Search results for: decentralized distributed training
5894 The Potential of Hybrid Microgrids for Mitigating Power Outage in Lebanon
Abstract:
Lebanon electricity crisis continues to escalate. Rationing hours still apply across the country but with different rates. The capital Beirut is subjected to 3 hours cut while other cities, town and villages may endure 9 to 14 hours of power shortage. To mitigate this situation, private diesel generators distributed illegally all over the country are being used to bridge the gap in power supply. Almost each building in large cities has its own generator and individual villages may have more than one generator supplying their loads. These generators together with their private networks form incomplete and ill-designed and managed microgrids (MG) but can be further developed to become renewable energy-based MG operating in island- or grid-connected modes. This paper will analyze the potential of introducing MG to help resolve the energy crisis in Lebanon. It will investigate the usefulness of developing MG under the prevailing situation of existing private power supply service providers and in light of the developed national energy policy that supports renewable energy development. A case study on a distribution feeder in a rural area will be analyzed using HOMER software to demonstrate the usefulness of introducing photovoltaic (PV) arrays along the existing diesel generators for all the stakeholders; namely, the developers, the customers, the utility and the community at large. Policy recommendations regarding MG development in Lebanon will be presented on the basis of the accumulated experience in private generation and the privatization and public-private partnership laws.Keywords: decentralized systems, distributed generation, microgrids, renewable energy
Procedia PDF Downloads 1335893 Competence-Based Human Resources Selection and Training: Making Decisions
Authors: O. Starineca, I. Voronchuk
Abstract:
Human Resources (HR) selection and training have various implementation possibilities depending on an organization’s abilities and peculiarities. We propose to base HR selection and training decisions about on a competence-based approach. HR selection and training of employees are topical as there is room for improvement in this field; therefore, the aim of the research is to propose rational decision-making approaches for an organization HR selection and training choice. Our proposals are based on the training development and competence-based selection approaches created within previous researches i.e. Analytic-Hierarchy Process (AHP) and Linear Programming. Literature review on non-formal education, competence-based selection, AHP form our theoretical background. Some educational service providers in Latvia offer employees training, e.g. motivation, computer skills, accounting, law, ethics, stress management, etc. that are topical for Public Administration. Competence-based approach is a rational base for rational decision-making in both HR selection and considering HR training.Keywords: competence-based selection, human resource, training, decision-making
Procedia PDF Downloads 3355892 Ethereum Based Smart Contracts for Trade and Finance
Authors: Rishabh Garg
Abstract:
Traditionally, business parties build trust with a centralized operating mechanism, such as payment by letter of credit. However, the increase in cyber-attacks and malicious hacking has jeopardized business operations and finance practices. Emerging markets, owing to their higher banking risks and bigger presence of digital financing, are looking forward to technology-driven solutions, financial inclusion and innovative working paradigms. Blockchain has the potential to enhance transaction transparency and supply chain traceability. It has captured a vast landscape with 200 million crypto users worldwide. Fintech and blockchain products are popping up across brokerage, digital wallets, exchanges, post-trade clearance, settlement, middleware, infrastructure, and base protocols.Keywords: blockchain, distributed ledger technology, decentralized applications, ethereum, smart contracts, trade finance
Procedia PDF Downloads 1525891 Effects of Mental Skill Training Programme on Direct Free Kick of Grassroot Footballers in Lagos, Nigeria
Authors: Mayowa Adeyeye, Kehinde Adeyemo
Abstract:
The direct free kick is considered a great opportunity to score a goal but this is not always the case amidst Nigerian and other elite footballers. This study, therefore, examined the extent to which an 8 weeks mental skill training programme is effective for improving accuracy in direct free kick in football. Sixty (n-60) students of Pepsi Football Academy participated in the study. They were randomly distributed into two groups of positive self-talk group (intervention n-30) and control group (n-30). The instrument used in the collection of data include a standard football goal post while the research materials include a dummy soccer wall, a cord, an improvised vanishing spray, a clipboard, writing materials, a recording sheet, a self-talk log book, six standard 5 football, cones, an audiotape and a compact