Search results for: transport kinetics
2405 Public Transport Assignment at Adama City
Authors: Selamawit Mulubrhan Gidey
Abstract:
Adama city, having an area of 29.86 km2, is one of the main cities in Ethiopia experiencing rapid growth in business and construction activities which in turn with an increasing number of vehicles at an alarming rate. For this reason, currently, there is an attempt to develop public transport assignment modeling in the city. Still, there is a huge gap in developing public transport assignments along the road segments of the city with operational and safety performance due to high traffic volume. Thus, the introduction of public transport assignment modeling in Adama City can have a massive impact on the road safety and capacity problem in the city. City transport modeling is important in city transportation planning, particularly in overcoming existing transportation problems such as traffic congestion. In this study, the Adama City transportation model was developed using the PTV VISUM software, whose transportation modeling is based on the four-step model of transportation. Based on the traffic volume data fed and simulated, the result of the study shows that the developed model has better reliability in representing the traffic congestion conditions in Adama city, and the simulation clearly indicates the level of congestion of each route selected and thus, the city road administrative office can take managerial decisions on public transport assignment so as to overcome traffic congestion executed along the selected routes.Keywords: trip modelling, PTV VISUM, public transport assignment, congestion
Procedia PDF Downloads 432404 Urban Transport System Resilience Guidelines
Authors: Evangelia Gaitanidou, Evangelos Bekiaris
Abstract:
Considering that resilience implies the ability of a system to adapt continuously in order to respond to its operational goals, a system is considered as more or less resilient depending on the level and time of recovering from disruptive events and/or shocks to its initial state. Regarding transport systems, enhancing resilience is considered imperative for two main reasons: Such systems provide critical support to every socio-economic activity, while being one of the most important economic sectors and, secondly, the paths that convey people, goods and information, are the same through which risks are propagated. RESOLUTE (RESilience management guidelines and Operationalization appLied to Urban Transport Environment) Horizon 2020 research project is answering those needs, by proposing and testing a set of guidelines for resilience management of the urban transport system. The methods and steps towards this goal, through a step-wise methodology, taking into account established models like FRAM (Functional Resonance Analysis Model), and upon gathering existing practices are described in this paper, together with an overview of the produced guidelines. The overall aim is to create a framework which public transport authorities could consult and apply, for rendering their infrastructure resilient against natural disaster and other threats.Keywords: guidelines, infrastructure, resilience, transport
Procedia PDF Downloads 2492403 Chemical Leaching of Metals from Landfill’s Fine Fraction
Authors: E. Balkauskaitė, A. Bučinskas, R. Ivanauskas, M. Kriipsalu, G. Denafas
Abstract:
Leaching of heavy metals (chromium, zinc, copper) from the fine fraction of the Torma landfill (Estonia) was investigated. The leaching kinetics studies have determined the dependence of some metal’s concentration on the leaching time. Metals were leached with Aqua Regia, distilled water and EDTA (Ethylenediaminetetraacetic acid); process was most intensive 2 hours after the start of the experiment, except for copper with EDTA (0.5 h) and lead with EDTA (4 h). During leaching, steady concentrations of Fe, Mn, Cd and Pb were fully stabilized after 8 h; however concentrations of Cu and Ni were not stabilized after 10 h.Keywords: fine fraction, landfills, leached metals, leaching kinetics
Procedia PDF Downloads 1352402 Analysis of Energy Required for the Massive Incorporation of Electric Buses in the City of Ambato - Ecuador
Authors: Paola Quintana, Angélica Vaca, Sebastián Villacres, Henry Acurio
Abstract:
Ecuador through the Organic Law of Energy Efficiency establishes that "Starting in the year 2025, all vehicles that are incorporated into the urban and inter-parroquial public transport service must only be electric”, this marks a foundation for the introduction of electric mobility in the country. The present investigation is based on developing an analysis and projection of the Energy Required for the incorporation of electric buses for public passenger transport in the city of Ambato-Ecuador, taking into account the useful life of the vehicle fleet, number of existing vehicles and analysis of transport routes in the study city. The energy demand based on the vehicular dynamics is analyzed, determination of equations for the calculation of force in the wheel since it is considered a variable of slope due to the fact that this has a great incidence in the autonomy when speaking of electric mobility, later the energy analysis applied to public transport routes, finally a projection of the energy requirement is made based on the change of public transport units according to their useful life.Keywords: public transport, electric mobility, energy, ecuador
Procedia PDF Downloads 872401 Management and Evaluation of the Importance of Porous Media in Biomedical Engineering as Associated with Magnetic Resonance Imaging Besides Drug Delivery
Authors: Fateme Nokhodchi Bonab
Abstract:
Studies related to magnetic resonance imaging (MRI) and drug delivery are reviewed in this study to demonstrate the role of transport theory in porous media in facilitating advances in biomedical applications. Diffusion processes are believed to be important in many therapeutic modalities such as: B. Delivery of drugs to the brain. We analyse the progress in the development of diffusion equations using the local volume average method and the evaluation of applications related to diffusion equations. Torsion and porosity have significant effects on diffusive transport. In this study, various relevant models of torsion are presented and mathematical modeling of drug release from biodegradable delivery systems is analysed. In this study, a new model of drug release kinetics from porous biodegradable polymeric microspheres under bulk and surface erosion of the polymer matrix is presented. Solute drug diffusion, drug dissolution from the solid phase, and polymer matrix erosion have been found to play a central role in controlling the overall drug release process. This work paves the way for MRI and drug delivery researchers to develop comprehensive models based on porous media theory that use fewer assumptions compared to other approaches.Keywords: MRI, porous media, drug delivery, biomedical applications
Procedia PDF Downloads 892400 An Integration of Genetic Algorithm and Particle Swarm Optimization to Forecast Transport Energy Demand
Authors: N. R. Badurally Adam, S. R. Monebhurrun, M. Z. Dauhoo, A. Khoodaruth
Abstract:
Transport energy demand is vital for the economic growth of any country. Globalisation and better standard of living plays an important role in transport energy demand. Recently, transport energy demand in Mauritius has increased significantly, thus leading to an abuse of natural resources and thereby contributing to global warming. Forecasting the transport energy demand is therefore important for controlling and managing the demand. In this paper, we develop a model to predict the transport energy demand. The model developed is based on a system of five stochastic differential equations (SDEs) consisting of five endogenous variables: fuel price, population, gross domestic product (GDP), number of vehicles and transport energy demand and three exogenous parameters: crude birth rate, crude death rate and labour force. An interval of seven years is used to avoid any falsification of result since Mauritius is a developing country. Data available for Mauritius from year 2003 up to 2009 are used to obtain the values of design variables by applying genetic algorithm. The model is verified and validated for 2010 to 2012 by substituting the values of coefficients obtained by GA in the model and using particle swarm optimisation (PSO) to predict the values of the exogenous parameters. This model will help to control the transport energy demand in Mauritius which will in turn foster Mauritius towards a pollution-free country and decrease our dependence on fossil fuels.Keywords: genetic algorithm, modeling, particle swarm optimization, stochastic differential equations, transport energy demand
Procedia PDF Downloads 3692399 CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery
Authors: Jinliang Yuan, Jong-Sung Yu, Bengt Sundén
Abstract:
A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electrochemical reactions at the active surfaces, and effects of discharge reaction-generated solid Li2O2 on the transport properties and the electrochemical reaction rate are evaluated and implemented in the model. The predicted results are discussed and analyzed in terms of the spatial and transient distribution of various parameters, such as local oxygen concentration, reaction rate, variable solid Li2O2 volume fraction and porosity, as well as the effective diffusion coefficients. It is found that the effect of the solid Li2O2 product deposited at the solid active surfaces is significant on the transport phenomena and the overall battery performance.Keywords: Computational Fluid Dynamics (CFD), modeling, multi-phase, transport phenomena, lithium-air battery
Procedia PDF Downloads 4512398 Innovations for Freight Transport Systems
Authors: M. Lu
Abstract:
The paper presents part of the results of EU-funded projects: SoCool@EU (Sustainable Organisation between Clusters Of Optimized Logistics @ Europe), DG-RTD (Research and Innovation), Regions of Knowledge Programme (FP7-REGIONS-2011-1). It will provide an in-depth review of emerging technologies for further improving urban mobility and freight transport systems, such as (information and physical) infrastructure, ICT-based Intelligent Transport Systems (ITS), vehicles, advanced logistics, and services. Furthermore, the paper will provide an analysis of the barriers and will review business models for the market uptake of innovations. From a perspective of science and technology, the challenges of urbanization could be mainly handled through adequate (human-oriented) solutions for urban planning, sustainable energy, the water system, building design and construction, the urban transport system (both physical and information aspects), and advanced logistics and services. Implementation of solutions for these domains should be follow a highly integrated and balanced approach, a silo approach should be avoided. To develop a sustainable urban transport system (for people and goods), including inter-hubs and intra-hubs, a holistic view is needed. To achieve a sustainable transport system for people and goods (in terms of cost-effectiveness, efficiency, environment-friendliness and fulfillment of the mobility, transport and logistics needs of the society), a proper network and information infrastructure, advanced transport systems and operations, as well as ad hoc and seamless services are required. In addition, a road map for an enhanced urban transport system until 2050 will be presented. This road map aims to address the challenges of urban transport, and to provide best practices in inter-city and intra-city environments from various perspectives, including policy, traveler behaviour, economy, liability, business models, and technology.Keywords: synchromodality, multimodal transport, logistics, Intelligent Transport Systems (ITS)
Procedia PDF Downloads 3162397 Revealing of the Wave-Like Process in Kinetics of the Structural Steel Radiation Degradation
