Search results for: contaminated water
8939 Phytoremediation Potenciality of ‘Polypogon monspeliensis L. in Detoxification of Petroleum-Contaminated Soils
Authors: Mozhgan Farzami Sepehr, Farhad Nourozi
Abstract:
In a greenhouse study, decontamination capacity of the species Polypogon monspoliensis, for detoxification of petroleum-polluted soils caused by sewage and waste materials of Tehran Petroleum Refinery. For this purpose, the amount of total oil and grease before and 45 days after transplanting one-month-old seedlings in the soils of five different treatments in which pollution-free agricultural soil and contaminated soil were mixed together with the weight ratio of respectively 1 to 9 (% 10), 2 to 8 (%20), 3 to 7 (%30) , 4 to 6 (%40), and 5 to 5 (%50) were evaluated and compared with the amounts obtained from control treatment without vegetation, but with the same concentration of pollution. Findings demonstrated that the maximum reduction in the petroleum rate ,as much as 84.85 percent, is related to the treatment 10% containing the plant. Increasing the shoot height in treatments 10% and 20% as well as the root dry and fresh weight in treatments 10% , 20% , and 30% shows that probably activity of more rhizosphere microorganisms of the plant in these treatments has led to the improvement in growth of plant organs comparing to the treatments without pollution.Keywords: phytoremediation, total oil and grease, rhizosphere, microorganisms, petroleum-contaminated soil
Procedia PDF Downloads 4098938 Evaluation of Iron Application Method to Remediate Coastal Marine Sediment
Authors: Ahmad Seiar Yasser
Abstract:
Sediment is an important habitat for organisms and act as a store house for nutrients in aquatic ecosystems. Hydrogen sulfide is produced by microorganisms in the water columns and sediments, which is highly toxic and fatal to benthic organisms. However, the irons have the capacity to regulate the formation of sulfide by poising the redox sequence and to form insoluble iron sulfide and pyrite compounds. Therefore, we conducted two experiments aimed to evaluate the remediation efficiency of iron application to organically enrich and improve sediments environment. Experiments carried out in the laboratory using intact sediment cores taken from Mikawa Bay, Japan at every month from June to September 2017 and October 2018. In Experiment 1, after cores were collected, the iron powder or iron hydroxide were applied to the surface sediment with 5 g/ m2 or 5.6 g/ m2, respectively. In Experiment 2, we experimentally investigated the removal of hydrogen sulfide using (2mm or less and 2 to 5mm) of the steelmaking slag. Experiments are conducted both in the laboratory with the same boundary conditions. The overlying water were replaced with deoxygenated filtered seawater, and cores were sealed a top cap to keep anoxic condition with a stirrer to circulate the overlying water gently. The incubation experiments have been set in three treatments included the control, and each treatment replicated and were conducted with the same temperature of the in-situ conditions. Water samples were collected to measure the dissolved sulfide concentrations in the overlying water at appropriate time intervals by the methylene blue method. Sediment quality was also analyzed after the completion of the experiment. After the 21 days incubation, experimental results using iron powder and ferric hydroxide revealed that application of these iron containing materials significantly reduced sulfide release flux from the sediment into the overlying water. The average dissolved sulfides concentration in the overlying water of the treatment group was significantly decrease (p = .0001). While no significant difference was observed between the control group after 21 day incubation. Therefore, the application of iron to the sediment is a promising method to remediate contaminated sediments in a eutrophic water body, although ferric hydroxide has better hydrogen sulfide removal effects. Experiments using the steelmaking slag also clarified the fact that capping with (2mm or less and 2 to 5mm) of slag steelmaking is an effective technique for remediation of bottom sediments enriched organic containing hydrogen sulfide because it leads to the induction of chemical reaction between Fe and sulfides occur in sediments which did not occur in conditions naturally. Although (2mm or less) of slag steelmaking has better hydrogen sulfide removal effects. Because of economic reasons, the application of steelmaking slag to the sediment is a promising method to remediate contaminated sediments in the eutrophic water body.Keywords: sedimentary, H2S, iron, iron hydroxide
Procedia PDF Downloads 1638937 Effect of Contaminants on the Behavior of Shallow Foundations
Authors: Ghazal Horiat, Alireza Hajiani Bushehrian
Abstract:
leakage of contamination from fuel or oil reservoirs can alter the geotechnical properties of the soil under their foundation and finally affect their performance in their service life. This article investigates the behavior of shallow foundations on the soil contaminated with diesel and kerosene using the Plaxis Tunnel3D V1.2 software. The information required for the numerical modeling in the paper was obtained from a similar experimental study. The present study seeks to compare the behavior of square foundations on sandy soil without contamination and the soil contaminated with different percentages of diesel and crude oil. The study was conducted on a small square foundation. The depth of the contamination was assumed constant, and the soil was evaluated with four different percentages of both contaminants. The results of analyses were plotted and assessed in the form of load-displacement curves for the foundation. The results indicate reduced bearing capacity of the foundation with the rise in the contamination percentage.Keywords: bearing capacity, contaminated soils, shallow foundations, 3D numerical analysis
Procedia PDF Downloads 1428936 Oily Sludge Bioremediation Pilot Plant Project, Nigeria
Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John
Abstract:
Brass terminal, one of the several crude oil and petroleum products storage/handling facilities in the Niger Delta was built in the 1980s. Activities at this site, over the years, released crude oil into this 3 m-deep, 1500 m-long canal lying adjacent to the terminal with oil floating on it and its sediment heavily polluted. To ensure effective clean-up, three major activities were planned: Site characterization, bioremediation pilot plant construction and testing and full-scale bioremediation of contaminated sediment/bank soil by land farming. The canal was delineated into 12 lots and each characterized, with reference to the floating oily phase, contaminated sediment and canal bank soil. As a result of site characterization, a pilot plant for on-site bioremediation was designed and a treatment basin constructed for carrying out pilot bioremediation test. Following a designed sampling protocol, samples from this pilot plant were collected for analysis at two laboratories as a quality assurance/quality control check. Results showed that Brass Canal upstream is contaminated with dark, thick and viscous oily film with characteristic hydrocarbon smell while downstream, thin oily film interspersed with water were observed. Sediments were observed to be dark with mixture of brownish sandy soil with TPH ranging from 17,800 mg/kg in Lot 1 to 88,500 mg/kg in Lot 12 samples. Brass Canal bank soil was observed to be sandy from ground surface to 3m, below ground surface (bgs) it was silty-sandy and brownish while subsurface soil (4-10m bgs) was sandy-clayey and whitish/grayish with typical hydrocarbon smell. Preliminary results obtained so far have been very promising but were proprietary. This project is considered, to the best of technical literature knowledge, the first large-scale on-site bioremediation project in the Niger Delta region, Nigeria.Keywords: bioremediation, contaminated sediment, land farming, oily sludge, oil terminal
Procedia PDF Downloads 4538935 Studies of Rule Induction by STRIM from the Decision Table with Contaminated Attribute Values from Missing Data and Noise — in the Case of Critical Dataset Size —
Authors: Tetsuro Saeki, Yuichi Kato, Shoutarou Mizuno
Abstract:
STRIM (Statistical Test Rule Induction Method) has been proposed as a method to effectively induct if-then rules from the decision table which is considered as a sample set obtained from the population of interest. Its usefulness has been confirmed by simulation experiments specifying rules in advance, and by comparison with conventional methods. However, scope for future development remains before STRIM can be applied to the analysis of real-world data sets. The first requirement is to determine the size of the dataset needed for inducting true rules, since finding statistically significant rules is the core of the method. The second is to examine the capacity of rule induction from datasets with contaminated attribute values created by missing data and noise, since real-world datasets usually contain such contaminated data. This paper examines the first problem theoretically, in connection with the rule length. The second problem is then examined in a simulation experiment, utilizing the critical size of dataset derived from the first step. The experimental results show that STRIM is highly robust in the analysis of datasets with contaminated attribute values, and hence is applicable to realworld data.Keywords: rule induction, decision table, missing data, noise
Procedia PDF Downloads 3968934 Groundwater Arsenic Contamination in Brahmaputra River Basin: A Water Quality Assessment in Jorhat (Assam), India
Authors: Kruti Jaruriya
Abstract:
Distribution of arsenic (As) and its compound and related toxicology are serious concerns. This is particularly so since millions worldwide are suffering from toxicity due to drinking of As-contaminated groundwater. The Bengal delta plain, formed by the Ganga– Padma–Meghna–Brahmaputra river basin, covering several districts of West Bengal, India and Bangladesh is considered as the worst As affected alluvial basin. However, some equally affected, if not more, areas are emerging in upper Brahmaputra plains. The present study was carried out to examine As contamination trends in the worst affected part of Assam, India. Arsenic (As) mobilization to the groundwater of Brahmaputra floodplains was investigated in Titabor, Jorhat District, located in the North Eastern part of India. The groundwater and the aquifer geochemistry were characterized. The groundwater is characterized by high dissolved Fe, Mn, and HCO-3 and low concentrations of NO-3 and SO2-4 indicating anoxic conditions prevailing in the groundwater. Fifty groundwater samples collected from shallow and deep tubewells of Titabor, Jorhat district (Assam) were examined. Along with total As, examination of concentration levels of other key parameters, viz., pH, EC, Fe, Mn , Mg2+, Ca2+, Na+, K+, PO43- , HCO-3 , NO3- ,Cl - and SO42- was also carried out. In respect to the permissible guideline of World Health Organization (WHO: As 0.01 ppm, Fe 1.0 ppm, and Mn 0.3 ppm for potable water), the range of As concentration in the groundwater varied from 0.014 to 0.604 mg/L with mean concentration 0.184 mg/L. The present study showed that out of the 50 groundwater samples,100%, 54%, and 42% were found contaminated with higher metal contents (for total As, Fe, and Mn, respectively). The results of hydrogeochemical study revealed that the reductive dissolution of MnOOH and FeOOH represents an important mechanism of arsenic release in the study area along with major cations playing an important role in leaching of As into the groundwater. Arsenic released by oxidation of pyrite, as water levels are drawn down and air enters the aquifer, contributes negligibly to the problem of As pollution. Identification of the mechanism of As release to groundwater helps to provide a framework to guide the placement of new water wells so that they will have acceptable concentrations of As.Keywords: arsenic, assam, brahmaputra floodplain, groundwater, hydrogeochemistry
Procedia PDF Downloads 3108933 Phytotreatment of Polychlorinated Biphenyls Contaminated Soil by Chromolaena odorata L. King and Robinson
Authors: R. O. Anyasi, H. I. Atagana
Abstract:
In this study, phytoextraction ability of a weed on Aroclor 1254 was studied under greenhouse conditions. Chromolaena odorata plants were transplanted into soil containing 100, 200, and 500 ppm of Aroclor in 1L pots. The experiments were watered daily at 70 % moisture field capacity. Parameters such as fully expanded leaves per plant, shoot length, leaf chlorophyll content as well as root length at harvest were measured. PCB was not phytotoxic to C. odorata growth but plants in the 500 ppm treatment only showed diminished growth at the sixth week. Percentage increases in height of plant were 45.9, 39.4 and 40.0 for 100, 200 and 500 ppm treatments respectively. Such decreases were observed in the leaf numbers, root length and leaf chlorophyll concentration. The control sample showed 48.3 % increase in plant height which was not significant from the treated samples, an indication that C. odorata could survive such PCB concentration and could be used to remediate contaminated soil. Mean total PCB absorbed by C. odorata plant was between 6.40 and 64.60 ppm per kilogram of soil, leading to percentage PCB absorption of 0.03 and 17.03 % per kilogram of contaminated soil. PCBs were found mostly in the root tissues of the plants, and the Bioaccumulation factor were between 0.006-0.38. Total PCB absorbed by the plant increases as the concentration of the compound is increased. With these high BAF ensured, C. odorata could serve as a promising candidate plant in phytoextraction of PCB from a PCB-contaminated soil.Keywords: phytoremediation, bioremediation, soil restoration, polychlorinated biphenyls (PCB), biological treatment, aroclor
Procedia PDF Downloads 3808932 Accumulation of Heavy Metals in Safflower (Carthamus tinctorius L.)