disc. The Weinberge and Gould (2011) mental skills training manual was used. The reliability coefficient of the apparatus following a pilot study stood at 0.72. Before the commencement of the mental skills training programme, the participants were asked to take six simulated direct free kick. At the end of each physical skills training session after the pre-test, the researcher spent at least 15 minutes with the groups exposing them to the intervention. The mental skills training programme alongside physical skills training took place in two different locations for the different groups under study, these included Agege Stadium Main bowl Football Pitch (Imagery Group), and Ogba Ijaye (Control Group). The mental skills training programme lasted for eight weeks. After the completion of the mental skills training programme, all the participants were asked to take another six simulated direct free kick attempts using the same field used for the pre-test to determine the efficacy of the treatments. The pre-test and post-test data were analysed using inferential statistics of t-test, while the alpha level was set at 0.05. The result revealed significant differences in t-test for positive self-talk and control group. Based on the findings, it is recommended that athletes should be exposed to positive self-talk alongside their normal physical skills training for quality delivery of accurate direct free kick during training and competition.Keywords: accuracy, direct free kick, pepsi football academy, positive self-talk
Procedia PDF Downloads 3485890 Effects of Elastic, Plyometric and Strength Training on Selected Anaerobic Factors in Sanandaj Elite Volleyball Players
Authors: Majed Zobairy, Fardin Kalvandi, Kamal Azizbaigi
Abstract:
This research was carried out for evaluation of elastic, plyometric and resistance training on selected anaerobic factors in men volleyball players. For these reason 30 elite volleyball players of Sanandaj city randomly divided into 3 groups as follow: elastic training, plyometric training and resistance training. Pre-exercise tests which include vertical jumping, 50 yard speed running and scat test were done and data were recorded. Specific exercise protocol regimen was done for each group and then post-exercise tests again were done. Data analysis showed that there were significant increases in exercise test in each group. One way ANOVA analysis showed that increases in speed records in elastic group were significantly higher than the other groups (p<0/05),based on research data it seems that elastic training can be a useful method and new approach in improving functional test and training regimen.Keywords: elastic training, plyometric training, strength training, anaerobic power
Procedia PDF Downloads 5285889 The Fusion of Blockchain and AI in Supply Chain Finance: Scalability in Distributed Systems
Authors: Wu You, Burra Venkata Durga Kumar
Abstract:
This study examines the promising potential of integrating Blockchain and Artificial Intelligence (AI) technologies to scalability in Distributed Systems within the field of supply chain finance. The finance industry is continually confronted with scalability challenges in its Distributed Systems, particularly within the supply chain finance sector, impacting efficiency and security. Blockchain, with its inherent attributes of high scalability and secure distributed ledger system, coupled with AI's strengths in optimizing data processing and decision-making, holds the key to innovating the industry's approach to these issues. This study elucidates the synergistic interplay between Blockchain and AI, detailing how their fusion can drive a significant transformation in the supply chain finance sector's Distributed Systems. It offers specific use-cases within this field to illustrate the practical implications and potential benefits of this technological convergence. The study also discusses future possibilities and current challenges in implementing this groundbreaking approach within the context of supply chain finance. It concludes that the intersection of Blockchain and AI could ignite a new epoch of enhanced efficiency, security, and transparency in the Distributed Systems of supply chain finance within the financial industry.Keywords: blockchain, artificial intelligence (AI), scaled distributed systems, supply chain finance, efficiency and security
Procedia PDF Downloads 935888 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction
Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota
Abstract:
Understanding the causes of a road accident and predicting their occurrence is key to preventing deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.Keywords: accident risks estimation, artificial neural network, deep learning, k-mean, road safety
Procedia PDF Downloads 1635887 A Hybrid Distributed Algorithm for Solving Job Shop Scheduling Problem
