Search results for: hierarchical modeling
4391 Data-Driven Market Segmentation in Hospitality Using Unsupervised Machine Learning
Authors: Rik van Leeuwen, Ger Koole
Abstract:
Within hospitality, marketing departments use segmentation to create tailored strategies to ensure personalized marketing. This study provides a data-driven approach by segmenting guest profiles via hierarchical clustering based on an extensive set of features. The industry requires understandable outcomes that contribute to adaptability for marketing departments to make data-driven decisions and ultimately driving profit. A marketing department specified a business question that guides the unsupervised machine learning algorithm. Features of guests change over time; therefore, there is a probability that guests transition from one segment to another. The purpose of the study is to provide steps in the process from raw data to actionable insights, which serve as a guideline for how hospitality companies can adopt an algorithmic approach.Keywords: hierarchical cluster analysis, hospitality, market segmentation
Procedia PDF Downloads 1084390 Horizontal Gender Inequality and Segregation at Workplace in China: Understanding How Implicit and Unconscious Gender Stereotypes Produce and Reinforce Workplace Gender Inequality in China through Interview-Based Qualitative Analysis
Authors: Yiyan Wu
Abstract:
In the past several decades, the market transition in China has brought in not only more opportunities for women in the labor market but also more attention to gender inequality in workplace. Although some pieces of literature have mentioned gender inequality and segregation at workplace in China, the paper looks into the variations of gender inequality and segregation: working women have little feeling about 'hierarchical inequalities', which define the status and position of women at the workplace. However, at the same time, they unconsciously reinforced 'horizontal inequalities', which creates gender segregation across occupations and job titles. Using qualitative interviews with women employers and employees of various occupations and job titles in Eastern and Southern China, this paper finds evidence that working women's understandings of the division of labor based on the characteristics and expectations of women and men are not as a result of rationality and efficiency, but instead, are the products of gendered stereotypes and traditions. However, holding positive views of gender equality at workplace, working women are not aware of the existence and influence of such gendered stereotypes and traditions. By distinguishing the concepts of 'horizontal inequality' and 'hierarchical inequality' with a cultural sociological approach, this paper contributes to the understanding of gender inequality and segregation in contemporary Chinese society. Moreover, this paper explains the logic behind the paradox in which gender inequality and segregation at workplace persist while women are feeling equal.Keywords: gender equality, segregation, hierarchical inequality, horizontal inequality, China
Procedia PDF Downloads 1664389 Hybrid Hierarchical Routing Protocol for WSN Lifetime Maximization
Authors: H. Aoudia, Y. Touati, E. H. Teguig, A. Ali Cherif
Abstract:
Conceiving and developing routing protocols for wireless sensor networks requires considerations on constraints such as network lifetime and energy consumption. In this paper, we propose a hybrid hierarchical routing protocol named HHRP combining both clustering mechanism and multipath optimization taking into account residual energy and RSSI measures. HHRP consists of classifying dynamically nodes into clusters where coordinators nodes with extra privileges are able to manipulate messages, aggregate data and ensure transmission between nodes according to TDMA and CDMA schedules. The reconfiguration of the network is carried out dynamically based on a threshold value which is associated with the number of nodes belonging to the smallest cluster. To show the effectiveness of the proposed approach HHRP, a comparative study with LEACH protocol is illustrated in simulations.Keywords: routing protocol, optimization, clustering, WSN
Procedia PDF Downloads 4714388 A Survey on Taxpayer's Compliance in Prospect Theory Structure Using Hierarchical Bayesian Approach
Authors: Sahar Dehghan, Yeganeh Mousavi Jahromi, Ghahraman Abdoli
Abstract:
Since tax revenues are one of the most important sources of government revenue, it is essential to consider increasing taxpayers' compliance. One of the factors that can affect the taxpayers' compliance is the structure of the crimes and incentives envisaged in the tax law. In this research, by using the 'prospect theory', the effects of changes in the rate of crimes and the tax incentive in the direct tax law on the taxpayer’s compliance behavior have been investigated. To determine the preferences and preferences of taxpayer’s in the business sector and their degree of sensitivity to fines and incentives, a questionnaire with mixed gamble structure is designed. Estimated results using the Hierarchical Bayesian method indicate that the taxpayer’s that have been tested in this study are more sensitive to the incentives in the direct tax law, and the tax administration can use this to increase the level of collected tax and increase the level of compliance.Keywords: tax compliance, prospect theory, value function, mixed gamble
Procedia PDF Downloads 1754387 Dissimilarity-Based Coloring for Symbolic and Multivariate Data Visualization
Authors: K. Umbleja, M. Ichino, H. Yaguchi
Abstract:
In this paper, we propose a coloring method for multivariate data visualization by using parallel coordinates based on dissimilarity and tree structure information gathered during hierarchical clustering. The proposed method is an extension for proximity-based coloring that suffers from a few undesired side effects if hierarchical tree structure is not balanced tree. We describe the algorithm by assigning colors based on dissimilarity information, show the application of proposed method on three commonly used datasets, and compare the results with proximity-based coloring. We found our proposed method to be especially beneficial for symbolic data visualization where many individual objects have already been aggregated into a single symbolic object.Keywords: data visualization, dissimilarity-based coloring, proximity-based coloring, symbolic data
Procedia PDF Downloads 1714386 Application of Low-order Modeling Techniques and Neural-Network Based Models for System Identification
Authors: Venkatesh Pulletikurthi, Karthik B. Ariyur, Luciano Castillo
Abstract:
The system identification from the turbulence wakes will lead to the tactical advantage to prepare and also, to predict the trajectory of the opponents’ movements. A low-order modeling technique, POD, is used to predict the object based on the wake pattern and compared with pre-trained image recognition neural network (NN) to classify the wake patterns into objects. It is demonstrated that low-order modeling, POD, is able to predict the objects better compared to pretrained NN by ~30%.Keywords: the bluff body wakes, low-order modeling, neural network, system identification
Procedia PDF Downloads 1844385 Turkey Disaster Risk Management System Project (TAFRISK)
Authors: Ahmet Parlak, Celalettin Bilgen
Abstract:
In order to create an effective early warning system, Identification of the risks, preparation and carrying out risk modeling of risk scenarios, taking into account the shortcomings of the old disaster scenarios should be used to improve the system. In the light of this, the importance of risk modeling in creating an effective early warning system is understood. In the scope of TAFRISK project risk modeling trend analysis report on risk modeling developed and a demonstration was conducted for Risk Modeling for flood and mass movements. For risk modeling R&D, studies have been conducted to determine the information, and source of the information, to be gathered, to develop algorithms and to adapt the current algorithms to Turkey’s conditions for determining the risk score in the high disaster risk areas. For each type of the disaster; Disaster Deficit Index (DDI), Local Disaster Index (LDI), Prevalent Vulnerability Index (PVI), Risk Management Index (RMI) have been developed as disaster indices taking danger, sensitivity, fragility, and vulnerability, the physical and economic damage into account in the appropriate scale of the respective type.Keywords: disaster, hazard, risk modeling, sensor
Procedia PDF Downloads 4294384 Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim® Design
Authors: C. Patrascioiu
Abstract:
The paper describes the modeling and simulation of the heat pumps domain processes. The main objective of the study is the use of the heat pump in propene–propane distillation processes. The modeling and simulation instrument is the Unisim® Design simulator. The paper is structured in three parts: An overview of the compressing gases, the modeling and simulation of the freezing systems, and the modeling and simulation of the heat pumps. For each of these systems, there are presented the Unisim® Design simulation diagrams, the input–output system structure and the numerical results. Future studies will consider modeling and simulation of the propene–propane distillation process with heat pump.Keywords: distillation, heat pump, simulation, unisim design