Authors: E. A. Krasikov
Abstract:
Dependence of the materials properties on neutron irradiation intensity (flux) is a key problem while usage data of the accelerated materials irradiation in test reactors for forecasting of their capacity for work in realistic (practical) circumstances of operation. Investigations of the reactor pressure vessel steel radiation degradation dependence on fast neutron fluence (embrittlement kinetics) at low flux reveal the instability in the form of the scatter of the experimental data and wave-like sections of embrittlement kinetics appearance. Disclosure of the steel degradation oscillating is a sign of the steel structure cyclic self-recovery transformation as it take place in self-organization processes. This assumption has received support through the discovery of the similar ‘anomalous’ data in scientific publications and by means of own additional experiments. Data obtained stimulate looking-for ways to management of the structural steel radiation stability (for example, by means of nano - structure modification for radiation defects annihilation intensification) for creation of the intelligent self-recovering material. Expected results: - radiation degradation theory and mechanisms development, - more adequate models of the radiation embrittlement elaboration, - surveillance specimen programs improvement, - methods and facility development for usage data of the accelerated materials irradiation for forecasting of their capacity for work in realistic (practical) circumstances of operation, - search of the ways for creating of the radiation stable self-recovery intelligent materials.Keywords: degradation, radiation, steel, wave-like kinetics
Procedia PDF Downloads 3042396 The Transport of Coexisting Nanoscale Zinc Oxide Particles, Cu(Ⅱ) and Cr(Ⅵ) Ions in Simulated Landfill Leachate
Authors: Xiaoyu Li, Wenchuan Ding, Yujia Yia
Abstract:
As the nanoscale zinc oxide particles (nano-ZnO) accumulate in the landfill, nano-ZnO will enter the landfill leachate and come into contact with the heavy metal ions in leachate, which will change their transport process in the landfill and, furthermore, affect each other's environmental fate and toxicity. In this study, we explored the transport of co-existing nano-ZnO, Cu(II) and Cr(VI) ions by column experiments under different stages of landfill leachate conditions (flow rate, pH, ionic strength, humic acid). The results show that Cu(II) inhibits the transport of nano-ZnO in the quartz sand column by increasing the surface potential of nano-ZnO, and nano-ZnO increases the retention of Cu(II) in the quartz sand column by adsorbing Cu(II) ions. Cr(VI) promotes the transport of nano-ZnO in the quartz sand column by neutralizing the surface potential of the nano-ZnO which reduces electrostatic attraction between nZnO and quartz sand, but the nano-ZnO has no effect on the transport of Cr(VI). The nature of landfill leachates such as flow rate, pH, ionic strength (IS) and humic acid (HA) has a certain effect on the transport of coexisting nano-ZnO and heavy metal ions. For leachate containing Cu(II) and Cr(VI) ions, at the initial stage of landfilling, the pH of leachate is acidic, ionic strength value is high, the humic acid concentration is low, and the transportability of nano-ZnO is weak. As the landfill age increased, the pH value in the leachate gradually increases, when the ions are raised to alkaline, these ions are trending to precipitated or adsorbed to the solid wastes in landfill, which resulting in low IS value of leachate. At the same time, more refractory organic matter gradually increases such as HA, which provides repulsive steric effects, so the nano-ZnO is more likely to migrate. Overall, the Cr(VI) can promote the transport of nano-ZnO more than Cu(II).Keywords: heavy metal ions, landfill leachate, nano-ZnO, transport
Procedia PDF Downloads 1362395 Molecular Dynamics Studies of Main Factors Affecting Mass Transport Phenomena on Cathode of Polymer Electrolyte Membrane Fuel Cell
Authors: Jingjing Huang, Nengwei Li, Guanghua Wei, Jiabin You, Chao Wang, Junliang Zhang
Abstract:
In this work, molecular dynamics (MD) simulation is applied to analyze the mass transport process in the cathode of proton exchange membrane fuel cell (PEMFC), of which all types of molecules situated in the cathode is considered. a reasonable and effective MD simulation process is provided, and models were built and compared using both Materials Studio and LAMMPS. The mass transport is one of the key issues in the study of proton exchange membrane fuel cells (PEMFCs). In this report, molecular dynamics (MD) simulation is applied to analyze the influence of Nafion ionomer distribution and Pt nano-particle size on mass transport process in the cathode. It is indicated by the diffusion coefficients calculation that a larger quantity of Nafion, as well as a higher equivalent weight (EW) value, will hinder the transport of oxygen. In addition, medium-sized Pt nano-particles (1.5~2nm) are more advantageous in terms of proton transport compared with other particle sizes (0.94~2.55nm) when the center-to-center distance between two Pt nano-particles is around 5 nm. Then mass transport channels are found to be formed between the hydrophobic backbone and the hydrophilic side chains of Nafion ionomer according to the radial distribution function (RDF) curves. And the morphology of these channels affected by the Pt size is believed to influence the transport of hydronium ions and, consequently the performance of PEMFC.Keywords: cathode catalytic layer, mass transport, molecular dynamics, proton exchange membrane fuel cell
Procedia PDF Downloads 2432394 On the Effect of Carbon on the Efficiency of Titanium as a Hydrogen Storage Material
Authors: Ghazi R. Reda Mahmoud Reda
Abstract:
Among the metal that forms hydride´s, Mg and Ti are known as the most lightweight materials; however, they are covered with a passive layer of oxides and hydroxides and require activation treatment under high temperature ( > 300 C ) and hydrogen pressure ( > 3 MPa) before being used for storage and transport applications. It is well known that small graphite addition to Ti or Mg, lead to a dramatic change in the kinetics of mechanically induced hydrogen sorption ( uptake) and significantly stimulate the Ti-Hydrogen interaction. Many explanations were given by different authors to explain the effect of graphite addition on the performance of Ti as material for hydrogen storage. Not only graphite but also the addition of a polycyclic aromatic compound will also improve the hydrogen absorption kinetics. It will be shown that the function of carbon addition is two-fold. First carbon acts as a vacuum cleaner, which scavenges out all the interstitial oxygen that can poison or slow down hydrogen absorption. It is also important to note that oxygen favors the chemisorption of hydrogen, which is not desirable for hydrogen storage. Second, during scavenging of the interstitial oxygen, the carbon reacts with oxygen in the nano and microchannel through a highly exothermic reaction to produce carbon dioxide and monoxide which provide the necessary heat for activation and thus in the presence of carbon lower heat of activation for hydrogen absorption which is observed experimentally. Furthermore, the product of the reaction of hydrogen with the carbon oxide will produce water which due to ball milling hydrolyze to produce the linear H5O2 + this will reconstruct the primary structure of the nanocarbon to form secondary structure, where the primary structure (a sheet of carbon) are connected through hydrogen bonding. It is the space between these sheets where physisorption or defect mediated sorption occurs.Keywords: metal forming hydrides, polar molecule impurities, titanium, phase diagram, hydrogen absorption
Procedia PDF Downloads 3622393 Molecular Junctions between Graphene Strips: Electronic and Transport Properties
Authors: Adel Belayadi, Ahmed Mougari, Boualem Bourahla
Abstract:
Molecular junctions are currently considered a promising style in the miniaturization of electronic devices. In this contribution, we provide a tight-binding model to investigate the quantum transport properties across-molecular junctions sandwiched between 2D-graphene nanoribbons in the zigzag direction. We investigate, in particular, the effect of embedded atoms such as Gold and Silicon across the molecular junction. The results exhibit a resonance behavior in terms of incident Fermi levels, depending on the molecular junction type. Additionally, the transport properties under a perpendicular magnetic field exhibit an oscillation for the transmittance versus the magnetic field strength.Keywords: molecular junction, 2D-graphene nanoribbons, quantum transport properties, magnetic field
Procedia PDF Downloads 962392 Determination of Chemical and Adsorption Kinetics: An Investigation of a Petrochemical Wastewater Treatment Utilizing GAC
Authors: Leila Vafajoo, Feria Ghanaat, Alireza Mohmadi Kartalaei, Amin Ghalebi
Abstract:
Petrochemical industries are playing an important role in producing wastewaters. Nowadays different methods are employed to treat these materials. The goal of the present research was to reduce the COD of a petrochemical wastewater via adsorption technique using a commercial granular activated carbon (GAC) as adsorbent. In the current study, parameters of kinetic models as well as; adsorption isotherms were determined through utilizing the Langmuir and Freundlich isotherms. The key parameters of KL= 0.0009 and qm= 33.33 for the former and nf=0.5 and Kf= 0.000004 for the latter isotherms resulted. Moreover, a correlation coefficient of above 90% for both cases proved logical use of such isotherms. On the other hand, pseudo-first and -second order kinetics equations were implemented. These resulted in coefficients of k1=0.005 and qe=2018 as well as; K2=0.009 and qe=1250; respectively. In addition, obtaining the correlation coefficients of 0.94 and 0.68 for these 1st and 2nd order kinetics; respectively indicated advantageous use of the former model. Furthermore, a significant experimental reduction of the petrochemical wastewater COD revealed that, using GAC for the process undertaken was an efficient mean of treatment. Ultimately, the current investigation paved down the road for predicting the system’s behavior on industrial scale.Keywords: petrochemical wastewater, adsorption, granular activated carbon, equilibrium isotherm, kinetic model
Procedia PDF Downloads 3612391 Unsteady Reactive Hydromagnetic Fluid Flow of a Two-Step Exothermic Chemical Reaction through a Channel
Authors: J. A. Gbadeyan, R. A. Kareem
Abstract:
In this paper, we investigated the effects of unsteady internal heat generation of a two-step exothermic reactive hydromagnetic fluid flow under different chemical kinetics namely: Sensitized, Arrhenius and Bimolecular kinetics through an isothermal wall temperature channel. The resultant modeled nonlinear partial differential equations were simplified and solved using a combined Laplace-Differential Transform Method (LDTM). The solutions obtained were discussed and presented graphically to show the salient features of the fluid flow and heat transfer characteristics.Keywords: unsteady, reactive, hydromagnetic, couette ow, exothermi creactio
Procedia PDF Downloads 4482390 Mechanism of Charge Transport in the Interface of CsSnI₃-FASnI₃ Perovskite Based Solar Cell
Authors: Seyedeh Mozhgan Seyed-Talebi, Weng-Kent Chan, Hsin-Yi Tiffany Chen
Abstract:
Lead-free perovskite photovoltaic (PV) technology employing non-toxic tin halide perovskite absorbers is pivotal for advancing perovskite solar cell (PSC) commercialization. Despite challenges posed by perovskite sensitivity to oxygen and humidity, our study utilizes DFT calculations using VASP and NanoDCAL software and SCAPS-1D simulations to elucidate the charge transport mechanism at the interface of CsSnI₃-FASnI₃ heterojunction. Results reveal how inherent electric fields facilitate efficient carrier transport, reducing recombination losses. We predict optimized power conversion efficiencies (PCEs) and highlight the potential of CsSnI3-FASnI3 heterojunctions for cost-effective and efficient charge transport layer-free (CTLF) photovoltaic devices. Our study provides insights into the future direction of recognizing more efficient, nontoxic heterojunction perovskite devices.Keywords: charge transport layer free, CsSnI₃-FASnI₃ heterojunction, lead-free perovskite solar cell, tin halide perovskite., Charge transport layer free
Procedia PDF Downloads 452389 Formulation and in vitro Evaluation of Sustained Release Matrix Tablets of Levetiracetam for Better Epileptic Treatment
Authors: Nagasamy Venkatesh Dhandapani
Abstract:
The objective of the present study was to develop sustained release oral matrix tablets of anti epileptic drug levetiracetam. The sustained release matrix tablets of levetiracetam were prepared using hydrophilic matrix hydroxypropyl methylcellulose (HPMC) as a release retarding polymer by wet granulation method. Prior to compression, FTIR studies were performed to understand the compatibility between the drug and excipients. The study revealed that there was no chemical interaction between drug and excipients used in the study. The tablets were characterized by physical and chemical parameters and results were found in acceptable limits. In vitro release study was carried out for the tablets using 0.1 N HCl for 2 hours and in phosphate buffer pH 7.4 for remaining time up to 12 hours. The effect of polymer concentration was studied. Different dissolution models were applied to drug release data in order to evaluate release mechanisms and kinetics. The drug release data fit well to zero order kinetics. Drug release mechanism was found as a complex mixture of diffusion, swelling and erosion.Keywords: levetiracetam, sustained-release, hydrophilic matrix tablet, HPMC grade K 100 MCR, wet granulation, zero order release kinetics
Procedia PDF Downloads 3162388 Drying Kinetics, Energy Requirement, Bioactive Composition, and Mathematical Modeling of Allium Cepa Slices
Authors: Felix U. Asoiro, Meshack I. Simeon, Chinenye E. Azuka, Harami Solomon, Chukwuemeka J. Ohagwu
Abstract:
The drying kinetics, specific energy consumed (SEC), effective moisture diffusivity (EMD), flavonoid, phenolic, and vitamin C contents of onion slices dried under convective oven drying (COD) were compared with microwave drying (MD). Drying was performed with onion slice thicknesses of 2, 4, 6, and 8 mm; air drying temperatures of 60, 80, and 100°C for COD, and microwave power of 450 W for MD. A decrease in slice thickness and an increase in drying air temperature led to a drop in the drying time. As thickness increased from 2 – 8 mm, EMD rose from 1.1-4.35 x 10⁻⁸ at 60°C, 1.1-5.6 x 10⁻⁸ at 80°C, and 1.25-6.12 x 10⁻⁸ at 100°C with MD treatments yielding the highest mean value (6.65 x 10⁻⁸ m² s⁻¹) at 8 mm. Maximum SEC for onion slices in COD was 238.27 kWh/kg H₂O (2 mm thickness), and the minimum was 39.4 kWh/kg H₂O (8 mm thickness) whereas maximum during MD was 25.33 kWh/kg H₂O (8 mm thickness) and minimum, 18.7 kWh/kg H₂O (2 mm thickness). MD treatment gave a significant (p 0.05) increase in the flavonoid (39.42 – 64.4%), phenolic (38.0 – 46.84%), and vitamin C (3.7 – 4.23 mg 100 g⁻¹) contents, while COD treatment at 60°C and 100°C had positive effects on only vitamin C and phenolic contents, respectively. In comparison, the Weibull model gave the overall best fit (highest R²=0.999; lowest SSE=0.0002, RSME=0.0123, and χ²= 0.0004) when drying 2 mm onion slices at 100°C.Keywords: allium cepa, drying kinetics, specific energy consumption, flavonoid, vitamin C, microwave oven drying
Procedia PDF Downloads 1342387 Exploring Subjective Attitudes towards Public Transport of Intercity Travel and Their Relationships
Authors: Jiaqi Zhang, Zhi Dong, Pan Xing
Abstract:
With the continuous development of urban agglomerations, higher demands are placed on intercity public transport travel services. To improve these services, it is necessary to comprehensively understand the views and evaluations of travelers. Taking the Guanzhong Plain urban agglomeration in China as the object, this study explores subjective attitude indicators from self-administrated survey data and examines the relationship among perceived accessibility, preference, and satisfaction for intercity public transport using a structural equation model. The results show that perceived service quality has a direct positive impact on perceived accessibility and satisfaction. Perceived accessibility and preference significantly affect satisfaction. In addition, perceived accessibility mediates the effect of service quality on satisfaction. This study provides valuable insights from a policy perspective to improve the subjective evaluation of intercity public transport travelers while emphasizing the importance of subjective variables in transport system evaluation and advocates for their subdivision to more comprehensively improve the travel experience.Keywords: intercity public transport, perceived accessibility, satisfaction, structural equation model
Procedia PDF Downloads 1052386 Transport Emission Inventories and Medical Exposure Modeling: A Missing Link for Urban Health
Authors: Frederik Schulte, Stefan Voß
Abstract:
The adverse effects of air pollution on public health are an increasingly vital problem in planning for urban regions in many parts of the world. The issue is addressed from various angles and by distinct disciplines in research. Epidemiological studies model the relative increase of numerous diseases in response to an increment of different forms of air pollution. A significant share of air pollution in urban regions is related to transport emissions that are often measured and stored in emission inventories. Though, most approaches in transport planning, engineering, and operational design of transport activities are restricted to general emission limits for specific air pollutants and do not consider more nuanced exposure models. We conduct an extensive literature review on exposure models and emission inventories used to study the health impact of transport emissions. Furthermore, we review methods applied in both domains and use emission inventory data of transportation hubs such as ports, airports, and urban traffic for an in-depth analysis of public health impacts deploying medical exposure models. The results reveal specific urban health risks related to transport emissions that may improve urban planning for environmental health by providing insights in actual health effects instead of only referring to general emission limits.Keywords: emission inventories, exposure models, transport emissions, urban health
Procedia PDF Downloads 3892385 Integrating High-Performance Transport Modes into Transport Networks: A Multidimensional Impact Analysis
Authors: Sarah Pfoser, Lisa-Maria Putz, Thomas Berger
Abstract:
In the EU, the transport sector accounts for roughly one fourth of the total greenhouse gas emissions. In fact, the transport sector is one of the main contributors of greenhouse gas emissions. Climate protection targets aim to reduce the negative effects of greenhouse gas emissions (e.g. climate change, global warming) worldwide. Achieving a modal shift to foster environmentally friendly modes of transport such as rail and inland waterways is an important strategy to fulfill the climate protection targets. The present paper goes beyond these conventional transport modes and reflects upon currently emerging high-performance transport modes that yield the potential of complementing future transport systems in an efficient way. It will be defined which properties describe high-performance transport modes, which types of technology are included and what is their potential to contribute to a sustainable future transport network. The first step of this paper is to compile state-of-the-art information about high-performance transport modes to find out which technologies are currently emerging. A multidimensional impact analysis will be conducted afterwards to evaluate which of the technologies is most promising. This analysis will be performed from a spatial, social, economic and environmental perspective. Frequently used instruments such as cost-benefit analysis and SWOT analysis will be applied for the multidimensional assessment. The estimations for the analysis will be derived based on desktop research and discussions in an interdisciplinary team of researchers. For the purpose of this work, high-performance transport modes are characterized as transport modes with very fast and very high throughput connections that could act as efficient extension to the existing transport network. The recently proposed hyperloop system represents a potential high-performance transport mode which might be an innovative supplement for the current transport networks. The idea of hyperloops is that persons and freight are shipped in a tube at more than airline speed. Another innovative technology consists in drones for freight transport. Amazon already tests drones for their parcel shipments, they aim for delivery times of 30 minutes. Drones can, therefore, be considered as high-performance transport modes as well. The Trans-European Transport Networks program (TEN-T) addresses the expansion of transport grids in Europe and also includes high speed rail connections to better connect important European cities. These services should increase competitiveness of rail and are intended to replace aviation, which is known to be a polluting transport mode. In this sense, the integration of high-performance transport modes as described above facilitates the objectives of the TEN-T program. The results of the multidimensional impact analysis will reveal potential future effects of the integration of high-performance modes into transport networks. Building on that, a recommendation on the following (research) steps can be given which are necessary to ensure the most efficient implementation and integration processes.Keywords: drones, future transport networks, high performance transport modes, hyperloops, impact analysis
Procedia PDF Downloads 3322384 Establishment of Kinetic Zone Diagrams via Simulated Linear Sweep Voltammograms for Soluble-Insoluble Systems
Authors: Imene Atek, Abed M. Affoune, Hubert Girault, Pekka Peljo
Abstract:
Due to the need for a rigorous mathematical model that can help to estimate kinetic properties for soluble-insoluble systems, through voltammetric experiments, a Nicholson Semi Analytical Approach was used in this work for modeling and prediction of theoretical linear sweep voltammetry responses for reversible, quasi reversible or irreversible electron transfer reactions. The redox system of interest is a one-step metal electrodeposition process. A rigorous analysis of simulated linear scan voltammetric responses following variation of dimensionless factors, the rate constant and charge transfer coefficients in a broad range was studied and presented in the form of the so called kinetic zones diagrams. These kinetic diagrams were divided into three kinetics zones. Interpreting these zones leads to empirical mathematical models which can allow the experimenter to determine electrodeposition reactions kinetics whatever the degree of reversibility. The validity of the obtained results was tested and an excellent experiment–theory agreement has been showed.Keywords: electrodeposition, kinetics diagrams, modeling, voltammetry
Procedia PDF Downloads 1412383 A Polynomial Approach for a Graphical-based Integrated Production and Transport Scheduling with Capacity Restrictions
Authors: M. Ndeley
Abstract:
The performance of global manufacturing supply chains depends on the interaction of production and transport processes. Currently, the scheduling of these processes is done separately without considering mutual requirements, which leads to no optimal solutions. An integrated scheduling of both processes enables the improvement of supply chain performance. The integrated production and transport scheduling problem (PTSP) is NP-hard, so that heuristic methods are necessary to efficiently solve large problem instances as in the case of global manufacturing supply chains. This paper presents a heuristic scheduling approach which handles the integration of flexible production processes with intermodal transport, incorporating flexible land transport. The method is based on a graph that allows a reformulation of the PTSP as a shortest path problem for each job, which can be solved in polynomial time. The proposed method is applied to a supply chain scenario with a manufacturing facility in South Africa and shipments of finished product to customers within the Country. The obtained results show that the approach is suitable for the scheduling of large-scale problems and can be flexibly adapted to different scenarios.Keywords: production and transport scheduling problem, graph based scheduling, integrated scheduling
Procedia PDF Downloads 4742382 Reaction Kinetics of Biodiesel Production from Refined Cottonseed Oil Using Calcium Oxide
Authors: Ude N. Callistus, Amulu F. Ndidi, Onukwuli D. Okechukwu, Amulu E. Patrick
Abstract:
Power law approximation was used in this study to evaluate the reaction orders of calcium oxide, CaO catalyzed transesterification of refined cottonseed oil and methanol. The kinetics study was carried out at temperatures of 45, 55 and 65 oC. The kinetic parameters such as reaction order 2.02 and rate constant 2.8 hr-1g-1cat, obtained at the temperature of 65 oC best fitted the kinetic model. The activation energy, Ea obtained was 127.744 KJ/mol. The results indicate that the transesterification reaction of the refined cottonseed oil using calcium oxide catalyst is approximately second order reaction.Keywords: refined cottonseed oil, transesterification, CaO, heterogeneous catalysts, kinetic model
Procedia PDF Downloads 5432381 Shopping Centers and Public Transport: Study of the Shopping Centres Trips of Algiers City
Authors: Bakhrouri Sarah
Abstract:
The city of Algiers constitutes the first commercial pole of the country; 56.3% of its economic entities come from the commercial sector. Shopping centers are the new form of commerce that has emerged in the city since the 2000s. They are considered to be commercial and leisure poles and major generators of travel. However, shopping centers in the capital Algiers are poorly served by public transport, and their choice of location is mainly conditioned by the availability of land; accessibility by public transport does not appear to be an important criterion in the choice of their location. As a result, travel to and from these commercial centers is mainly by car, which breaks with the sustainability objectives of national transportation policy. Our study attempts to examine the impact of public transport accessibility of shopping centers on consumers' travel behaviour. The main objective of this research is to determine the link between the accessibility of these facilities, the use of private cars, and public transport modes. To this end, we analyze the choice of travel mode of consumers and the different factors that determine it by focusing on the influence of accessibility. The results showed a considerable influence of the accessibility on the travel behavior of the consumer in Algiers, so it is recommended to improve the accessibility of shopping centers by public transport in order to contribute to a modal shift.Keywords: accessibility, shopping centers trips, public transportation, Algiers
Procedia PDF Downloads 992380 Hypothesis on Annual Sea Level Variation and Increased Volume Transport in Korea Strait
Authors: Young-Taeg Kim, Gwang Ho Seo, Hyungju Oh, Ho Kyung Ha, Kuk Jin Kim
Abstract:
Kim et al., hypothesized an increase in volume transport in the Korea Strait based on the concurrent increase in water temperature and mean sea level observed by the Korea Hydrographic and Oceanographic Agency (KHOA) in the vicinity of the Korea Strait from 2000 to 2009. Since then, to our best knowledge, no definitive studies have been reported on the increase in volume transport through the Korea Strait, but the observed water temperature (2000-2021) and sea level (1989-2021) in the Korea Strait and East Sea have been found to be increasing. In particular, the rapid increase rate in the mean sea level rise (2.55~3.53 mm/y) in these areas cannot be explained by only steric effect due to the increased water temperature. It is more reasonable interpretation that the sea level rise is due to an increase in the volume transport of warm and salty currents. If the increase in the volume transport is explained by the geostrophic equation without considering the sea level rise in the Korea Strait, the current velocity should increase. However, up to now, there are no reports of an increase in current velocity from direct observations using ADCP (e.g., observations of Camellia) or from various numerical models. Therefore, the increase in volume transport cannot be explained by the geostrophic equation. Another possible explanation for the increase in the volume transport is the effect of wind. Although Korea is dominated by monsoon, it is affected by winds according to El Niño and La Niña, which have a cycle of about 3 to 4 years. During El Niño (La Niña), northerly winds (southerly winds) prevail in Korea. Consequently, it is inferred that the transported volume in the Korea Strait slowly increases interannually. However, in this study, it was difficult to find a clear correlation between annually-averaged mean sea level and El Niño (or La Niña) during 1989-2021. This is probably due to the interactions of the PDO (Pacific Decadal Oscillation) and AO (Arctic Oscillation) along with the ENSO (El niño-Southern Oscillation). However, it is clear that the interannual variability of winds is affecting the volume transport in the Korean Strait. On the other hand, the effect of global sea level rise on the volume transport in the Korea Strait is small compared to the interannual variability of the volume transport, but it seems to play a constant role.Keywords: mean sea level, volume transport, El nino, La nina
