedia PDF Downloads 669
2455 Identifying Key Factors for Accidents’ Severity at Rail-Road Level Crossings Using Ordered Probit Models

Authors: Arefeh Lotfi, Mahdi Babaei, Ayda Mashhadizadeh, Samira Nikpour, Morteza Bagheri

Abstract:

The main objective of this study is to investigate the key factors in accidents’ severity at rail-road level crossings. The data required for this study is obtained from both accident and inventory database of Iran Railways during 2009-2015. The Ordered Probit model is developed using SPSS software to identify the significant factors in the accident severity at rail-road level crossings. The results show that 'train speed', 'vehicle type' and 'weather' are the most important factors affecting the severity of the accident. The results of these studies assist to allocate resources in the right place. This paper suggests mandating the regulations to reduce train speed at rail-road level crossings in bad weather conditions to improve the safety of rail-road level crossings.

Keywords: rail-road level crossing, ordered probit model, accidents’ severity, significant factors

Procedia PDF Downloads 151
2454 Performance Evaluation of Different Technologies of PV Modules in Algeria

Authors: Amira Balaska, Ali Tahri, Amine Boudghene Stambouli, Takashi Oozeki

Abstract:

This paper is dealing with the evaluation of photovoltaic modules as part of the Sahara Solar Breeder project (SSB), five different photovoltaic module technologies which are: m-si, CIS, HIT, Back Contact, a-si_μc -si and a weather station recently installed at the University of Saida (Tahar Moulay) in Saida city located at the gate of the great southern Algeria’s Sahara. The objective of the present work is the study of solar photovoltaic capacity and performance parameters of each PV module technology. The goal of the study is to compare the five different PV technologies in order to find which technologies are suitable for the climate conditions of Algeria’s desert. Measurements of various parameters as irradiance, temperature, humidity and so on by the weather station and I-V curves were performed outdoors at the location without shadow. Finally performance parameters as performance ratio, energy yield and temperature losses are given and analyzed.

Keywords: photovoltaic modules, performance ratio, energy yield, sahara solar breeder, outdoor conditions

Procedia PDF Downloads 662
2453 Application of Particle Swarm Optimization to Thermal Sensor Placement for Smart Grid

Authors: Hung-Shuo Wu, Huan-Chieh Chiu, Xiang-Yao Zheng, Yu-Cheng Yang, Chien-Hao Wang, Jen-Cheng Wang, Chwan-Lu Tseng, Joe-Air Jiang

Abstract:

Dynamic Thermal Rating (DTR) provides crucial information by estimating the ampacity of transmission lines to improve power dispatching efficiency. To perform the DTR, it is necessary to install on-line thermal sensors to monitor conductor temperature and weather variables. A simple and intuitive strategy is to allocate a thermal sensor to every span of transmission lines, but the cost of sensors might be too high to bear. To deal with the cost issue, a thermal sensor placement problem must be solved. This research proposes and implements a hybrid algorithm which combines proper orthogonal decomposition (POD) with particle swarm optimization (PSO) methods. The proposed hybrid algorithm solves a multi-objective optimization problem that concludes the minimum number of sensors and the minimum error on conductor temperature, and the optimal sensor placement is determined simultaneously. The data of 345 kV transmission lines and the hourly weather data from the Taiwan Power Company and Central Weather Bureau (CWB), respectively, are used by the proposed method. The simulated results indicate that the number of sensors could be reduced using the optimal placement method proposed by the study and an acceptable error on conductor temperature could be achieved. This study provides power companies with a reliable reference for efficiently monitoring and managing their power grids.

Keywords: dynamic thermal rating, proper orthogonal decomposition, particle swarm optimization, sensor placement, smart grid

Procedia PDF Downloads 432
2452 Analysis of the Impact of Refractivity on Ultra High Frequency Signal Strength over Gusau, North West, Nigeria

Authors: B. G. Ayantunji, B. Musa, H. Mai-Unguwa, L. A. Sunmonu, A. S. Adewumi, L. Sa'ad, A. Kado

Abstract:

For achieving reliable and efficient communication system, both terrestrial and satellite communication, surface refractivity is critical in planning and design of radio links. This study analyzed the impact of atmospheric parameters on Ultra High Frequency (UHF) signal strength over Gusau, North West, Nigeria. The analysis exploited meteorological data measured simultaneously with UHF signal strength for the month of June 2017 using a Davis Vantage Pro2 automatic weather station and UHF signal strength measuring devices respectively. The instruments were situated at the premise of Federal University, Gusau (6° 78' N, 12° 13' E). The refractivity values were computed using ITU-R model. The result shows that the refractivity value attained the highest value of 366.28 at 2200hr and a minimum value of 350.66 at 2100hr local time. The correlation between signal strength and refractivity is 0.350; Humidity is 0.532 and a negative correlation of -0.515 for temperature.

Keywords: refractivity, UHF (ultra high frequency) signal strength, free space, automatic weather station

Procedia PDF Downloads 197