Search results for: calcium phosphate cement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1794

Search results for: calcium phosphate cement

1704 Effect of Rice Husk Ash and Metakaolin on the Compressive Strengths of Ternary Cement Mortars

Authors: Olubajo Olumide Olu

Abstract:

This paper studies the effect of Metakaolin (MK) and Rice husk ash (RHA) on the compressive strength of ternary cement mortar at replacement level up to 30%. The compressive strength test of the blended cement mortars were conducted using Tonic Technic compression and machine. Nineteen ternary cement mortars were prepared comprising of ordinary Portland cement (OPC), Rice husk ash (RHA) and Metakaolin (MK) at different proportion. Ternary mortar prisms in which Portland cement was replaced by up to 30% were tested at various age; 2, 7, 28 and 60 days. Result showed that the compressive strength of the cement mortars increased as the curing days were lengthened for both OPC and the blended cement samples. The ternary cement’s compressive strengths showed significant improvement compared with the control especially beyond 28 days. This can be attributed to the slow pozzolanic reaction resulting from the formation of additional CSH from the interaction of the residual CH content and the silica available in the Metakaolin and Rice husk ash, thus providing significant strength gain at later age. Results indicated that the addition of metakaolin with rice husk ash kept constant was found to lead to an increment in the compressive strength. This can either be attributed to the high silica/alumina contribution to the matrix or the C/S ratio in the cement matrix. Whereas, increment in the rice husk ash content while metakaolin was held constant led to an increment in the compressive strength, which could be attributed to the reactivity of the rice husk ash followed by decrement owing to the presence of unburnt carbon in the RHA matrix. The best compressive strength results were obtained at 10% cement replacement (5% RHA, 5% MK); 15% cement replacement (10% MK and 5% RHA); 20% cement replacement (15% MK and 5% RHA); 25% cement replacement (20% MK and 5% RHA); 30% cement replacement (10%/20% MK and 20%/10% RHA). With the optimal combination of either 15% and 20% MK with 5% RHA giving the best compressive strength of 40.5MPa.

Keywords: metakaolin, rice husk ash, compressive strength, ternary mortar, curing days

Procedia PDF Downloads 321
1703 Influence of Gum Acacia Karroo on Some Mechanical Properties of Cement Mortars and Concrete

Authors: Mbugua R. N., Salim R. W., Ndambuki J. M.

Abstract:

Natural admixtures provide concrete with enhanced properties but their processing end up making them very expensive resulting in increase to cost of concrete. In this study the effect of Gum from Acacia Karroo (GAK) as set-retarding admixture in cement pastes was studied. The possibility of using GAK as water reducing admixture both in cement mortar concrete was also investigated. Cement pastes with different dosages of GAK were prepared to measure the setting time using different dosages. Compressive strength of cement mortars with 0.7, 0.8 and 0.9% weight of cement and w/c ratio of 0.5 were compared to those with water cement (w/c) ratio of 0.44 but same dosage of GAK. Concrete samples were prepared using higher dosages of GAK (1, 2 and 3\% wt of cement) and a water bidder (w/b) of 0.61 were compared to those with the same GAK dosage but with reduced w/b ratio. There was increase in compressive strength of 9.3% at 28 days for cement mortar samples with 0.9% dosage of GAK and reduced w/c ratio.

Keywords: compressive strength, Gum Acacia Karroo, retarding admixture, setting time, water-reducing admixture

Procedia PDF Downloads 293
1702 Modification of Toothpaste Formula Using Pineapple Cobs and Eggshell Waste as a Way to Decrease Dental Caries

Authors: Achmad Buhori, Reza Imam Pratama, Tissa Wiraatmaja, Wanti Megawati

Abstract:

Data from many countries indicates that there is a marked increase of dental caries. The increases in caries appear to occur in lower socioeconomic groups. It is possible that the benefits of prevention of dental caries are not reaching these groups. However, there is a way to decrease dental caries by adding 5% of bromelain and calcium as an active agent in toothpaste. Bromelain can break glutamine-alanine bond and arginine-alanine bond which is a constituent of amino acid that causes dental plague which is one of the factors of dental caries. Calcium help rebuilds the teeth by strengthening and repairing enamel. Bromelain can be found from the extraction of pineapple (Ananas comosus) cobs (88.86-94.22 % of bromelain recovery during extraction based on the enzyme unit) and calcium can be taken from eggshell (95% of dry eggshell consist of calcium). The aim of this experiment is to make a toothpaste which contains bromelain and calcium as an effective, cheap, and healthy way to decrease dental caries around the world.