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a distributed hybrid algorithm is proposed for solving the job shop scheduling problem. The suggested method executes different artificial neural networks, heuristics and meta-heuristics simultaneously on more than one machine. The neural networks are used to control the constraints of the problem while the meta-heuristics search the global space and the heuristics are used to prevent the premature convergence. To attain an efficient distributed intelligent method for solving big and distributed job shop scheduling problems, Apache Spark and Hadoop frameworks are used. In the algorithm implementation and design steps, new approaches are applied. Comparison between the proposed algorithm and other efficient algorithms from the literature shows its efficiency, which is able to solve large size problems in short time.Keywords: distributed algorithms, Apache Spark, Hadoop, job shop scheduling, neural network
Procedia PDF Downloads 3875886 Blockchain: Institutional and Technological Disruptions in the Public Sector
Authors: Maria Florencia Ferrer, Saulo Fabiano Amancio-Vieira
Abstract:
The use of the blockchain in the public sector is present today and no longer the future of disruptive institutional and technological models. There are still some cultural barriers and resistance to the proper use of its potential. This research aims to present the strengths and weaknesses of using a public-permitted and distributed network in the context of the public sector. Therefore, bibliographical/documentary research was conducted to raise the main aspects of the studied platform, focused on the use of the main demands of the public sector. The platform analyzed was LACChain, which is a global alliance composed of different actors in the blockchain environment, led by the Innovation Laboratory of the Inter-American Development Bank Group (IDB Lab) for the development of the blockchain ecosystem in Latin America and the Caribbean. LACChain provides blockchain infrastructure, which is a distributed ratio technology (DLT). The platform focuses on two main pillars: community and infrastructure. It is organized as a consortium for the management and administration of an infrastructure classified as public, following the ISO typologies (ISO / TC 307). It is, therefore, a network open to any participant who agrees with the established rules, which are limited to being identified and complying with the regulations. As benefits can be listed: public network (open to all), decentralized, low transaction cost, greater publicity of transactions, reduction of corruption in contracts / public acts, in addition to improving transparency for the population in general. It is also noteworthy that the platform is not based on cryptocurrency and is not anonymous; that is, it is possible to be regulated. It is concluded that the use of record platforms, such as LACChain, can contribute to greater security on the part of the public agent in the migration process of their informational applications.Keywords: blockchain, LACChain, public sector, technological disruptions
Procedia PDF Downloads 1725885 A New Distributed Computing Environment Based On Mobile Agents for Massively Parallel Applications
Authors: Fatéma Zahra Benchara, Mohamed Youssfi, Omar Bouattane, Hassan Ouajji, Mohamed Ouadi Bensalah
Abstract:
In this paper, we propose a new distributed environment for High Performance Computing (HPC) based on mobile agents. It allows us to perform parallel programs execution as distributed one over a flexible grid constituted by a cooperative mobile agent team works. The distributed program to be performed is encapsulated on team leader agent which deploys its team workers as Agent Virtual Processing Unit (AVPU). Each AVPU is asked to perform its assigned tasks and provides the computational results which make the data and team works tasks management difficult for the team leader agent and that influence the performance computing. In this work we focused on the implementation of the Mobile Provider Agent (MPA) in order to manage the distribution of data and instructions and to ensure a load balancing model. It grants also some interesting mechanisms to manage the others computing challenges thanks to the mobile agents several skills.Keywords: image processing, distributed environment, mobile agents, parallel and distributed computing
Procedia PDF Downloads 4095884 The Effect of Endurance Training on Serum VCAM-1 in Overweight Women
Authors: Soheily Shahram, Banaeifar Abdolali, Yadegari Elham
Abstract:
Vascular adhesion molecules-1 (VCAM-1) is one of the factors associating obesity and inflammatory lesions like atherosclerosis. The purpose of the present study was to investigate the effects of endurance training on serum concentration of VCAM-1 in overweight women. Thirty female overweight (BMI ≥ 25) voluntarily participated in our study. Subjects were randomly assigned to one of two groups: Endurance training or control group. Training group exercised for 12 weeks, three sessions a week with definite intensity and distance. Pre and post 12 weeks of endurance training blood samples were taken (5cc) in fasting state from all subjects. Data was analyzed via independent t test (p≤0.05). The results showed that endurance training had significant effect on VCAM, body weight, fat percentage, BMI and maximum oxygen consumption (p ≤ 0.05). This study demonstrates that endurance training caused a decrease in the adhesion molecules level and decreasing inflammation, endurance training may perhaps play an effective role in atherosclerosis.Keywords: endurance training, vascular cell adhesion molecules, overweight women, serum concentration