Procedia PDF Downloads 3634383 Dynamic Modeling of Energy Systems Adapted to Low Energy Buildings in Lebanon
Authors: Nadine Yehya, Chantal Maatouk
Abstract:
Low energy buildings have been developed to achieve global climate commitments in reducing energy consumption. They comprise energy efficient buildings, zero energy buildings, positive buildings and passive house buildings. The reduced energy demands in Low Energy buildings call for advanced building energy modeling that focuses on studying active building systems such as heating, cooling and ventilation, improvement of systems performances, and development of control systems. Modeling and building simulation have expanded to cover different modeling approach i.e.: detailed physical model, dynamic empirical models, and hybrid approaches, which are adopted by various simulation tools. This paper uses DesignBuilder with EnergyPlus simulation engine in order to; First, study the impact of efficiency measures on building energy behavior by comparing Low energy residential model to a conventional one in Beirut-Lebanon. Second, choose the appropriate energy systems for the studied case characterized by an important cooling demand. Third, study dynamic modeling of Variable Refrigerant Flow (VRF) system in EnergyPlus that is chosen due to its advantages over other systems and its availability in the Lebanese market. Finally, simulation of different energy systems models with different modeling approaches is necessary to confront the different modeling approaches and to investigate the interaction between energy systems and building envelope that affects the total energy consumption of Low Energy buildings.Keywords: physical model, variable refrigerant flow heat pump, dynamic modeling, EnergyPlus, the modeling approach
Procedia PDF Downloads 2224382 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning
Authors: Kwaku Damoah
Abstract:
This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.
Procedia PDF Downloads 714381 A Multigranular Linguistic ARAS Model in Group Decision Making
Authors: Wiem Daoud Ben Amor, Luis Martínez López, Hela Moalla Frikha
Abstract:
Most of the multi-criteria group decision making (MCGDM) problems dealing with qualitative criteria require consideration of the large background of expert information. It is common that experts have different degrees of knowledge for giving their alternative assessments according to criteria. So, it seems logical that they use different evaluation scales to express their judgment, i.e., multi granular linguistic scales. In this context, we propose the extension of the classical additive ratio assessment (ARAS) method to the case of a hierarchical linguistics term for managing multi granular linguistic scales in uncertain contexts where uncertainty is modeled by means in linguistic information. The proposed approach is called the extended hierarchical linguistics-ARAS method (ARAS-ELH). Within the ARAS-ELH approach, the DM can diagnose the results (the ranking of the alternatives) in a decomposed style, i.e., not only at one level of the hierarchy but also at the intermediate ones. Also, the developed approach allows a feedback transformation i.e the collective final results of all experts able to be transformed at any level of the extended linguistic hierarchy that each expert has previously used. Therefore, the ARAS-ELH technique makes it easier for decision-makers to understand the results. Finally, An MCGDM case study is given to illustrate the proposed approach.Keywords: additive ratio assessment, extended hierarchical linguistic, multi-criteria group decision making problems, multi granular linguistic contexts
Procedia PDF Downloads 2084380 Quantitative Structure-Activity Relationship Analysis of Binding Affinity of a Series of Anti-Prion Compounds to Human Prion Protein
Authors: Strahinja Kovačević, Sanja Podunavac-Kuzmanović, Lidija Jevrić, Milica Karadžić
Abstract:
The present study is based on the quantitative structure-activity relationship (QSAR) analysis of eighteen compounds with anti-prion activity. The structures and anti-prion activities (expressed in response units, RU%) of the analyzed compounds are taken from CHEMBL database. In the first step of analysis 85 molecular descriptors were calculated and based on them the hierarchical cluster analysis (HCA) and principal component analysis (PCA) were carried out in order to detect potential significant similarities or dissimilarities among the studied compounds. The calculated molecular descriptors were physicochemical, lipophilicity and ADMET (absorption, distribution, metabolism, excretion and toxicity) descriptors. The first stage of the QSAR analysis was simple linear regression modeling. It resulted in one acceptable model that correlates Henry's law constant with RU% units. The obtained 2D-QSAR model was validated by cross-validation as an internal validation method. The validation procedure confirmed the model’s quality and therefore it can be used for prediction of anti-prion activity. The next stage of the analysis of anti-prion activity will include 3D-QSAR and molecular docking approaches in order to select the most promising compounds in treatment of prion diseases. These results are the part of the project No. 114-451-268/2016-02 financially supported by the Provincial Secretariat for Science and Technological Development of AP Vojvodina.Keywords: anti-prion activity, chemometrics, molecular modeling, QSAR
Procedia PDF Downloads 3044379 Hierarchical Surface Inspired by Lotus-Leaf for Electrical Generators from Waterdrop
Authors: Jaewook Ha, Jin-beak Kim, Seongmin Kim
Abstract:
In order to solve global warming and climate change issues, increased efforts have been devoted towards clean and sustainable energy sources as well as new energy generating devices. Nanogenerator is a device that converts mechanical/thermal energy as produced by small-scale physical change into electricity. Here we propose that nature-leaf surface could be used for preparation of a triboelectric nanogenerator. The nature-leaf surface consists of polydimethylsiloxane microscale pillars and polytetrafluoroethylene nanoparticles. Interaction between the nature-leaf surface and water was studied and the electrical outputs from the motion of single water drop were measured. A 40-μL water drop can generate a peak voltage of 1 V and a peak current of 0.7 μA. This nanogenerator might be used to drive electric devices in the outdoor environments in a sustainable manner.Keywords: hierarchical surface, lotus-leaf, electrical generator, waterdrop
Procedia PDF Downloads 2934378 Hierarchical Zeolites as Catalysts for Cyclohexene Epoxidation Reactions
Authors: Agnieszka Feliczak-Guzik, Paulina Szczyglewska, Izabela Nowak
Abstract:
A catalyst-assisted oxidation reaction is one of the key reactions exploited by various industries. Their conductivity yields essential compounds and intermediates, such as alcohols, epoxides, aldehydes, ketones, and organic acids. Researchers are devoting more and more attention to developing active and selective materials that find application in many catalytic reactions, such as cyclohexene epoxidation. This reaction yields 1,2-epoxycyclohexane and 1,2-diols as the main products. These compounds are widely used as intermediates in the perfume industry and synthesizing drugs and lubricants. Hence, our research aimed to use hierarchical zeolites modified with transition metal ions, e.g., Nb, V, and Ta, in the epoxidation reaction of cyclohexene using microwaveheating. Hierarchical zeolites are materials with secondary porosity, mainly in the mesoporous range, compared to microporous zeolites. In the course of the research, materials based on two commercial zeolites, with Faujasite (FAU) and Zeolite Socony Mobil-5 (ZSM-5) structures, were synthesized and characterized by various techniques, such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and low-temperature nitrogen adsorption/desorption isotherms. The materials obtained were then used in a cyclohexene epoxidation reaction, which was carried out as follows: catalyst (0.02 g), cyclohexene (0.1 cm3), acetonitrile (5 cm3) and dihydrogen peroxide (0.085 cm3) were placed in a suitable glass reaction vessel with a magnetic stirrer inside in a microwave reactor. Reactions were carried out at 45° C for 6 h (samples were taken every 1 h). The reaction mixtures were filtered to separate the liquid products from the solid catalyst and then transferred to 1.5 cm3 vials for chromatographic analysis. The test techniques confirmed the acquisition of additional secondary porosity while preserving the structure of the commercial zeolite (XRD and low-temperature nitrogen adsorption/desorption isotherms). The results of the activity of the hierarchical catalyst modified with niobium in the cyclohexene epoxidation reaction indicate that the conversion of cyclohexene, after 6 h of running the process, is about 70%. As the main product of the reaction, 2-cyclohexanediol was obtained (selectivity > 80%). In addition to the mentioned product, adipic acid, cyclohexanol, cyclohex-2-en-1-one, and 1,2-epoxycyclohexane were also obtained. Furthermore, in a blank test, no cyclohexene conversion was obtained after 6 h of reaction. Acknowledgments The work was carried out within the project “Advanced biocomposites for tomorrow’s economy BIOG-NET,” funded by the Foundation for Polish Science from the European Regional Development Fund (POIR.04.04.00-00-1792/18-00.Keywords: epoxidation, oxidation reactions, hierarchical zeolites, synthesis