Procedia PDF Downloads 872379 Major Mechanisms of Atmospheric Moisture Transport and Their Role in Precipitation Extreme Events in the Amazonia
Authors: Luis Gimeno, Rosmeri da Rocha, Raquel Nieto, Tercio Ambrizzi, Alex Ramos, Anita Drumond
Abstract:
The transport of moisture from oceanic sources to the continents represents the atmospheric branch of the water cycle, forming the connection between evaporation from the ocean and precipitation over the continents. In this regard two large scale dynamical/meteorological structures appear to play a key role, namely Low Level Jet (LLJ) systems and Atmospheric Rivers (ARs). The former are particularly important in tropical and subtropical regions; the latter is mostly confined to extratropical regions. A key question relates to the anomalies in the transport of moisture observed during natural hazards related to extremes of precipitation (i.e., drought or wet spells). In this study we will be focused on these two major atmospheric moisture transport mechanisms (LLJs and ARs) and its role in precipitation extreme events (droughts and wet spells) in the Amazonia paying particular attention to i) intensification (decreasing) of moisture transport by them and its role in wet spells (droughts), and ii) changes in their positions and occurrence with associated flooding and wet spells.Keywords: droughts, wet spells, amazonia, LLJs, atmospheric rivers
Procedia PDF Downloads 3022378 Mobility and Effective Regulatory Policies in the 21st Century Transport Sector
Authors: Pedro Paulino
Abstract:
The majority of the world’s population is already living in urban areas and the urban population is expected to keep increasing in the next decades. This exponential increase in urban population carries with it obvious mobility problems. Not only a new paradigm in the transport sector is needed in order to address these problems; effective regulatory policies to ensure the quality of services, passenger rights, competition between operators and consistency of the entire mobile ecosystem are needed as well. The purpose of this paper is to present the problems the world faces in this sector and contribute to their solution. Indeed, our study concludes that only through the active supervision of the markets and the activity of monitoring the various operators will it be possible to develop a sustainable and efficient transport system which meets the needs of a changing world.Keywords: mobility, regulation policies, sanctioning powers, sustainable transport
Procedia PDF Downloads 3002377 Economic Assessment Methodology to Support Decisions for Transport Infrastructure Development
Authors: Dimitrios J. Dimitriou
Abstract:
The decades after the end of the second War provide evidence that infrastructures investments contibute to economic development, on terms of productivity and income growth. In order to force productivity and increase competitiveness the financing of large transport infrastructure projects are on the top of the agenda in strategic planning process. Such a decision may take form some days to some decades and stakeholders as well as decision makers need tools in order to estimate the economic impact on natioanl economy of such an investment. The key question in such decisions is if the effects caused by the new infrastructure could be able to boost economic development on one hand, and create new jobs and activities on the other. This paper deals with the review of estimation of the mega transport infrastructure projects economic effects in economy.Keywords: economic impact, transport infrastructure, strategic planning, decision making
Procedia PDF Downloads 2902376 Study of the Non-isothermal Crystallization Kinetics of Polypropylene Homopolymer/Impact Copolymer Composites
Authors: Pixiang Wang, Shaoyang Liu, Yucheng Peng
Abstract:
Polypropylene (PP) is an essential material of numerous applications in different industrial sectors, including packaging, construction, and automotive. Because the application of homopolypropylene (HPP) is limited by its relatively low impact strength and high embrittlement temperature, various types of impact copolymer PP (ICPP) that incorporate elastomers/rubbers into HPP to increase impact strength have been successfully commercialized. Crystallization kinetics of an isotactic HPP, an ICPP, and their composites were studied in this work understand the composites’ behaviors better. The Avrami-Jeziorny model was used to describe the crystallization process. For most samples, the Avrami exponent, n, was greater than 3, indicating the crystal grew in three dimensions with spherical geometry. However, the n value could drop below 3 when the ICPP content was 80 wt.% or higher and the cooling rate was 7.5°C/min or lower, implying that the crystals could grow in two dimensions and some lamella structures could be formed under those conditions. The nucleation activity increased with the increase of the ICPP content, demonstrating that the rubber phase in the ICPP acted as a nucleation agent and facilitated the nucleation process. The decrease in crystallization rate after the ICPP content exceeded 60 wt.% might be caused by the excessive amount of crystal nuclei induced by the high ICPP content, which caused strong crystal-crystal interactions and limited the crystal growth space. The nucleation activity and the n value showed high correlations to the mechanical and thermal properties of the materials. The quantitative study of the kinetics of crystallization in this work could be a helpful reference for manufacturing ICPP and HPP/ICPP mixtures.Keywords: polypropylene, crystallization kinetics, Avrami-Jeziorny model, crystallization activation energy, Nucleation activity
Procedia PDF Downloads 86