Procedia PDF Downloads 4135883 An Analysis of the Need of Training for Indian Textile Manufacturing Sector
Authors: Shipra Sharma, Jagat Jerath
Abstract:
Human resource training is an essential element of talent management in the current era of global competitiveness and dynamic trade in the manufacturing industry. Globally, India is behind only China as the largest textile manufacturer. The major challenges faced by the Indian textile manufacturing Industry are low technology levels, growing skill gaps, unorganized structure, lower efficiencies, etc. indicating the need for constant talent up-gradation. Assessment of training needs from a strategic perspective is an essential step for the formulation of effective training. The paper established the significance of training in the Indian textile industry and to determine the training needs on various parameters as presented. 40 HR personnel/s working in the textile and apparel companies based in the industrial region of Punjab, India, were the respondents for the study. The research tool used in this case was a structured questionnaire as per five-point Likert scale. Statistical analysis through descriptive statistics and chi-square test indicated the increased need for training whenever there were technical changes in the organizations. As per the data presented in this study, most of the HR personnel/s agreed that the variables associated with organizational analysis, task analysis, and individual analysis have a statistically significant role to play in determining the need for training in an organization.Keywords: Indian textile manufacturing industry, significance of training, training needs analysis, parameters for training needs assessment
Procedia PDF Downloads 1635882 Training During Emergency Response to Build Resiliency in Water, Sanitation, and Hygiene
Authors: Lee Boudreau, Ash Kumar Khaitu, Laura A. S. MacDonald
Abstract:
In April 2015, a magnitude 7.8 earthquake struck Nepal, killing, injuring, and displacing thousands of people. The earthquake also damaged water and sanitation service networks, leading to a high risk of diarrheal disease and the associated negative health impacts. In response to the disaster, the Environment and Public Health Organization (ENPHO), a Kathmandu-based non-governmental organization, worked with the Centre for Affordable Water and Sanitation Technology (CAWST), a Canadian education, training and consulting organization, to develop two training programs to educate volunteers on water, sanitation, and hygiene (WASH) needs. The first training program was intended for acute response, with the second focusing on longer term recovery. A key focus was to equip the volunteers with the knowledge and skills to formulate useful WASH advice in the unanticipated circumstances they would encounter when working in affected areas. Within the first two weeks of the disaster, a two-day acute response training was developed, which focused on enabling volunteers to educate those affected by the disaster about local WASH issues, their link to health, and their increased importance immediately following emergency situations. Between March and October 2015, a total of 19 training events took place, with over 470 volunteers trained. The trained volunteers distributed hygiene kits and liquid chlorine for household water treatment. They also facilitated health messaging and WASH awareness activities in affected communities. A three-day recovery phase training was also developed and has been delivered to volunteers in Nepal since October 2015. This training focused on WASH issues during the recovery and reconstruction phases. The interventions and recommendations in the recovery phase training focus on long-term WASH solutions, and so form a link between emergency relief strategies and long-term development goals. ENPHO has trained 226 volunteers during the recovery phase, with training ongoing as of April 2016. In the aftermath of the earthquake, ENPHO found that its existing pool of volunteers were more than willing to help those in their communities who were more in need. By training these and new volunteers, ENPHO was able to reach many more communities in the immediate aftermath of the disaster; together they reached 11 of the 14 earthquake-affected districts. The collaboration between ENPHO and CAWST in developing the training materials was a highly collaborative and iterative process, which enabled the training materials to be developed within a short response time. By training volunteers on basic WASH topics during both the immediate response and the recovery phase, ENPHO and CAWST have been able to link immediate emergency relief to long-term developmental goals. While the recovery phase training continues in Nepal, CAWST is planning to decontextualize the training used in both phases so that it can be applied to other emergency situations in the future. The training materials will become part of the open content materials available on CAWST’s WASH Resources website.Keywords: water and sanitation, emergency response, education and training, building resilience