Procedia PDF Downloads 784377 Using Hierarchical Modelling to Understand the Role of Plantations in the Abundance of Koalas, Phascolarctos cinereus
Authors: Kita R. Ashman, Anthony R. Rendall, Matthew R. E. Symonds, Desley A. Whisson
Abstract:
Forest cover is decreasing globally, chiefly due to the conversion of forest to agricultural landscapes. In contrast, the area under plantation forestry is increasing significantly. For wildlife occupying landscapes where native forest is the dominant land cover, plantations generally represent a lower value habitat; however, plantations established on land formerly used for pasture may benefit wildlife by providing temporary forest habitat and increasing connectivity. This study investigates the influence of landscape, site, and climatic factors on koala population density in far south-west Victoria where there has been extensive plantation establishment. We conducted koala surveys and habitat characteristic assessments at 72 sites across three habitat types: plantation, native vegetation blocks, and native vegetation strips. We employed a hierarchical modeling framework for estimating abundance and constructed candidate multinomial N-mixture models to identify factors influencing the abundance of koalas. We detected higher mean koala density in plantation sites (0.85 per ha) than in either native block (0.68 per ha) or native strip sites (0.66 per ha). We found five covariates of koala density and using these variables, we spatially modeled koala abundance and discuss factors that are key in determining large-scale distribution and density of koala populations. We provide a distribution map that can be used to identify high priority areas for population management as well as the habitat of high conservation significance for koalas. This information facilitates the linkage of ecological theory with the on-ground implementation of management actions and may guide conservation planning and resource management actions to consider overall landscape configuration as well as the spatial arrangement of plantations adjacent to the remnant forest.Keywords: abundance modelling, arboreal mammals plantations, wildlife conservation
Procedia PDF Downloads 1174376 Decision Making during the Project Management Life Cycle of Infrastructure Projects
Authors: Karrar Raoof Kareem Kamoona, Enas Fathi Taher AlHares, Zeynep Isik
Abstract:
The various disciplines in the construction industry and the co-existence of the people in the various disciplines are what builds well-developed, closely-knit interpersonal skills at various hierarchical levels thus leading to a varied way of leadership. The varied decision making aspects during the lifecycle of a project include: autocratic, participatory and last but not least, free-rein. We can classify some of the decision makers in the construction industry in a hierarchical manner as follows: project executive, project manager, superintendent, office engineer and finally the field engineer. This survey looked at how decisions are made during the construction period by the key stakeholders in the project. From the paper it is evident that the three decision making aspects can be used at different times or at times together in order to bring out the best leadership decision. A blend of different leadership styles should be used to enhance the success rate during the project lifecycle.Keywords: leadership style, construction, decision-making, built environment
Procedia PDF Downloads 3604375 Externalizing Behavior Problems Influencing Social Behavior in Early Adolescence
Authors: Zhidong Zhang, Zhi-Chao Zhang
Abstract:
This study focuses on early adolescent externalizing behavioral problems which specifically concentrate on rule breaking behavior and aggressive behavior using the instrument of Achenbach System of Empirically Based Assessment (ASEBA). The purpose was to analyze the relationships between the externalizing behavioral problems and relevant background variables such as sports activities, hobbies, chores and the number of close friends. The stratified sampling method was used to collect data from 1975 participants. The results indicated that several background variables as predictors could significantly predict rule breaking behavior and aggressive behavior. Further, a hierarchical modeling method was used to explore the causal relations among background variables, breaking behavior variables and aggressive behavior variables.Keywords: aggressive behavior, breaking behavior, early adolescence, externalizing problem