Keywords: bromelain, calcium, dental caries, dental plague, toothpaste

Procedia PDF Downloads 241
1701 Influence of Bio-Based Admixture on Compressive Strength of Concrete for Columns

Authors: K. Raza, S. Gul, M. Ali

Abstract:

Concrete is a fundamental building material, extensively utilized by the construction industry. Problems related to the strength of concrete is an immense issue for the sustainability of concrete structures. Concrete mostly loses its strength due to the cracks produced in it by shrinkage or hydration process. This study aims to enhance the strength and service life of the concrete structures by incorporating bio-based admixture in the concrete. By the injection of bio-based admixture (BBA) in concrete, it will self-heal the cracks by producing calcium carbonate. Minimization of cracks will compact the microstructure of the concrete, due to which strength will increase. For this study, Bacillus subtilis will be used as a bio-based admixture (BBA) in concrete. Calcium lactate up to 1.5% will be used as the food source for the Bacillus subtilis in concrete. Two formulations containing 0 and 5% of Bacillus subtilis by weight of cement, will be used for the casting of concrete specimens. Direct mixing method will be adopted for the usage of bio-based admixture in concrete. Compressive strength test will be carried out after 28 days of curing. Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) will be performed for the examination of micro-structure of concrete. Results will be drawn by comparing the test results of 0 and 5% the formulations. It will be recommended to use to bio-based admixture (BBA) in concrete for columns because of the satisfactory increase in the compressive strength of concrete.

Keywords: bio-based admixture, Bacillus subtilis, calcium lactate, compressive strength

Procedia PDF Downloads 199
1700 Phosphate Capture from Sewage by Hafnium-Modified Fe₃O₄@SiO₂ Superparamagnetic Nanoparticles: Adsorption Capacity, Selectivity, Reusability Analysis and Mechanistic Insights

Authors: Qian Zhao

Abstract:

With global increasing demand for phosphorus and intensively depleting reserves, it is urgent need to explore innovative approaches towards capturing phosphate from sewage, which is also an effective way to reduce phosphate contamination and avoid eutrophication of water bodies. In the present article, the superparamagnetic nano-sorbents containing Fe₃O₄ core and hafnium-modified MgAl/MgFe layered double hydroxides shell (abbreviated as MgAlHf-NP and MgFeHf-NP) was developed using a simple and low-cost synthesis protocol. The obtained Hf-coated nano-materials showed well-defined crystal structure and sufficient saturation magnetization and exhibited higher adsorption capacity for phosphate. Meanwhile, high selectivity was also confirmed since coexisting foreign anions and biomacromolecules showed little competitive effect on phosphate adsorption. The enhancement via doping with Hf should be explained by the stronger ligand complexation built by the pair of hard acid Hf ion and hard base phosphate that matched up the bonding preferences. Sufficient OH⁻ concentration and clear pH shift during the desorption/regeneration allowed for regeneration rate of higher than 90% after 5 cycles of adsorption desorption. This article attempts to provide a competitive candidate for phosphate-capture, which is highly effective, easily separable and repeatedly usable.