Authors: Violina R. Angelova, Mariana N. Perifanova-Nemska, Galina P. Uzunova, Elitsa N. Kolentsova
Abstract:
Comparative research has been conducted to allow us to determine the accumulation of heavy metals (Pb, Zn and Cd) in the vegetative and reproductive organs of safflower, and to identify the possibility of its growth on soils contaminated by heavy metals and efficacy for phytoremediation. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances (0.1, 0.5, 2.0, and 15 km) from the source of pollution. The contents of heavy metals in plant materials (roots, stems, leaves, seeds) were determined. The quality of safflower oils (heavy metals and fatty acid composition) was also determined. The quantitative measurements were carried out with inductively-coupled plasma (ICP). Safflower is a plant that is tolerant to heavy metals and can be referred to the hyperaccumulators of lead and cadmium and the accumulators of zinc. The plant can be successfully used in the phytoremediation of heavy metal contaminated soils. The processing of safflower seeds into oil and the use of the obtained oil will greatly reduce the cost of phytoremediation.Keywords: heavy metals, accumulation, safflower, polluted soils, phytoremediation
Procedia PDF Downloads 2638931 An Innovative Equipment for ICU Infection Control
Authors: Ankit Agarwal
Abstract:
Background: To develop a fully indigenous equipment which is an innovation in critical care, which can effectively scavenge contaminated ICU ventilator air. Objectives: Infection control in ICUs is a concern the world over. Various modalities from simple hand hygiene to costly antibiotics exist. However, one simple and scientific fact has been unnoticed till date, that the air exhaled by patients harboring MDR and other microorganisms, is released by ventilators into ICU atmosphere itself. This increases infection in ICU atmosphere and poses risk to other patients. Material and Methods: Some parts of the ventilator are neither disposable nor sterilizable. Over time, microorganisms accumulate in ventilator and act as a source of infection and also contaminate ICU air. This was demonstrated by exposing microbiological culture plates to air from expiratory port of ventilator, whereby dense growth of pathogenic microorganisms was observed. The present prototype of the equipment is totally self-made. It has a mechanism of controlled negative pressure, active and passive systems and various alarms and is versatile to be used with any ventilator. Results: This equipment captures the whole of contaminated exhaled air from the expiratory port of the ventilator and directs it out of the ICU space. Thus, it does not allow contaminated ventilator air to release into the ICU atmosphere. Therefore, there is no chance of exposure of other patients to contaminated air. Conclusion: The equipment is first of its kind the world over and is already under patent process. It has rightly been called ICU Ventilator Air Removal System (ICU VARS). It holds a chance that this technique will gain widespread acceptance shall find use in all the ventilators in most of the ICUs throughout the world.Keywords: innovative, ICU Infection Control, microorganism, negative pressure
Procedia PDF Downloads 3528930 Assessment of Heavy Metals in Irrigation Water Collected from Various Vegetables Growing Areas of Swat Valley
Authors: Islam Zeb
Abstract:
The water of poor quality used for irrigation purposes has the potential to be the direct source of contamination and a vehicle for spreading contamination in the field. A number of wide-ranging review articles have been published that highlight irrigation water as a source of heavy metals toxicity which leads to chronic diseases in the human body. Here a study was planned to determine the microbial and heavy metals status of irrigation water collected from various locations of district Swat in various months. The analyses were carried out at the Environmental Horticulture Laboratory, Department of Horticulture, The University of Agriculture Peshawar, during the year 2018 – 19. The experiment was laid out in Randomized Complete Block Design (RCBD) with two factors and three replicates. Factor A consist of different locations and factor B represent various months. The result of heavy metals concentration in different regions, maximum Lead, Cadmium, Chromium, Nickel and Copper (4.27, 0.56, 0.81, 1.33 and 1.51 mg L-1 respectively) were noted for the irrigation water samples collected from Mingora while minimum Lead, Cadmium, Chromium, Nickel and Copper concentration (2.59, 0.30, 0.27, 0.40 and 0.54 mg L-1 respectively) were noted for the samples of matta. Whereas results of heavy metals content in irrigation water samples for various months maximum content of Lead, Cadmium, Chromium, Nickel and Copper (4.56, 0.63, 1.15, 1.31 and 1.48 mg L-1 respectively) were noted for the samples collected in Jan/Feb while lowest values for Lead, Cadmium, Chromium, Nickel and Copper (2.38, 0.24, 0.21, 0.41 and 0.52 mg L-1 respectively) were noted in the samples of July/August. A significant interaction was found for all the studied parameters. It was concluded that the concentration of heavy metal was maximum in irrigation water samples collected from the Mingora location during the month of Jan/Feb because Mingora is the most polluted area as compared to other studied regions, whereas the water content in winter goes to freeze and mostly contaminated water is used for irrigation purposes.Keywords: irrigation water, various months, different regions, heavy metals contamination, Swat
Procedia PDF Downloads 788929 Detection of Cryptosporidium Oocysts by Acid-Fast Staining Method and PCR in Surface Water from Tehran, Iran
Authors: Mohamad Mohsen Homayouni, Niloofar Taghipour, Ahmad Reza Memar, Niloofar Khalaji, Hamed Kiani, Seyyed Javad Seyyed Tabaei
Abstract:
Background and Objective: Cryptosporidium is a coccidian protozoan parasite; its oocysts in surface water are a global health problem. Due to the low number of parasites in the water resources and the lack of laboratory culture, rapid and sensitive method for detection of the organism in the water resources is necessarily required. We applied modified acid-fast staining and PCR for the detection of the Cryptosporidium spp. and analysed the genotypes in 55 samples collected from surface water. Methods: Over a period of nine months, 55 surface water samples were collected from the five rivers in Tehran, Iran. The samples were filtered by using cellulose acetate membrane filters. By acid fast method, initial identification of Cryptosporidium oocyst were carried out on surface water samples. Then, nested PCR assay was designed for the specific amplification and analysed the genotypes. Results: Modified Ziehl-Neelsen method revealed 5–20 Cryptosporidium oocysts detected per 10 Liter. Five out of the 55 (9.09%) surface water samples were found positive for Cryptosporidium spp. by Ziehl-Neelsen test and seven (12.7%) were found positive by nested PCR. The staining results were consistent with PCR. Seven Cryptosporidium PCR products were successfully sequenced and five gp60 subtypes were detected. Our finding of gp60 gene revealed that all of the positive isolates were Cryptosporidium parvum and belonged to subtype families IIa and IId. Conclusion: Our investigations were showed that collection of water samples were contaminated by Cryptosporidium, with potential hazards for the significant health problem. This study provides the first report on detection and genotyping of Cryptosporidium species from surface water samples in Iran, and its result confirmed the low clinical incidence of this parasite on the community.Keywords: Cryptosporidium spp., membrane filtration, subtype, surface water, Iran