Procedia PDF Downloads 3055881 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence
Procedia PDF Downloads 1115880 Examining How Employee Training and Development Contribute to the Favourable Results of a Business Entity: A Conceptual Analysis
Authors: Paul Saah, Charles Mbohwa, Nelson Sizwe Madonsela
Abstract:
Organisations that want to have a competitive edge over their rivals in their industry are becoming more and more aware of the value of staff training and development programs. This conceptual study's primary goal is to determine how staff development and training affect an organization's ability to succeed. A non-empirical methodological approach was chosen because this was a conceptual study, and a thorough literature analysis was conducted to determine the contribution of staff training and development to the performance of a commercial organization. Twenty of the 100 publications about employee training and development that were obtained from Google Scholar and regarded to be more pertinent were examined for this study. The impact of employee training and development in an organization was found and documented during the analyses. According to the study's findings, some of the major advantages of staff development and training include greater productivity, the discovery of employee potential, job satisfaction, the development of skills, less supervision, a decrease in turnover and absenteeism as well as less supervision and reduction of errors and accidents. The findings show that organisations that make significant investments in the training and development of their personnel are more likely to succeed than those who do not.Keywords: impact, employment, training and development, success, business, organization
Procedia PDF Downloads 695879 Application of the Discrete Rationalized Haar Transform to Distributed Parameter System
Authors: Joon-Hoon Park
Abstract:
In this paper the rationalized Haar transform is applied for distributed parameter system identification and estimation. A distributed parameter system is a dynamical and mathematical model described by a partial differential equation. And system identification concerns the problem of determining mathematical models from observed data. The Haar function has some disadvantages of calculation because it contains irrational numbers, for these reasons the rationalized Haar function that has only rational numbers. The algorithm adopted in this paper is based on the transform and operational matrix of the rationalized Haar function. This approach provides more convenient and efficient computational results.Keywords: distributed parameter system, rationalized Haar transform, operational matrix, system identification
Procedia PDF Downloads 5095878 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm
Authors: Abdullah A. AlShaher
Abstract:
In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.Keywords: character recognition, regression curves, handwritten Arabic letters, expectation maximization algorithm
Procedia PDF Downloads 1455877 Factors Affecting on Mid-Career Training for Arab Journalists, United Arab Emirates Case Study
Authors: Maha Abdulmajeed, Nagwa Fahmy
Abstract:
Improving journalism practice in the UAE requires a clear understanding of the mid-career training environment; what Arab journalists’ think about the professional training available to them, what training needs they have and still not achieved, and what factors they think it could help to improve the mid-career training outcomes. This research paper examines the validity and effectiveness of mid-career professional journalistic training in the UAE. The research focuses on Arab journalists’ perceptions and attitudes towards professional training, and the state of journalistic training courses available to them, in comparison to modern trends of professional training. The two main objectives of this paper are to examine how different factors affect the effectiveness of the mid-career training offered to Arab Journalists in UAE, whether they are institutional factories, socio-economic factors, personal factors, etc. Then, to suggest a practical roadmap to improve the mid-career journalism training in the UAE. The research methodology combines qualitative and quantitative approaches. As researchers conduct in-depth interviews with a sample of Arab journalists in the UAE, Media outlets in UAE encompass private and governmental entities, with media products in Arabic and/or English, online and/or offline as well. Besides, content analysis will be applied to the available online and offline journalistic training courses offered to Arab journalists’ in UAE along the past three years. Research outcomes are expected to be helpful and practical to improve professional training in the UAE and to determine comprehensive and concrete criteria to provide up-to-date professional training, and to evaluate its validity. Results and research outcomes can help to better understand the current status of mid-career journalistic training in the UAE, to evaluate it based on studying both; the targeted trainees and the up-to-date journalistic training trends.Keywords: Arab journalists, Arab journalism culture, journalism practice, journalism and technology