Keywords: phosphate recovery, nanoparticles, superparamagnetic, adsorption, reusability

Procedia PDF Downloads 120
1699 Investigation of the Decisive Factors on the Slump Loss: A Case Study of Cement Factors (Portland Cement Type 2)

Authors: M. B. Ahmadi, A. A. Kaffash B., B. Mobaraki

Abstract:

Slump loss, which refers to the gradual reduction of workability and the amount of slump in fresh concrete over time, is one of the significant challenges in the ready-mixed concrete industry. Therefore, having accurate knowledge of the factors affecting slump loss is a crucial solution in this field. In this paper, an attempt was made to investigate the effect of cement produced by different units on the slump of concrete in a laboratory setting. For this purpose, 12 cement samples were prepared from 6 different production units. Physical and chemical tests were performed on the cement samples. Subsequently, a laboratory concrete mix with a slump of 13 ± 1 cm was prepared with each cement sample, and the slump was measured at 0, 15, 30, 45, and 60 minutes. Although the environmental factors, mix design specifications, and execution conditions—factors that significantly influence the slump loss trend—were constant in all 12 laboratory concrete mixes, the slump loss trends differed among them. These trends were categorized based on the results, and the relationship between the slump loss percentage in 60 minutes, the water-cement ratio, and the LOI and K2O values of different cements were introduced.

Keywords: concrete, slump loss, portland cement, efficiency

Procedia PDF Downloads 52
1698 Investigation of Dissolution in Diammonium Hydrogen Phosphate Solutions of Gypsum

Authors: Turan Çalban, Nursel Keskin, Sabri Çolak, Soner Kuşlu

Abstract:

Gypsum (CaSO4.2H2O) is a mineral that is found in large quantities in the Turkey and in the World. The dissolution of this mineral in the diammonium hydrogen phosphate solutions has not been studied so far. Investigation of the dissolution and dissolution kinetics gypsum in diammonium hydrogen phosphate solutions will be useful for evaluating of solid wastes containing gypsum. In this study, parameters such as diammonium hydrogen phosphate concentration, temperature and stirring speed affecting on the dissolution rate of the gypsum in diammonium hydrogen phosphate solutions were investigated. In experimental studies have researched effectiveness of the selected parameters. The dissolution of gypsum were examined in two parts at low and high temperatures. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. The activation energy was found to be 34.58 kJ/mol and 44.45 kJ/mol for the low and the high temperatures. The dissolution of gypsum was controlled by chemical reaction both low temperatures and high temperatures. Reaction rate expressions of dissolution of gypsum at the low temperatures and the high temperatures controlled by chemical reaction are as follows, respectively. = k1.e-5159.5/T.t = k2.e-5346.8/T.t Where k1 and k2 are constants depending on the diammonium hydrogen phosphate solution concentration, the solid/liquid ratio, the stirring speed and the particle size.

Keywords: diammonium hydrogen phosphate, dissolution kinetics, gypsum, kinetics.

Procedia PDF Downloads 367
1697 Experimental Investigations on Ultimate Bearing Capacity of Soft Soil Improved by a Group of End-Bearing Column

Authors: Mamata Mohanty, J. T. Shahu

Abstract:

The in-situ deep mixing is an effective ground improvement technique which involves columnar inclusion into soft ground to increase its bearing capacity and reduce settlement. The first part of the study presents the results of unconfined compression on cement-admixed clay prepared at different cement content and subjected to varying curing periods. It is found that cement content is a prime factor controlling the strength of the cement-admixed clay. Besides cement content, curing period is important parameter that adds to the strength of cement-admixed clay. Increase in cement content leads to significant increase in Unconfined Compressive Strength (UCS) values especially at cement contents greater than 8%. The second part of the study investigated the bearing capacity of the clay ground improved by a group of end-bearing column using model tests under plain-strain condition. This study mainly focus to examine the effect of cement contents on the ultimate bearing capacity and failure stress of the improved clay ground. The study shows that the bearing capacity of the improved ground increases significantly with increase in cement contents of the soil-cement columns. A considerable increase in the stiffness of the model ground and failure stress was observed with increase in cement contents.