Procedia PDF Downloads 5094374 An Online 3D Modeling Method Based on a Lossless Compression Algorithm
Authors: Jiankang Wang, Hongyang Yu
Abstract:
This paper proposes a portable online 3D modeling method. The method first utilizes a depth camera to collect data and compresses the depth data using a frame-by-frame lossless data compression method. The color image is encoded using the H.264 encoding format. After the cloud obtains the color image and depth image, a 3D modeling method based on bundlefusion is used to complete the 3D modeling. The results of this study indicate that this method has the characteristics of portability, online, and high efficiency and has a wide range of application prospects.Keywords: 3D reconstruction, bundlefusion, lossless compression, depth image
Procedia PDF Downloads 824373 Systems Versioning: A Features-Based Meta-Modeling Approach
Authors: Ola A. Younis, Said Ghoul
Abstract:
Systems running these days are huge, complex and exist in many versions. Controlling these versions and tracking their changes became a very hard process as some versions are created using meaningless names or specifications. Many versions of a system are created with no clear difference between them. This leads to mismatching between a user’s request and the version he gets. In this paper, we present a system versions meta-modeling approach that produces versions based on system’s features. This model reduced the number of steps needed to configure a release and gave each version its unique specifications. This approach is applicable for systems that use features in its specification.Keywords: features, meta-modeling, semantic modeling, SPL, VCS, versioning
Procedia PDF Downloads 4464372 Object-Oriented Programming for Modeling and Simulation of Systems in Physiology
Authors: J. Fernandez de Canete
Abstract:
Object-oriented modeling is spreading in the current simulation of physiological systems through the use of the individual components of the model and its interconnections to define the underlying dynamic equations. In this paper, we describe the use of both the SIMSCAPE and MODELICA simulation environments in the object-oriented modeling of the closed-loop cardiovascular system. The performance of the controlled system was analyzed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data. The described approach represents a valuable tool in the teaching of physiology for graduate medical students.Keywords: object-oriented modeling, SIMSCAPE simulation language, MODELICA simulation language, cardiovascular system
Procedia PDF Downloads 5074371 Impact of Mathematical Modeling on Mathematics Achievement, Attitude, and Interest of Pre-Service Teachers in Niger State, Nigeria
Authors: Mohammed Abubakar Ndanusa, A. A. Hassan, R. W. Gimba, A. M. Alfa, M. T. Abari
Abstract:
This study investigated the Impact of Mathematical Modeling on Mathematics Achievement, Attitude and Interest of Pre-Service Teachers in Niger States, Nigeria. It was an attempt to ease students’ difficulties in comprehending mathematics. The study used randomized pretest, posttest control group design. Two Colleges of Education were purposively selected from Niger State with a sample size of eighty-four 84 students. Three research instruments used are Mathematical Modeling Achievement Test (MMAT), Attitudes Towards Mathematical Modeling Questionnaire (ATMMQ) and Mathematical Modeling Students Interest Questionnaire (MMSIQ). Pearson Product Moment Correlation (PPMC) formula was used for MMAT and Alpha Cronbach was used for ATMMQ and MMSIQ to determine their reliability coefficient and the values the following values were obtained respectively 0.76, 0.75 and 0.73. Independent t-test statistics was used to test hypothesis One while Mann Whitney U-test was used to test hypothesis Two and Three. Findings revealed that students taught Mathematics using Mathematical Modeling performed better than their counterparts taught using lecture method. However, there was a significant difference in the attitude and interest of pre-service mathematics teachers after being exposed to mathematical modeling. The strategy, therefore, was recommended to be used by Mathematics teachers with a view to improving students’ attitude and interest towards Mathematics. Also, modeling should be taught at NCE level in order to prepare pre-service teachers towards real task in the field of Mathematics.Keywords: achievement, attitude, interest, mathematical modeling, pre-service teachers