Procedia PDF Downloads 2675876 TeleMe Speech Booster: Web-Based Speech Therapy and Training Program for Children with Articulation Disorders
Authors: C. Treerattanaphan, P. Boonpramuk, P. Singla
Abstract:
Frequent, continuous speech training has proven to be a necessary part of a successful speech therapy process, but constraints of traveling time and employment dispensation become key obstacles especially for individuals living in remote areas or for dependent children who have working parents. In order to ameliorate speech difficulties with ample guidance from speech therapists, a website has been developed that supports speech therapy and training for people with articulation disorders in the standard Thai language. This web-based program has the ability to record speech training exercises for each speech trainee. The records will be stored in a database for the speech therapist to investigate, evaluate, compare and keep track of all trainees’ progress in detail. Speech trainees can request live discussions via video conference call when needed. Communication through this web-based program facilitates and reduces training time in comparison to walk-in training or appointments. This type of training also allows people with articulation disorders to practice speech lessons whenever or wherever is convenient for them, which can lead to a more regular training processes.Keywords: web-based remote training program, Thai speech therapy, articulation disorders, speech booster
Procedia PDF Downloads 3755875 Parallel Querying of Distributed Ontologies with Shared Vocabulary
Authors: Sharjeel Aslam, Vassil Vassilev, Karim Ouazzane
Abstract:
Ontologies and various semantic repositories became a convenient approach for implementing model-driven architectures of distributed systems on the Web. SPARQL is the standard query language for querying such. However, although SPARQL is well-established standard for querying semantic repositories in RDF and OWL format and there are commonly used APIs which supports it, like Jena for Java, its parallel option is not incorporated in them. This article presents a complete framework consisting of an object algebra for parallel RDF and an index-based implementation of the parallel query engine capable of dealing with the distributed RDF ontologies which share common vocabulary. It has been implemented in Java, and for validation of the algorithms has been applied to the problem of organizing virtual exhibitions on the Web.Keywords: distributed ontologies, parallel querying, semantic indexing, shared vocabulary, SPARQL
Procedia PDF Downloads 2045874 Comparing the Effectiveness of Social Skills Training and Stress Management on Self Esteem and Agression in First Grade Students of Iranian West High School
Authors: Hossein Nikandam Kermanshah, Babak Samavatian, Akbar Hemmati Sabet, Mohammad Ahmadpanah
Abstract:
This is a quasi-experimental study that has been conducted in order to compare the effectiveness of social skills training and stress management training on self-esteem and aggression in first grade high school students. Forty-five people were selected from research community and were put randomly in there groups of social skills training, stress management training and control ones. Collecting data tools in this study was devise, self-esteem and AGQ aggression questionnaire. Self-esteem and aggression questionnaires has been conducted as the pre-test and post-test. Social skills training and stress management groups participated in eight 1.5 hour session in a week. But control group did not receive any therapy. For descriptive analysis of data, statistical indicators like mean, standard deviation were used, and in inferential statistics level multi variable covariance analysis have been used. The finding result show that group training social skills and stress management is significantly effective on the self-esteem and aggression, there is a meaningful difference between training social skills and stress management on self-esteem that the preference is with group social skills training, in the difference between group social skills training and stress management on aggression, the preference is with group stress management.Keywords: social skill training, stress management training, self-esteem aggression, psychological sciences
Procedia PDF Downloads 4695873 Optimal Planning of Dispatchable Distributed Generators for Power Loss Reduction in Unbalanced Distribution Networks
Authors: Mahmoud M. Othman, Y. G. Hegazy, A. Y. Abdelaziz
Abstract:
This paper proposes a novel heuristic algorithm that aims to determine the best size and location of distributed generators in unbalanced distribution networks. The proposed heuristic algorithm can deal with the planning cases where power loss is to be optimized without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power factor node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37 -node feeder. The results obtained show the effectiveness of the proposed algorithm.Keywords: distributed generation, heuristic approach, optimization, planning