Procedia PDF Downloads 4168928 Biochar as a Strong Adsorbent for Multiple-Metal Removal from Contaminated Water
Authors: Eman H. El-Gamal, Mai E. Khedr, Randa Ghonim, Mohamed Rashad
Abstract:
In the past few years, biochar - a highly carbon-rich material produced from agro-wastes by pyrolysis process - was used as an effective adsorbent for heavy metals removal from polluted water. In this study, different types of biochar (rice straw 'RSB', corn cob 'CCB', and Jatropha shell 'JSB' were used to evaluate the adsorption capacity of heavy metals removal from multiple-metal solutions (Cu, Mn, Zn, and Cd). Kinetics modeling has been examined to illustrate potential adsorption mechanisms. The results showed that the potential removal of metal is dependent on the metal and biochar types. The adsorption capacity of the biochars followed the order: RSB > JSB > CCB. In general, RSB and JSB biochars presented high potential removal of heavy metals from polluted water, which was higher than 90 and 80% after 2 hrs of contact time for all metals, respectively. According to the kinetics data, the pseudo-second-order model was agreed strongly with Cu, Mn, Zn, and Cd adsorption onto the biochars (R2 ≥ 0.97), indicating the dominance of specific adsorption process, i.e., chemisorption. In conclusion, this study revealed that RSB and JSB biochar have the potential to be a strong adsorbent for multiple-metal removal from wastewater.Keywords: adsorption, biochar, chemisorption, polluted water
Procedia PDF Downloads 1508927 Assesment of the Economic Potential of Lead Contaminated Brownfield for Growth of Oil Producing Crop Like Helianthus annus (Sunflower)
Authors: Shahenaz Sidi, S. K. Tank
Abstract:
When sparsely used industrial and commercial facilities are retired or abandoned, one of the biggest issues that arise is what to do with the remaining land. This land, referred to as a ‘Brownfield site’ or simply ‘Brownfield’ is often contaminated with waste and pollutants left behind by the defunct industrial facilities and factories that stand on the land. Phytoremediation has been proved a promising greener and cleaner technology in remediating the land unlike other chemical excavation methods. Helianthus annus is a hyper accumulator of lead. Helianthus annus can be used for remediation procedures in metal contaminated soils. It is a fast-growing crop which would favour soil stabilization. Its tough leaves and stems are rarely eaten by animals. The seeds (actively eaten by birds) have very low concentrations of potentially toxic elements, and represent low risk for the food web. The study is conducted to determine the phytoextraction potentials of the plant and the eventual seed harvesting and commercial oil production on remediated soil.Keywords: Brownfield, phytoextraction, helianthus, oil, commercial
Procedia PDF Downloads 3378926 Fairly Irrigation Water Distribution between Upstream and Downstream Water Users in Water Shortage Periods
Authors: S. M. Hashemy Shahdany
Abstract:
Equitable water delivery becomes one of the main concerns for water authorities in arid regions. Due to water scarcity, providing reliable amount of water is not possible for most of the irrigation districts in arid regions. In this paper, water level difference control is applied to keep the water level errors equal in adjacent reaches. Distant downstream decentralized configurations of the control method are designed and tested under a realistic scenario shows canal operation under water shortage. The simulation results show that the difference controllers share the water level error among all of the users in a fair way. Therefore, water deficit has a similar influence on downstream as well as upstream and water offtakes.Keywords: equitable water distribution, precise agriculture, sustainable agriculture, water shortage
Procedia PDF Downloads 4628925 Assessing Socio-economic Impacts of Arsenic and Iron Contamination in Groundwater: Feasibility of Rainwater Harvesting in Amdanga Block, North 24 Parganas, West Bengal, India
Authors: Rajkumar Ghosh
Abstract:
The present study focuses on conducting a socio-economic assessment of groundwater contamination by arsenic and iron and explores the feasibility of rainwater harvesting (RWH) as an alternative water source in the Amdanga Block of North 24 Parganas, West Bengal, India. The region is plagued by severe groundwater contamination, primarily due to excessive concentrations of arsenic and iron, which pose significant health risks to the local population. The study utilizes a mixed-methods approach, combining quantitative analysis of water samples collected from different locations within the Amdanga Block and socio-economic surveys conducted among the affected communities. The results reveal alarmingly high levels of arsenic and iron contamination in the groundwater, surpassing the World Health Organization (WHO) and Indian government's permissible limits. This contamination significantly impacts the health and well-being of the local population, leading to a range of health issues such as skin The water samples are analyzed for arsenic and iron levels, while the surveys gather data on water usage patterns, health conditions, and socio-economic factors. lesions, respiratory disorders, and gastrointestinal problems. Furthermore, the socio-economic assessment highlights the vulnerability of the affected communities due to limited access to safe drinking water. The findings reveal the adverse socio-economic implications, including increased medical expenditures, reduced productivity, and compromised educational opportunities. To address these challenges, the study explores the feasibility of rainwater harvesting as an alternative source of clean water. RWH systems have the potential to mitigate groundwater contamination by providing a sustainable and independent water supply. The assessment includes evaluating the rainwater availability, analyzing the infrastructure requirements, and estimating the potential benefits and challenges associated with RWH implementation in the study area. The findings of this study contribute to a comprehensive understanding of the socio-economic impact of groundwater contamination by arsenic and iron, emphasizing the urgency to address this critical issue in the Amdanga Block. The feasibility assessment of rainwater harvesting serves as a practical solution to ensure a safe and sustainable water supply, reducing the dependency on contaminated groundwater sources. The study's results can inform policymakers, researchers, and local stakeholders in implementing effective mitigation measures and promoting the adoption of rainwater harvesting as a viable alternative in similar arsenic and iron-contaminated regions.Keywords: contamination, rainwater harvesting, groundwater, sustainable water supply
Procedia PDF Downloads 998924 Electroremediation of Saturated and Unsaturated Nickel-Contaminated Soils
Authors: Waddah Abdullah, Saleh Al-Sarem
Abstract:
Electrokinetic remediation was undoubtedly proven to be one of the most efficient techniques used to clean up soils contaminated with polar charged contaminants (such as heavy metals) and non-polar organic contaminants. It can be efficiently used to clean up low permeability mud, wastewater, electroplating wastes, sludge, and marine dredging. This study presented and discussed the results of electrokinetic remediation processes to clean up soils contaminated with nickel. Two types of electrokinetics cells were used: an open cell and an advanced cylindrical cell. Two types of soils were used for this investigation; the Azraq green clay which has very low permeability taken from the eastern part of Jordan (city of Azraq) and a sandy soil having, relatively, very high permeability. The clayey soil was spiked with 500 ppm of nickel, and the sandy soil was spiked with 1500 ppm of nickel. Fully saturated and partially saturated clayey soils were used for the clean-up process. Clayey soils were tested under a direct current of 80 mA and 50 mA to study the effect of the electrical current on the remediation process. Chelating agent (Na-EDTA), disodium ethylene diamine tetraacetatic acid, was used in both types of soils to enhance the electroremediation process. The effect of carbonates presence in the contaminated soils, also, was investigated by use of sodium carbonate and calcium carbonate. pH changes in the anode and the cathode compartments were controlled by use of buffer solutions. The results of the investigation showed that for the fully saturated clayey soil spiked with nickel had an average removal efficiency of 64%, and the average removal efficiency was 46% for the unsaturated clayey soil. For the sandy soil, the average removal efficiency of Nickel was 90%. Test results showed that presence of carbonates in the remediated soils retarded the clean-up process of nickel-contaminated soils (removal efficiency was reduced from 90% to 60%). EDTA enhanced decontamination of nickel contaminated clayey and sandy soils with carbonates was studied. The average removal efficiency increased from 60% (prior to using EDTA) to more than 90% after using EDTA.Keywords: buffer solution, EDTA, electroremediation, nickel removal efficiency
Procedia PDF Downloads 1848923 Assessment of Water Quality of Selected Lakes of Coimbatore District, Tamil Nadu, India
Authors: K. P. Ganesh, T. Gomathi, L. Arul Pragasan
Abstract:
Degradation of lake water quality is one of the serious environmental threats for the last few decades, particularly, the lakes situated in and around urban and industrial areas. The present study aimed to analyze the physicochemical and biological parameters, and metal elements to determine the water quality of Krishnampathi, Ukkadam, Kurichi, Sulur and Singanallur Lakes. Of the 23 physicochemical parameters analyzed in the five lakes, except TDS, Chloride and Total hardness values all the 20 parameters were found within the prescribed limit as recommended by World Health Organization (WHO) and Bureau of Indian Standards (BIS). In case of biological parameter, both Total Coliform and Fecal Coliform bacteria (Escherichia coli) were identified. This indicates the contamination of lakes by fecal matter, and warns of potential of disease causing by viruses, bacteria and other organisms. Among the twelve metal elements (Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Mo, Cd and Pb) determined by inductively coupled plasma-mass spectroscopy, except Cd (for all lakes), and Pb (for Ukkadam, Kurichi, Sulur & Singanallur), all the elements were found above the prescribed limits of BIS. The results of the present study revealed that all the five major lakes of Coimbatore were contaminated. It is recommended that proper implementation of the new wetland waste management system and monitoring of water quality be of the urgent need to sustain the water bodies for future generations.Keywords: heavy metals, inductively coupled plasma-mass spectroscopy, physicochemical and biological parameters, water quality
Procedia PDF Downloads 1798922 Identification and Isolation of E. Coli O₁₅₇:H₇ From Water and Wastewater of Shahrood and Neka Cities by PCR Technique
Authors: Aliasghar Golmohammadian, Sona Rostampour Yasouri
Abstract:
One of the most important intestinal pathogenic strains is E. coli O₁₅₇:H₇. This pathogenic bacterium is transmitted to humans through water and food. E. coli O₁₅₇:H₇ is the main cause of Hemorrhagic colitis (HC), Hemolytic Uremic Syndrome (HUS), Thrombotic Thrombocytopenic Purpura (TTP) and in some cases death. Since E. coli O₁₅₇:H₇ can be transmitted through the consumption of different foods, including vegetables, agricultural products, and fresh dairy products, this study aims to identify and isolate E. coli O₁₅₇:H₇ from wastewater by PCR technique. One hundred twenty samples of water and wastewater were collected by Falcom Sterile from Shahrood and Neka cities. The samples were checked for colony formation after appropriate centrifugation and cultivation in the specific medium of Sorbitol MacConkey Agar (SMAC) and other diagnostic media of E. coli O₁₅₇:H₇. Also, the plates were observed macroscopically and microscopically. Then, the necessary phenotypic tests were performed on the colonies, and finally, after DNA extraction, the PCR technique was performed with specific primers related to rfbE and stx2 genes. The number of 5 samples (6%) out of all the samples examined were determined positive by PCR technique with observing the bands related to the mentioned genes on the agarose gel electrophoresis. PCR is a fast and accurate method to identify the bacteria E. coli O₁₅₇:H₇. Considering that E. coli bacteria is a resistant bacteria and survives in water and food for weeks and months, the PCR technique can provide the possibility of quick detection of contaminated water. Moreover, it helps people in the community control and prevent the transfer of bacteria to healthy and underground water and agricultural and even dairy products.Keywords: E. coli O₁₅₇:H₇, PCR, water, wastewater
Procedia PDF Downloads 658921 Mulberry Leave: An Efficient and Economical Adsorbent for Remediation of Arsenic (V) and Arsenic (III) Contaminated Water
Authors: Saima Q. Memon, Mazhar I. Khaskheli
Abstract:
The aim of present study was to investigate the efficiency of mulberry leaves for the removal of both arsenic (III) and arsenic (V) from aqueous medium. Batch equilibrium studies were carried out to optimize various parameters such as pH of metal ion solution, volume of sorbate, sorbent doze, and agitation speed and agitation time. Maximum sorption efficiency of mulberry leaves for As (III) and As (V) at optimum conditions were 2818 μg.g-1 and 4930 μg.g-1, respectively. The experimental data was a good fit to Freundlich and D-R adsorption isotherm. Energy of adsorption was found to be in the range of 3-6 KJ/mole suggesting the physical nature of process. Kinetic data followed the first order rate, Morris-Weber equations. Developed method was applied to remove arsenic from real water samples.Keywords: arsenic removal, mulberry, adsorption isotherms, kinetics of adsorption
Procedia PDF Downloads 2758920 Hydro-Mechanical Characterization of PolyChlorinated Biphenyls Polluted Sediments in Interaction with Geomaterials for Landfilling
Authors: Hadi Chahal, Irini Djeran-Maigre
Abstract:
This paper focuses on the hydro-mechanical behavior of polychlorinated biphenyl (PCB) polluted sediments when stored in landfills and the interaction between PCBs and geosynthetic clay liners (GCL) with respect to hydraulic performance of the liner and the overall performance and stability of landfills. A European decree, adopted in the French regulation forbids the reintroducing of contaminated dredged sediments containing more than 0,64mg/kg Σ 7 PCBs to rivers. At these concentrations, sediments are considered hazardous and a remediation process must be adopted to prevent the release of PCBs into the environment. Dredging and landfilling polluted sediments is considered an eco-environmental remediation solution. French regulations authorize the storage of PCBs contaminated components with less than 50mg/kg in municipal solid waste facilities. Contaminant migration via leachate may be possible. The interactions between PCBs contaminated sediments and the GCL barrier present in the bottom of a landfill for security confinement are not known. Moreover, the hydro-mechanical behavior of stored sediments may affect the performance and the stability of the landfill. In this article, hydro-mechanical characterization of the polluted sediment is presented. This characterization led to predict the behavior of the sediment at the storage site. Chemical testing showed that the concentration of PCBs in sediment samples is between 1.7 and 2,0 mg/kg. Physical characterization showed that the sediment is organic silty sand soil (%Silt=65, %Sand=27, %OM=8) characterized by a high plasticity index (Ip=37%). Permeability tests using permeameter and filter press showed that sediment permeability is in the order of 10-9 m/s. Compressibility tests showed that the sediment is a very compressible soil with Cc=0,53 and Cα =0,0086. In addition, effects of PCB on the swelling behavior of bentonite were studied and the hydraulic performance of the GCL in interaction with PCBs was examined. Swelling tests showed that PCBs don’t affect the swelling behavior of bentonite. Permeability tests were conducted on a 1.0 m pilot scale experiment, simulating a storage facility. PCBs contaminated sediments were directly placed over a passive barrier containing GCL to study the influence of the direct contact of polluted sediment leachate with the GCL. An automatic water system has been designed to simulate precipitation. Effluent quantity and quality have been examined. The sediment settlements and the water level in the sediment have been monitored. The results showed that desiccation affected the behavior of the sediment in the pilot test and that laboratory tests alone are not sufficient to predict the behavior of the sediment in landfill facility. Furthermore, the concentration of PCB in the sediment leachate was very low ( < 0,013 µg/l) and that the permeability of the GCL was affected by other components present in the sediment leachate. Desiccation and cracks were the main parameters that affected the hydro-mechanical behavior of the sediment in the pilot test. In order to reduce these infects, the polluted sediment should be stored at a water content inferior to its shrinkage limit (w=39%). We also propose to conduct other pilot tests with the maximum concentration of PCBs allowed in municipal solid waste facility of 50 mg/kg.Keywords: geosynthetic clay liners, landfill, polychlorinated biphenyl, polluted dredged materials
Procedia PDF Downloads 1238919 Concerted Strategies for Sustainable Water Resource Management in Semi-Arid Rajasthan State of India
Authors: S. K. Maanju, K. Saha, Sonam Yadav
Abstract:
Rapid urbanization growth and multi-faceted regional level industrialization is posing serious threat to natural groundwater resource in State of Rajasthan which constitute major semi-arid part of India. The groundwater resources of the State are limited and cannot withstand the present rate of exploitation for quite a long time. Recharging of groundwater particularly in the western part, where annual precipitation does not exceed a few centimeters, is extremely slow and cannot replenish the exploited quantum. Hence, groundwater in most of the parts of this region has become an exhausting resource. In major parts water table is lowering down rapidly and continuously. The human beings of this semi-arid region are used to suffering from extreme climatic conditions of arid to semi-arid nature and acute shortage of water. The quality of groundwater too in many areas of this region is not up to the standards prescribed by the health organizations like WHO and BIS. This semi-arid region is one of the highly fluoride contaminated area of India as well as have excess, nitrates, sulphates, chlorides and total dissolved solids at various locations. Therefore, concerted efforts are needed towards sustainable development of groundwater in this State of India.Keywords: Rajasthan, water, exploitation, sustainable, development and resource
Procedia PDF Downloads 3478918 In situ Immobilization of Mercury in a Contaminated Calcareous Soil Using Water Treatment Residual Nanoparticles
Authors: Elsayed A. Elkhatib, Ahmed M. Mahdy, Mohamed L. Moharem, Mohamed O. Mesalem
Abstract:
Mercury (Hg) is one of the most toxic and bio-accumulative heavy metal in the environment. However, cheap and effective in situ remediation technology is lacking. In this study, the effects of water treatment residuals nanoparticles (nWTR) on mobility, fractionation and speciation of mercury in an arid zone soil from Egypt were evaluated. Water treatment residual nanoparticles with high surface area (129 m 2 g-1) were prepared using Fritsch planetary mono mill. Scanning and transmission electron microscopy revealed that the nanoparticles of WTR nanoparticles are spherical in shape, and single particle sizes are in the range of 45 to 96 nm. The x-ray diffraction (XRD) results ascertained that amorphous iron, aluminum (hydr)oxides and silicon oxide dominating all nWTR, with no apparent crystalline iron–Al (hydr)oxides. Addition of nWTR, greatly increased the Hg sorption capacities of studied soils and greatly reduced the cumulative Hg released from the soils. Application of nWTR at 0.10 and 0.30 % rates reduced the released Hg from the soil by 50 and 85 % respectively. The power function and first order kinetics models well described the desorption process from soils and nWTR amended soils as evidenced by high coefficient of determination (R2) and low SE values. Application of nWTR greatly increased the association of Hg with the residual fraction. Meanwhile, application of nWTR at a rate of 0.3% greatly increased the association of Hg with the residual fraction (>93%) and significantly increased the most stable Hg species (Hg(OH)2 amor) which in turn enhanced Hg immobilization in the studied soils. Fourier transmission infrared spectroscopy analysis indicated the involvement of nWTR in the retention of Hg (II) through OH groups which suggest inner-sphere adsorption of Hg ions to surface functional groups on nWTR. These results demonstrated the feasibility of using a low-cost nWTR as best management practice to immobilize excess Hg in contaminated soils.Keywords: release kinetics, Fourier transmission infrared spectroscopy, Hg fractionation, Hg species
Procedia PDF Downloads 2348917 Cadmium Accumulation and Depuration Characteristics through Food Source of Cage-Cultivated Fish after Accidental Pollution in Longjiang River
Authors: Qianli Ma, Xuemin Zhao, Lingai Yao, Zhencheng Xu, Li Wang
Abstract:
Heavy metal pollution accidents, frequently happened in this decade in China, severely threaten aquatic ecosystem and economy. In January 2012, a basin-scale accidental Cd pollution happened in Longjiang River in southwest China. Although water quality was recovered in short period by emergency treatment with flocculants, a large amount of contaminated cage-cultivated fish were left with the task of preventing or mitigating Cd contamination of fish. In this study, unpolluted Ctenopharyngodon idellus were fed by Cd-contaminated macrophytes for assessing the effect of Cd accumulation through food exposure, and the contaminated C. idellus were fed with Cd-free macrophytes for assessing the ability of Cd depuration. The on-site cultivation experiments were done in two sites of Lalang (S1, accidental Cd pollution originated) and Sancha (S2, a large amount of flocculants were added to accelerate Cd precipitation) in Longjiang river. Results showed that Cd content in fish muscle presented an increasing trend in the accumulation experiment. In S1, Cd content of fish muscle rose sharply from day 8 to day 18 with higher average Cd content in macrophytes and sediment, and kept in the range of 0.208-0.308 mg/kg afterward. In S2, Cd content of fish muscle rose gradually throughout the experiment and reached the maximum level of 0.285 mg/kg on day 76. The results of the depuration experiment showed that Cd content in fish muscle decreased and significant changes were observed in the first half time of the experiment. Meanwhile, fish with lower initial Cd content presented higher elimination constant. In S1, Cd content of fish significantly decreased from 0.713 to 0.304 mg/kg in 18 days and kept decreasing to 0.110 mg/kg in the end, and 84.6% of Cd content was eliminated. While in S2, there was a sharp decrease of Cd content of fish in 0-8 days from 0.355 mg/kg to 0.069 mg/kg. The total elimination percentage was 93.8% and 80.6% of which appeared in day 0-8. The elimination constant of fish in S2 was 0.03 which was higher than 0.02 in S1. Collectively, our results showed Cd could be absorbed through food exposure and accumulate in fish muscle, and the accumulated Cd in fish muscle can be excreted after isolated from the polluted food sources. This knowledge allows managers to assess health risk of Cd contaminated fish and minimize aquaculture loss when considering fish cultivation after accidental pollution.Keywords: accidental pollution, cadmium accumulation and depuration, cage-cultivated fish, environmental management, river
Procedia PDF Downloads 2538916 Bioaccumulation of Polycyclic Aromatic Hydrocarbons in Padina boryana Alga Collected from a Contaminated Site at the Red Sea, Saudi Arabia
Authors: Huda Qari, I. A. Hassan
Abstract:
The brown alga Padina boryanawas was used for bioassay of polycyclic aromatic hydrocarbons (PAHs) accumulation at the seashore of Jeddah city. PAHs were determined in the coastal water and algal tissues by GC-MS. Acenaphthene (Ace) and dibenzo (a,h) anthracene (dB(a,h)An) were the main PAHs in seawater (50.02 and 46.18) and algal tissues (64.67 and 72.45), respectively. The ratios of low molecular weight/high molecular weight hydrocarbons (1.76 – 1.44), fluoranthene/pyrene (1.57 – 1.52) and phenanthrene/anthracene (0.86 – 0.67) in seawater and algal tissues, respectively, indicated the origin of the PAHs to be mainly petrogenic. This study has demonstrated the utility of using Padina boryanawas as a biomonitor of PAH contamination and bioavailability in the coastal waters.Keywords: polycyclic aromatic hydrocarbons, Padina boryanawas, bioaccumulation, waste water
Procedia PDF Downloads 2858915 Identification and Characterization of Oil-Degrading Bacteria from Crude Oil-Contaminated Desert Soil in Northeastern Jordan
Authors: Mohammad Aladwan, Adelia Skripova
Abstract:
Bioremediation aspects of crude oil-polluted fields can be achieved by isolation and identification of bacterial species from oil-contaminated soil in order to choose the most active isolates and increase the strength of others. In this study, oil-degrading bacteria were isolated and identified from oil-contaminated soil samples in northeastern Jordan. The bacterial growth count (CFU/g) was between 1.06×10⁵ and 0.75×10⁹. Eighty-two bacterial isolates were characterized by their morphology and biochemical tests. The identified bacterial genera included: Klebsiella, Staphylococcus, Citrobacter, Lactobacillus, Alcaligenes, Pseudomonas, Hafnia, Micrococcus, Rhodococcus, Serratia, Enterobacter, Bacillus, Salmonella, Mycobacterium, Corynebacterium, and Acetobacter. Molecular identification of a universal primer 16S rDNA gene was used to identify four bacterial isolates: Microbacterium esteraromaticum strain L20, Pseudomonas stutzeri strain 13636M, Klebsilla pneumoniae, and uncultured Klebsilla sp., known as new strains. Our results indicate that their specific oil-degrading bacteria isolates might have a high strength of oil degradation from oil-contaminated sites. Staphylococcus intermedius (75%), Corynebacterium xerosis (75%), and Pseudomonas fluorescens (50%) showed a high growth rate on different types of hydrocarbons, such as crude oil, toluene, naphthalene, and hexane. In addition, monooxygenase and catechol 2,3-dioxygenase were detected in 17 bacterial isolates, indicating their superior hydrocarbon degradation potential. Total petroleum hydrocarbons were analyzed using gas chromatography for soil samples. Soil samples M5, M7, and M8 showed the highest levels (43,645, 47,805, and 45,991 ppm, respectively), and M4 had the lowest level (7,514 ppm). All soil samples were analyzed for heavy metal contamination (Cu, Cd, Mn, Zn, and Pb). Site M7 contains the highest levels of Cu, Mn, and Pb, while Site M8 contains the highest levels of Mn and Zn. In the future, these isolates of bacteria can be used for the cleanup of oil-contaminated soil.Keywords: bioremediation, 16S rDNA gene, oil-degrading bacteria, hydrocarbons
Procedia PDF Downloads 1248914 Determination of Aflatoxins in Edible-Medicinal Plant Samples by HPLC with Fluorescence Detector and KOBRA-Cell
Authors: Isil Gazioglu, Abdulselam Ertas
Abstract:
Aflatoxins (AFs) are secondary toxic metabolites of Aspergillus flavus and A. parasiticus. AFs can be absorbed through the skin. Potent carcinogens like AFs should be completely absent from cosmetics, this can be achieved by careful quality control of the raw plant materials. Regulatory limits for aflatoxins have been established in many countries, and reliable testing methodology is needed to implement and enforce the regulatory limits. In this study, ten medicinal plant samples (Bundelia tournefortti, Capsella bursa-pastoris, Carduus tenuiflorus, Cardaria draba, Malva neglecta, Malvella sharardiana, Melissa officinalis, Sideritis libanotica, Stakys thirkei, Thymus nummularius) were investigated for aflatoxin (AF) contaminations by employing an HPLC assay for the determination of AFB1, B2, G1 and G2. The samples were extracted with 70% (v/v) methanol in water before further cleaned up with an immunoaffinity column and followed by the detection of AFs by using an electrochemically post-column derivatization with Kobra-Cell and fluorescence detector. The extraction procedure was optimized in order to obtain the best recovery. The method was successfully carried out with all medicinal plant samples. The results revealed that five (50%) of samples were contaminated with AFs. The association between particular samples and the AF contaminated could not be determined due to the low frequency of positive samples.Keywords: aflatoxin B1, HPLC-FLD, KOBRA-Cell, mycotoxin
Procedia PDF Downloads 6058913 Effectiveness of Crystallization Coating Materials on Chloride Ions Ingress in Concrete
Authors: Mona Elsalamawy, Ashraf Ragab Mohamed, Abdellatif Elsayed Abosen
Abstract:
This paper aims to evaluate the effectiveness of different crystalline coating materials concerning of chloride ions penetration. The concrete ages at the coating installation and its moisture conditions were addressed; where, these two factors may play a dominant role for the effectiveness of the used materials. Rapid chloride ions penetration test (RCPT) was conducted at different ages and moisture conditions according to the relevant standard. In addition, the contaminated area and the penetration depth of the chloride ions were investigated immediately after the RCPT test using chemical identifier, 0.1 M silver nitrate AgNO3 solution. Results have shown that, the very low chloride ions penetrability, for the studied crystallization materials, were investigated only with the old age concrete (G1). The significant reduction in chloride ions’ penetrability was illustrated after 7 days of installing the crystalline coating layers. Using imageJ is more reliable to describe the contaminated area of chloride ions, where the distribution of aggregate and heterogeneous of cement mortar was considered in the images analysis.Keywords: chloride permeability, contaminated area, crystalline waterproofing materials, RCPT, XRD
Procedia PDF Downloads 2508912 Enhanced Degradation of Endosulfan in Soil Using Lycopersicon esculentum L. (Tomato) and Endosulfan Tolerant Bacterium Strains
Authors: Rupa Rani, Vipin Kumar
Abstract:
Endosulfan, an organochlorine pesticide is of environmental concern due to its apparent persistence and toxicity. It has been reported as contaminants in soil, air, and water and is bioaccumulated and magnified in ecosystems. The combined use of microorganisms and plants has great potential for remediating soil contaminated with organic compounds such as pesticides. The objective of this study was to evaluate whether the bacterial inoculation influences plant growth promotion, endosulfan degradation in soil and endosulfan accumulation in different plant parts. Lycopersicon esculentum L. (Tomato) was grown in endosulfan spiked soil and inoculated with endosulfan tolerant bacterial strains. Endosulfan residues from different parts of plants and soil were extracted and estimated by using gas chromatograph equipped with 63Ni electron capture detector (GC-ECD). The inoculation of bacterial strains into the soil with plants showed a beneficial effect on endosulfan degradation and plant biomass production. Maximum endosulfan (90%) degradation was observed after 120 days of bacterial inoculation in the soil. Furthermore, there was significantly less endosulfan accumulation in roots and shoots of bacterial strains inoculated plants as compared to uninoculated plants. The results show the effectiveness of inoculated endosulfan tolerant bacterial strains to increase the remediation of endosulfan contaminated soil.Keywords: organochlorine pesticides, endosulfan, degradation, plant-bacteria partnerships
Procedia PDF Downloads 1518911 Multi-Template Molecularly Imprinted Polymer: Synthesis, Characterization and Removal of Selected Acidic Pharmaceuticals from Wastewater
Authors: Lawrence Mzukisi Madikizela, Luke Chimuka
Abstract:
Removal of organics from wastewater offers a better water quality, therefore, the purpose of this work was to investigate the use of molecularly imprinted polymer (MIP) for the elimination of selected organics from water. A multi-template MIP for the adsorption of naproxen, ibuprofen and diclofenac was synthesized using a bulk polymerization method. A MIP was synthesized at 70°C by employing 2-vinylpyridine, ethylene glycol dimethacrylate, toluene and 1,1’-azobis-(cyclohexanecarbonitrile) as functional monomer, cross-linker, porogen and initiator, respectively. Thermogravimetric characterization indicated that the polymer backbone collapses at 250°C and scanning electron microscopy revealed the porous and roughness nature of the MIP after elution of templates. The performance of the MIP in aqueous solutions was evaluated by optimizing several adsorption parameters. The optimized adsorption conditions were 50 mg of MIP, extraction time of 10 min, a sample pH of 4.6 and the initial concentration of 30 mg/L. The imprinting factors obtained for naproxen, ibuprofen and diclofenac were 1.25, 1.42, and 2.01, respectively. The order of selectivity for the MIP was; diclofenac > ibuprofen > naproxen. MIP showed great swelling in water with an initial swelling rate of 2.62 g/(g min). The synthesized MIP proved to be able to adsorb naproxen, ibuprofen and diclofenac from contaminated deionized water, wastewater influent and effluent.Keywords: adsorption, molecularly imprinted polymer, multi template, pharmaceuticals
Procedia PDF Downloads 3038910 Assessment of Heavy Metals Contamination Levels in Groundwater: A Case Study of the Bafia Agricultural Area, Centre Region Cameroon
Authors: Carine Enow-Ayor Tarkang, Victorine Neh Akenji, Dmitri Rouwet, Jodephine Njdma, Andrew Ako Ako, Franco Tassi, Jules Remy Ngoupayou Ndam
Abstract:
Groundwater is the major water resource in the whole of Bafia used for drinking, domestic, poultry and agricultural purposes, and being an area of intense agriculture, there is a great necessity to do a quality assessment. Bafia is one of the main food suppliers in the Centre region of Cameroon, and so to meet their demands, the farmers make use of fertilizers and other agrochemicals to increase their yield. Less than 20% of the population in Bafia has access to piped-borne water due to the national shortage, according to the authors best knowledge very limited studies have been carried out in the area to increase awareness of the groundwater resources. The aim of this study was to assess heavy metal contamination levels in ground and surface waters and to evaluate the effects of agricultural inputs on water quality in the Bafia area. 57 water samples (including 31 wells, 20 boreholes, 4 rivers and 2 springs) were analyzed for their physicochemical parameters, while collected samples were filtered, acidified with HNO3 and analyzed by ICP-MS for their heavy metal content (Fe, Ti, Sr, Al, Mn). Results showed that most of the water samples are acidic to slightly neutral and moderately mineralized. Ti concentration was significantly high in the area (mean value 130µg/L), suggesting another Ti source besides the natural input from Titanium oxides. The high amounts of Mn and Al in some cases also pointed to additional input, probably from fertilizers that are used in the farmlands. Most of the water samples were found to be significantly contaminated with heavy metals exceeding the WHO allowable limits (Ti-94.7%, Al-19.3%, Mn-14%, Fe-5.2% and Sr-3.5% above limits), especially around farmlands and topographic low areas. The heavy metal concentration was evaluated using the heavy metal pollution index (HPI), heavy metal evaluation index (HEI) and degree of contamination (Cd), while the Ficklin diagram was used for the water based on changes in metal content and pH. The high mean values of HPI and Cd (741 and 5, respectively), which exceeded the critical limit, indicate that the water samples are highly contaminated, with intense pollution from Ti, Al and Mn. Based on the HPI and Cd, 93% and 35% of the samples, respectively, are unacceptable for drinking purposes. The lowest HPI value point also had the lowest EC (50 µS/cm), indicating lower mineralization and less anthropogenic influence. According to the Ficklin diagram, 89% of the samples fell within the near-neutral low-metal domain, while 9% fell in the near-neutral extreme-metal domain. Two significant factors were extracted from the PCA, explaining 70.6% of the total variance. The first factor revealed intense anthropogenic activity (especially from fertilizers), while the second factor revealed water-rock interactions. Agricultural activities thus have an impact on the heavy metal content of groundwater in the area; hence, much attention should be given to the affected areas in order to protect human health/life and thus sustainably manage this precious resource.Keywords: Bafia, contamination, degree of contamination, groundwater, heavy metal pollution index
Procedia PDF Downloads 87