Procedia PDF Downloads 3054370 Optimizing Agricultural Packaging in Fiji: Strategic Barrier Analysis Using Interpretive Structural Modeling and Cross-Impact Matrix Multiplication Applied to Classification
Authors: R. Ananthanarayanan, S. B. Nakula, D. R. Seenivasagam, J. Naua, B. Sharma
Abstract:
Product packaging is a critical component of production, trade, and marketing, playing numerous vital roles that often go unnoticed by consumers. Packaging is essential for maintaining the shelf life, quality assurance, and safety of both manufactured and agricultural products. For example, harvested produce or processed foods can quickly lose quality and freshness, making secure packaging crucial for preservation and safety throughout the food supply chain. In Fiji, agricultural packaging has primarily been managed by local companies for international trade, with gradual advancements in these practices. To further enhance the industry’s performance, this study examines the challenges and constraints hindering the optimization of agricultural packaging practices in Fiji. The study utilizes Multi-Criteria Decision Making (MCDM) tools, specifically Interpretive Structural Modeling (ISM) and Cross-Impact Matrix Multiplication Applied to Classification (MICMAC). ISM analyzes the hierarchical structure of barriers, categorizing them from the least to the most influential, while MICMAC classifies barriers based on their driving and dependence power. This approach helps identify the interrelationships between barriers, providing valuable insights for policymakers and decision-makers to propose innovative solutions for sustainable development in the agricultural packaging sector, ultimately shaping the future of packaging practices in Fiji.Keywords: agricultural packaging, barriers, ISM, MICMAC
Procedia PDF Downloads 334369 Hierarchical Operation Strategies for Grid Connected Building Microgrid with Energy Storage and Photovoltatic Source
Authors: Seon-Ho Yoon, Jin-Young Choi, Dong-Jun Won
Abstract:
This paper presents hierarchical operation strategies which are minimizing operation error between day ahead operation plan and real time operation. Operating power systems between centralized and decentralized approaches can be represented as hierarchical control scheme, featured as primary control, secondary control and tertiary control. Primary control is known as local control, featuring fast response. Secondary control is referred to as microgrid Energy Management System (EMS). Tertiary control is responsible of coordinating the operations of multi-microgrids. In this paper, we formulated 3 stage microgrid operation strategies which are similar to hierarchical control scheme. First stage is to set a day ahead scheduled output power of Battery Energy Storage System (BESS) which is only controllable source in microgrid and it is optimized to minimize cost of exchanged power with main grid using Particle Swarm Optimization (PSO) method. Second stage is to control the active and reactive power of BESS to be operated in day ahead scheduled plan in case that State of Charge (SOC) error occurs between real time and scheduled plan. The third is rescheduling the system when the predicted error is over the limited value. The first stage can be compared with the secondary control in that it adjusts the active power. The second stage is comparable to the primary control in that it controls the error in local manner. The third stage is compared with the secondary control in that it manages power balancing. The proposed strategies will be applied to one of the buildings in Electronics and Telecommunication Research Institute (ETRI). The building microgrid is composed of Photovoltaic (PV) generation, BESS and load and it will be interconnected with the main grid. Main purpose of that is minimizing operation cost and to be operated in scheduled plan. Simulation results support validation of proposed strategies.Keywords: Battery Energy Storage System (BESS), Energy Management System (EMS), Microgrid (MG), Particle Swarm Optimization (PSO)
Procedia PDF Downloads 2494368 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models
Authors: Benbiao Song, Yan Gao, Zhuo Liu
Abstract:
Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram
Procedia PDF Downloads 2644367 Structural Equation Modeling Semiparametric in Modeling the Accuracy of Payment Time for Customers of Credit Bank in Indonesia