Procedia PDF Downloads 5245872 Effects of Employees’ Training Program on the Performance of Small Scale Enterprises in Oyo State
Authors: Itiola Kehinde Adeniran
Abstract:
The study examined the effect of employees’ training on the performance of small scale enterprises in Oyo State. A structured questionnaire was used to collect data from 150 respondents through purposive sampling method. Linear regression was used with the aid of statistical package for social science (SPSS) version 20 to analyze the data collected in order to examine the effect of independent variable, employees’ training on dependent variable, performance (profit) of small scale enterprises. The result revealed that employees’ training has a significant effect on the performance of small scale enterprises. It was concluded that predictor variable namely (training) is 55.5% variance of enterprises performance (profitability). Therefore, the paper recommended that all small scale enterprises in Nigeria should embrace manpower training and development in order to improve employees’ performance leading to organizational profitability.Keywords: training, employee performance, small scale enterprise, organizational profitability
Procedia PDF Downloads 3865871 Cybersecurity Assessment of Decentralized Autonomous Organizations in Smart Cities
Authors: Claire Biasco, Thaier Hayajneh
Abstract:
A smart city is the integration of digital technologies in urban environments to enhance the quality of life. Smart cities capture real-time information from devices, sensors, and network data to analyze and improve city functions such as traffic analysis, public safety, and environmental impacts. Current smart cities face controversy due to their reliance on real-time data tracking and surveillance. Internet of Things (IoT) devices and blockchain technology are converging to reshape smart city infrastructure away from its centralized model. Connecting IoT data to blockchain applications would create a peer-to-peer, decentralized model. Furthermore, blockchain technology powers the ability for IoT device data to shift from the ownership and control of centralized entities to individuals or communities with Decentralized Autonomous Organizations (DAOs). In the context of smart cities, DAOs can govern cyber-physical systems to have a greater influence over how urban services are being provided. This paper will explore how the core components of a smart city now apply to DAOs. We will also analyze different definitions of DAOs to determine their most important aspects in relation to smart cities. Both categorizations will provide a solid foundation to conduct a cybersecurity assessment of DAOs in smart cities. It will identify the benefits and risks of adopting DAOs as they currently operate. The paper will then provide several mitigation methods to combat cybersecurity risks of DAO integrations. Finally, we will give several insights into what challenges will be faced by DAO and blockchain spaces in the coming years before achieving a higher level of maturity.Keywords: blockchain, IoT, smart city, DAO
Procedia PDF Downloads 1215870 The Effects of Vocational Training on Offender Rehabilitation in Nigerian Correctional Institutions
Authors: Hadi Mohammed
Abstract:
The introduction of vocational education and training (VET) in correctional institutions as part of prisoner rehabilitation program is to help offenders develop marketable job skills and reduce re-offending thereby increasing the likely hood of successful reintegration back to their community. Offenders who participate in vocational education and training are significantly less likely to return to prison after released and are more likely to find employment after released than offenders who do not received such training. Those who participated in vocational training were 28% more likely to be employed after released from prison than those who did not received such training. This paper examined the effects of vocational training on offender rehabilitation as well as the effects of vocational training on the relationship between reformation and reintegration in Nigerian correctional institution. To address this two research question were formulated to guide the research. A survey research was employed. The participants were 200 offenders in Nigerian correctional institutions. Questionnaire items were administered. Mean, standard deviation and Partial Correlation were used for the data analysis. The findings revealed that vocational training has helped in offender rehabilitation in Nigerian correctional institutions. Similarly there was a moderate significant positive partial correlation between reformation and reintegration, controlling for vocational training, r=0.461, n=221, p<0.005 with moderate level of reformation and being associated with moderate level of reintegration. Based on the findings of the study, it was recommended that Nigerian Correctional Institutions should strengthen their vocational training program for offenders to be properly rehabilitated.Keywords: correctional institutions, vocational education and training, offender rehabilitation