Keywords: bearing capacity, cement content, curing time, unconfined compressive strength, undrained shear strength

Procedia PDF Downloads 158
1696 Contamination of Groundwater by Nitrates, Nitrites, Ammonium and Phosphate in the Guelma-bouchegouf Irrigated Area (Northeastern Algeria)

Authors: Benhamza Moussa, Aissaoui Marwa, Touati Mounira, Chaoui Widad

Abstract:

The Guelma-Bouchegouf irrigated area is located in the northeast of Algeria, and it extends about 80 km. It was commissioned in 1996, with an irrigable area of 9250 ha, it spreads on both banks of the Seybouse Wadi and it is subdivided into five autonomous distribution sectors. In order to assess the state of groundwater quality, the results of the chemical analyzes were plotted on the Piper diagram, which shows that the chemical facies are sulfate-calcium chloride and sulfate-calcium with a slight tendency to migrate to chlorinated sulphate - sodium. The predominance of sulphates in the waters of the region is geologically explained by the existence in the Guelma Basin of evaporitic deposits, which are mainly represented by rock salt and gypsum. In addition to this natural origin, we can mention the anthropogenic origin, following the use of chemical fertilizers in the Guelma-Bouchegouf irrigated area. Na⁺ and Mg²⁺ show moderate to significant mineralization of water, closely correlated with very high conductivities. The values of the recorded conductivities vary from 1360 μs / cm (P3) to 4610 μs / cm (P10). These important values are due to dissolved salts on the one hand and the leaching of fertilizers by irrigation water on the other hand. NO₃⁻ and NH₄⁺ show little to significant pollution throughout the study area. Phosphate represents significant pollution, with excessive values far exceeding the allowable standard. With respect to ammonium, 87% of the sampling points present little pollution and 13 % significant pollution. Regarding phosphates, in the form of PO₄³⁻, groundwater in the study area represents significant pollution; all values far exceed the allowable standard.

Keywords: groundwater, organic parameters, standards, Pollution

Procedia PDF Downloads 68
1695 Partial Replacement for Cement and Coarse Aggregate in Concrete by Using Egg Shell Powder and Coconut Shell

Authors: A. K. Jain, M. C. Paliwal

Abstract:

The production of cement leads to the emission of large amounts of carbon-dioxide gas into the atmosphere which is a major contributor for the greenhouse effect and the global warming; hence it is mandatory either to quest for another material or partly replace it with some other material. According to the practical demonstrations and reports, Egg Shell Powder (ESP) can be used as a binding material for different field applications as it contains some of the properties of lime. It can partially replace the cement and further; it can be used in different proportion for enhancing the performance of cement. It can be used as a first-class alternative, for material reuse and waste recycling practices. Eggshell is calcium rich and analogous to limestone in chemical composition. Therefore, use of eggshell waste for partial replacement of cement in concrete is feasible. Different studies reveal that plasticity index of the soil can be improved by adding eggshell wastes in all the clay soil and it has wider application in construction projects including earth canals and earthen dams. The scarcity of aggregates is also increasing nowadays. Utilization of industrial waste or secondary materials is increasing in different construction applications. Coconut shell was successfully used in the construction industry for partial or full replacement for coarse aggregates. The use of coconut shell gives advantage of using waste material to partially replace the coarse aggregate. Studies carried on coconut shell indicate that it can partially replace the aggregate. It has good strength and modulus properties along with the advantage of high lignin content. It absorbs relatively low moisture due to its low cellulose content. In the paper, study carried out on eggshell powder and coconut shell will be discussed. Optimum proportions of these materials to be used for partial replacement of cement and aggregate will also be discussed.

Keywords: greenhouse, egg shell powder, binding material, aggregates, coconut shell, coarse aggregates

Procedia PDF Downloads 225
1694 Safe Disposal of Pyrite Rich Waste Rock Using Alkali Phosphate Treatment

Authors: Jae Gon Kim, Yongchan Cho, Jungwha Lee

Abstract:

Acid rock drainage (ARD) is generated by the oxidation of pyrite (FeS₂) contained in the excavated rocks upon its exposure to atmosphere and is an environmental concern at construction site due to its high acidity and high concentration of toxic elements. We developed the safe disposal method with the reduction of ARD generation by an alkali phosphate treatment. A pyrite rich andesite was collected from a railway construction site. The collected rock sample was crushed to be less than 3/8 inches in diameter using a jaw crusher. The crushed rock was filled in an acryl tube with 20 cm in diameter and 40 cm in height. Two treatments for the ARD reduction were conducted with duplicates: 1) the addition of 10mM KH₂PO₄_3% NaHCO₃ and 2) the addition of 10mM KH₂PO₄_3% NaHCO₃ and ordinary portland cement (OPC) on the top of the column. After the treatments, 500 ml of distilled water added to each column for every week for 3 weeks and then the column was flushed with 1,500 ml of distilled water in the 4th week. The pH, electrical conductivity (EC), concentrations of anions and cations of the leachates were monitored for 10 months. The pH of the leachates from the untreated column showed 2.1-3.7, but the leachates from the columns treated with the alkali phosphate solution with or without the OPC addition showed pH 6.7–8.9. The leachates from the treated columns had much lower concentrations of SO₄²⁻ and toxic elements such as Al, Mn, Fe and heavy metals than those from the untreated columns. However, the leachates from the treated columns had a higher As concentration than those from the untreated columns. There was no significant difference in chemical property between the leachates from the treated columns with and without the OPC addition. The chemistry of leachates indicates that the alkali phosphate treatment decreased the oxidation of sulfide and neutralized the acidic pore water. No significant effect of the OPC addition on the leachate chemistry has shown during 10-month experiment. However, we expect a positive effect of the OPC addition on the reduction of ARD generation in terms of long period. According to the results of this experiment, the alkali phosphate treatment of sulfide rich rock can be a promising technology for the safe disposal method with the ARD reduction.

Keywords: acid rock drainage, alkali phosphate treatment, pyrite rich rock, safe disposal

Procedia PDF Downloads 130
1693 Evaluation of Re-mineralization Ability of Nanohydroxyapatite and Coral Calcium with Different Concentrations on Initial Enamel Carious Lesions

Authors: Ali Abdelnabi, Nermeen Hamza

Abstract:

Coral calcium is a boasting natural product and dietary supplement which is considered a source of alkaline calcium carbonate, this study is a comparative study, comparing the remineralization effect of the new product of coral calcium with that of nano-hydroxyapatite. Methodology: a total of 35 extracted molars were collected, examined and sectioned to obtain 70 sound enamel discs, all discs were numbered and examined by scanning electron microscope coupled with Energy Dispersive Analysis of X-rays(EDAX) for mineral content, subjected to artificial caries, and mineral content was re-measured, discs were divided into seven groups according to the remineralizing agent used, where groups 1 to 3 used 10%, 20%, 30% nanohydroxyapatite gel respectively, groups 4 to 6 used 10%, 20%, 30% coral calcium gel and group 7 with no remineralizing agent (control group). All groups were re-examined by EDAX after remineralization; data were calculated and tabulated. Results: All groups showed a statistically significant drop in calcium level after artificial caries; all groups showed a statistically significant rise in calcium content after remineralization except for the control group; groups 1 and 5 showed the highest increase in calcium level after remineralization. Conclusion: coral calcium can be considered a comparative product to nano-hydroxyapatite regarding the remineralization of enamel initial carious lesions.

Keywords: artificial caries, coral calcium, nanohydroxyapatite, re-mineralization

Procedia PDF Downloads 98
1692 Stabilization of Medical Waste Incineration Fly Ash in Cement Mortar Matrix

Authors: Tanvir Ahmed, Musfira Rahman, Rumpa Chowdhury

Abstract:

We performed laboratory experiments to assess the suitability of using medical waste incineration fly ash in cement as a construction material based on the engineering properties of fly ash-cement matrix and the leaching potential of toxic heavy metals from the stabilized mix. Fly ash-cement samples were prepared with different proportions of fly ash (0%, 5%, 10%, 15% and 20% by weight) in the laboratory controlled conditions. The solidified matrix exhibited a compressive strength from 3950 to 4980 psi when fly ash is mixed in varying proportions. The 28-day compressive strength has been found to decrease with the increase in fly ash content, but it meets the minimum requirement of compressive strength for cement-mortar. Soundness test results for cement-mortar mixes having up to 15% fly ash. Final and initial setting times of cement have been found to generally increase with fly ash content. Water requirement (for normal consistency) also increased with the increase in fly ash content in cement. Based on physical properties of the cement-mortar matrix it is recommended that up to 10% (by weight) medical waste incineration fly ash can be incorporated for producing cement-mortar of optimum quality. Leaching behaviours of several targeted heavy metals (As, Cu, Ni, Cd, Pb, Hg and Zn) were analyzed using Toxicity Characteristics Leaching Procedure (TCLP) on fly ash and solidified fly ash-cement matrix. It was found that the leached concentrations of As, Cu, Cd, Pb and Zn were reduced by 80.13%, 89.47%, 33.33% and 23.9% respectively for 10% fly ash incorporated cement-mortar matrix compared to that of original fly ash. The leached concentrations of heavy metals were from the matrix were far below the EPA land disposal limits. These results suggest that the solidified fly ash incorporated cement-mortar matrix can effectively confine and immobilize the heavy metals contained in the fly ash.

Keywords: cement-mortar, fly ash, leaching, waste management

Procedia PDF Downloads 146
1691 The Use of Secondary Crystallization in Cement-Based Composites

Authors: Nikol Žižková, Šárka Keprdová, Rostislav Drochytka

Abstract:

The paper focuses on the study of the properties of cement-based composites produced using secondary crystallization (crystalline additive). In this study, cement mortar made with secondary crystallization was exposed to an aggressive environment and the influence of secondary crystallization on the degradation of the cementitious composite was investigated. The results indicate that the crystalline additive contributed to increasing the resistance of the cement-based composite to the attack of the selected environments (sodium sulphate solution and ammonium chloride solution).

Keywords: secondary crystallization, cement-based composites, durability, degradation of the cementitious composite

Procedia PDF Downloads 384
1690 Characteristics of Clayey Subgrade Soil Mixed with Cement Stabilizer

Authors: Manju, Praveen Aggarwal

Abstract:

Clayey soil is considered weakest subgrade soil from civil engineering point of view under moist condition. These swelling soils attract and absorb water and losses their strength. Certain inherent properties of these clayey soils need modification for their bulk use in the construction of highways/runways pavements and embankments, etc. In this paper, results of clayey subgrade modified with cement stabilizer is presented. Investigation includes evaluation of specific gravity, Atterberg’s limits, grain size distribution, maximum dry density, optimum moisture content and CBR value of the clayey soil and cement treated clayey soil. A series of proctor compaction and CBR tests (un-soaked and soaked) are carried out on clayey soil and clayey soil mixed with cement stabilizer in 2%, 4% & 6% percentages to the dry weight of soil. In CBR test, under soaked condition best results are obtained with 6% of cement. However, the difference between the CBR value by addition of 4% and 6% cement is not much. Therefore from economical consideration addition of 4% cement gives the best result after soaking period of 90 days.

Keywords: clayey soil, cement, maximum dry density, optimum moisture content, California bearing ratio

Procedia PDF Downloads 317
1689 Temporal Change in Bonding Strength and Antimicrobial Effect of a Zirconia after Nonthermal Atmospheric Pressure Plasma Treatment

Authors: Chan Park, Sang-Won Park, Kwi-Dug Yun, Hyun-Pil Lim

Abstract:

Purpose: Plasma treatment under various conditions has been studied to increase the bonding strength and surface sterilization of dental ceramic materials. We assessed the evolution of the shear bond strength (SBS) and antimicrobial effect of nonthermal atmospheric pressure plasma (NTAPP) treatment over time. Methods: Presintered zirconia specimens were manufactured as discs (diameter: 15 mm, height: 2 mm) after final sintering. The specimens then received a 30-min treatment with argon gas (Ar², 99.999%; 10 L/min) using an NTAPP device. Five post-treatment intervals were evaluated: control (no treatment), P0 (within 1 h), P1 (24 h), P2 (48 h), and P3 (72 h). This study investigated the surface characteristics, SBS of two different resin cement (RelyXTM U200 self-adhesive resin cement, Panavia F2.0 methacryloyloxydecyl dihydrogen phosphate (MDP)-based resin cement), and Streptococcus mutans biofilm formation. Results: The SBS of RelyXTM U200 increased significantly (p < 0.05) within 2 days following plasma treatment (P0, P1, P2). For Panavia F 2.0, a significant decrease (p < 0.05) was detected only in the group that had undergone cementation immediately after plasma treatment (P0). S. mutans adhesion decreased significantly (p < 0.05) within 2 days of plasma treatment (P0, P1, P2) compared to the control group. The P0 group displayed a lower biofilm thickness than the P1 and P2 groups (p < 0.05). Conclusions: After NTAPP treatment of zirconia, the effects on bonding strength and antimicrobial growth persist for a limited duration. The effect of NTAPP treatment on bonding strength depends on the resin cement.

Keywords: NTAPP, SBS, antimicrobial effect, zirconia

Procedia PDF Downloads 221
1688 Correlation between Initial Absorption of the Cover Concrete, the Compressive Strength and Carbonation Depth

Authors: Bouzidi Yassine

Abstract:

This experimental work was aimed to characterize the porosity of the concrete cover zone using the capillary absorption test, and establish the links between open porosity characterized by the initial absorption, the compressive strength and carbonation depth. Eight formulations of workability similar made from ordinary Portland cement (CEM I 42.5) and a compound cement (CEM II/B 42.5) four of each type are studied. The results allow us to highlight the effect of the cement type. Indeed, concretes-based cement CEM II/B 42.5 carbonatent approximately faster than concretes-based cement CEM I 42.5. This effect is attributed in part to the lower content of portlandite Ca(OH)2 of concretes-based cement CEM II/B 42.5, but also the impact of the cement type on the open porosity of the cover concrete. The open porosity of concretes-based cement CEM I 42.5 is lower than that of concretes-based cement CEM II/B 42.5. The carbonation depth is a decreasing function of the compressive strength at 28 days and increases with the initial absorption. Through the results obtained, correlations between the quantity of water absorbed in 1 h, the carbonation depth at 180 days and the compressive strength at 28 days were performed in an acceptable manner.

Keywords: initial absorption, cover concrete, compressive strength, carbonation depth

Procedia PDF Downloads 314
1687 Mechanical Study Material on Low Environmental Impact

Authors: Fetta Ait Ahsene-Aissat, Messaoud Hachemi, Yacine Moussaoui, Yacine Kerchiche

Abstract:

Our study focuses on two important aspects, environmental by using a sub industrial product (FAD), by economic incorporation as an addition to Portland cement, thus improving resistance to compression and bending with different proportions ADF % up to 40 additions. We studied the effect of different substitutions 0%, 10%, 20%, and 40% of additions to the mechanical effect of the mortar. We obtained a compressive strength of 61 MPa at 90 days for the cement mixture porthland FAD-40% against a resistance of 58MPa for porthland cement without addition. The flexural strength also showed a marked increase in the cement substitution. We also monitored the behavior of the mixed ash-cement by XRD analysis and scanning electron microscopy (SEM).

Keywords: FAD, porthland, flexural strength, compressive strength, DRX

Procedia PDF Downloads 333
1686 The Impact of Foliar Application of the Calcium-Containing Compounds in Increasing Resistance to Blue Mold on Apples

Authors: Masoud Baghalian, Musa Arshad

Abstract:

In order to investigate the effect of foliar application of calcium chloride on the resistance of fruits such as Red and Golden Lebanese apple varieties to blue mold, a split plot experiment in time and space, based on accidental blocks, with three replications under foliar application were done (Control, one in a thousand, two in thousands) and the results of the variance analysis showed that there is a significant difference between the levels of foliar and variety at 5% level and between time, there is significant difference in interaction of variety × time and three way interaction of foliar×variety×time, at 1% level. The highest resistance to the blue mold disease in foliar application was observed at two in thousands calcium (calcium chloride) level.