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
The research was conducted to apply semiparametric SEM modeling to the timeliness of paying credit. Semiparametric SEM is structural modeling in which two combined approaches of parametric and nonparametric approaches are used. The analysis method in this research is semiparametric SEM with a nonparametric approach using a truncated spline. The data in the study were obtained through questionnaires distributed to Bank X mortgage debtors and are confidential. The study used 3 variables consisting of one exogenous variable, one intervening endogenous variable, and one endogenous variable. The results showed that (1) the effect of capacity and willingness to pay variables on timeliness of payment is significant, (2) modeling the capacity variable on willingness to pay also produces a significant estimate, (3) the effect of the capacity variable on the timeliness of payment variable is not influenced by the willingness to pay variable as an intervening variable, (4) the R^2 value of 0.763 or 76.33% indicates that the model has good predictive relevance.Keywords: structural equation modeling semiparametric, credit bank, accuracy of payment time, willingness to pay
Procedia PDF Downloads 474366 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods
Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow
Abstract:
A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.Keywords: forecasting model, steel demand uncertainty, hierarchical Bayesian framework, exponential smoothing method
Procedia PDF Downloads 3504365 Modeling and Shape Prediction for Elastic Kinematic Chains
Authors: Jiun Jeon, Byung-Ju Yi
Abstract:
This paper investigates modeling and shape prediction of elastic kinematic chains such as colonoscopy. 2D and 3D models of elastic kinematic chains are suggested and their behaviors are demonstrated through simulation. To corroborate the effectiveness of those models, experimental work is performed using a magnetic sensor system.Keywords: elastic kinematic chain, shape prediction, colonoscopy, modeling
Procedia PDF Downloads 6064364 Modeling and Simulation of Standalone Photovoltaic Charging Stations for Electric Vehicles
Authors: R. Mkahl, A. Nait-Sidi-Moh, M. Wack
Abstract:
Batteries of electric vehicles (BEV) are becoming more attractive with the advancement of new battery technologies and promotion of electric vehicles. BEV batteries are recharged on board vehicles using either the grid (G2V for Grid to Vehicle) or renewable energies in a stand-alone application (H2V for Home to Vehicle). This paper deals with the modeling, sizing and control of a photo voltaic stand-alone application that can charge the BEV at home. The modeling approach and developed mathematical models describing the system components are detailed. Simulation and experimental results are presented and commented.Keywords: electric vehicles, photovoltaic energy, lead-acid batteries, charging process, modeling, simulation, experimental tests
Procedia PDF Downloads 4454363 Geometric Design to Improve the Temperature
Authors: H. Ghodbane, A. A. Taleb, O. Kraa
Abstract:
This paper presents geometric design of induction heating system. The objective of this design is to improve the temperature distribution in the load. The study of such a device requires the use of models or modeling representation, physical, mathematical, and numerical. This modeling is the basis of the understanding, the design, and optimization of these systems. The optimization technique is to find values of variables that maximize or minimize the objective function.Keywords: optimization, modeling, geometric design system, temperature increase
Procedia PDF Downloads 5304362 Review of Transportation Modeling Software
Authors: Hassan M. Al-Ahmadi, Hamad Bader Almobayedh
Abstract:
Planning for urban transportation is essential for developing effective and sustainable transportation networks that meet the needs of various communities. Advanced modeling software is required for effective transportation planning, management, and optimization. This paper compares PTV VISUM, Aimsun, TransCAD, and Emme, four industry-leading software tools for transportation planning and modeling. Each software has strengths and limitations, and the project's needs, financial constraints, and level of technical expertise influence the choice of software. Transportation experts can design and improve urban transportation systems that are effective, sustainable, and meet the changing needs of their communities by utilizing these software tools.Keywords: PTV VISUM, Aimsun, TransCAD, transportation modeling software
Procedia PDF Downloads 33