Procedia PDF Downloads 1685869 Understanding Student Pilot Mental Workload in Recreational Aircraft Training
Authors: Ron Bishop, Jim Mitchell, Talitha Best
Abstract:
The increase in air travel worldwide has resulted in a pilot shortage. To increase student pilot capacity and lower costs, flight schools have increased the use of recreational aircraft (RA) with technological advanced cockpits in flight schools. The impact of RA based training compared to general aviation (GA) aircraft training on student mental workload is not well understood. This research investigated student pilot (N = 17) awareness of mental workload between technologically advanced cockpit equipped RA training with analogue gauge equipped GA training. The results showed a significantly higher rating of mental workload across subscales of mental and physical demand on the NASA-TLX in recreational aviation aircraft training compared to GA aircraft. Similarly, thematic content analysis of follow-up questions identified that mental workload of the student pilots flying the RA was perceived to be more than the GA aircraft.Keywords: mental workload, recreational aircraft, student pilot, training
Procedia PDF Downloads 1565868 Merging of Results in Distributed Information Retrieval Systems
Authors: Larbi Guezouli, Imane Azzouz
Abstract:
This work is located in the domain of distributed information retrieval ‘DIR’. A simplified view of the DIR requires a multi-search in a set of collections, which forces the system to analyze results found in these collections, and merge results back before sending them to the user in a single list. Our work is to find a fusion method based on the relevance score of each result received from collections and the relevance of the local search engine of each collection.Keywords: information retrieval, distributed IR systems, merging results, datamining
Procedia PDF Downloads 3365867 Effects of Resistance Exercise Training on Blood Profile and CRP in Men with Type 2 Diabetes Mellitus
Authors: Mohsen Salesi, Seyyed Zoheir Rabei
Abstract:
Exercise has been considered a cornerstone of diabetes prevention and treatment for decades, but the benefits of resistance training are less clear. The purpose of this study was to determine the impact of resistance training on blood profile and inflammatory marker (CRP) of type 2 diabetes mellitus people. Thirty diabetic male were recruited (age: 50.34±10.28 years) and randomly assigned to 8 weeks resistance exercise training (n=15) and control groups (n=15). Before and after training blood pressure, weight, lipid profile (TC, TG, LDL-c, and HDL-c) and hs-CRP were measured. The resistance exercise training group took part in supervised 50–80 minutes resistance training sessions, three days a week on non-consecutive days for 8 weeks. Each exercise session included approximately 10 min of warm-up and cool-down periods. Results showed that TG significantly decreased (pre 210.19±9.31 vs. 101.12±7.25, p=0.03) and HDL-c significantly increased (pre 42.37±3.15 vs. 47.50±2.19, p=0.01) after exercise training. However, there was no difference between groups in TC, LDL-c, BMI and weight. In addition, a decrease in fasting blood glucose levels showed significant difference between groups (pre 144.65±5.73 vs. 124.21±6.48 p=0.04). Regular resistance exercise training can improve the lipid profile and reducing the cardiovascular risk factors in T2DM patients.Keywords: lipid profile, resistance exercise, type 2 diabetes mellitus, men
Procedia PDF Downloads 4145866 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning
Authors: Shayan Mohajer Hamidi
Abstract:
Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning
Procedia PDF Downloads 755865 Technical and Economic Environment in the Polish Power System as the Basis for Distributed Generation and Renewable Energy Sources Development
Authors: Pawel Sowa, Joachim Bargiel, Bogdan Mol, Katarzyna Luszcz
Abstract:
The article raises the issue of the development of local renewable energy sources and the production of distributed energy in context of improving the reliability of the Polish Power System and the beneficial impact on local and national energy security. The paper refers to the current problems of local governments in the process of investment in the area of distributed energy projects, and discusses the issues of the future role and cooperation within the local power plants and distributed energy. Attention is paid to the local communities the chance to raise their own resources and management of energy fuels (biomass, wind, gas mining) and improving the local energy balance. The material presented takes the issue of the development of the energy potential of municipalities and future cooperation with professional energy. As an example, practical solutions used in one of the communes in Silesia.Keywords: distributed generation, mini centers energy, renewable energy sources, reliability of supply of rural commune
Procedia PDF Downloads 600