Keywords: apple, blue mold, foliar calcium, resistance

Procedia PDF Downloads 241
1685 Phosphate Regulation of Arbuscular Mycorrhiza Symbiosis in Rice

Authors: Debatosh Das, Moxian Chen, Jianhua Zhang, Caroline Gutjahr

Abstract:

Arbuscular mycorrhiza (AM) is a mutualistic symbiosis between plant roots and Glomeromycotina fungi, which is activated under low but inhibited by high phosphate. The effect of phosphate on AM development has been observed for many years, but mechanisms regulating it under contrasting phosphate levels remain unknown. Based on previous observations that promoters of several AM functional genes contain PHR binding motifs, we hypothesized that PHR2, a master regulator of phosphate starvation response in rice, was recruited to regulate AM symbiosis development. We observed a drastic reduction in root colonization and significant AM transcriptome modulation in phr2. PHR2 targets genes required for root colonization and AM signaling. The role of PHR2 in improving root colonization, mycorrhizal phosphate uptake, and growth response was confirmed in field soil. In conclusion, rice PHR2, which is considered a master regulator of phosphate starvation responses, acts as a positive regulator of AM symbiosis between Glomeromycotina fungi and rice roots. PHR2 directly targets the transcription of plant strigolactone and AM genes involved in the establishment of this symbiosis. Our work facilitates an understanding of ways to enhance AMF propagule populations introduced in field soils (as a biofertilizer) in order to restore the natural plant-AMF networks disrupted by modern agricultural practices. We show that PHR2 is required for AM-mediated improvement of rice yield in low phosphate paddy field soil. Thus, our work contributes knowledge for rational application of AM in sustainable agriculture. Our data provide important insights into the regulation of AM by the plant phosphate status, which has a broad significance in agriculture and terrestrial ecosystems.

Keywords: biofertilizer, phosphate, mycorrhiza, rice, sustainable, symbiosis

Procedia PDF Downloads 111
1684 Multilayer System of Thermosetting Polymers and Specific Confining, Application to the Walls of the Hospital Unit

Authors: M. Bouzid, A. Djadi, C. Aribi, A. Irekti, B. Bezzazi, F. Halouene

Abstract:

The nature of materials structuring our health institutions promote the development of germs. The sustainability of nosocomial infections remains significant (12% and 15%). One of the major factors is the portland cement which is brittle and porous. As part of a national plan to fight nosocomial infections, led by the University Hospital of Blida, we opted for a composite coating, application by multilayer model, composed of epoxy-polyester resin as a binder and calcium carbonate as mineral fillers. The application of composite materials reinforce the wall coating of hospital units and eliminates the hospital infectious areas. The resistance to impact, chemicals, raising temperature and to a biologically active environment gives satisfactory results.

Keywords: nosocomial infection, microbial load, composite materials, portland cement

Procedia PDF Downloads 369
1683 Chemical Analysis of Available Portland Cement in Libyan Market Using X-Ray Fluorescence

Authors: M. A. Elbagermia, A. I. Alajtala, M. Alkerzab

Abstract:

This study compares the quality of different brands of Portland Cement (PC) available in Libyan market. The amounts of chemical constituents like SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, and Lime Saturation Factor (LSF) were determined in accordance with Libyan (L.S.S) and Amrican (A.S.S) Standard Specifications. All the cement studies were found to be good for concrete work especially where no special property is required. The chemical and mineralogical analyses for studied clinker samples show that the dominant phases composition are C3S and C2S while the C3A and C4AF are less abundant.

Keywords: Portland cement, chemical composition, Libyan market, X-Ray fluorescence

Procedia PDF Downloads 334
1682 Effect of Silica Fume at Cellular Sprayed Concrete

Authors: Kyong-Ku Yun, Seung-Yeon Han, Kyeo-Re Lee

Abstract:

Silica fume which is a super-fine byproduct of ferrosilicon or silicon metal has a filling effect on micro-air voids or a transition zone in a hardened cement paste by appropriate mixing, placement, and curing. It, also, has a Pozzolan reaction which enhances the interior density of the hydrated cement paste through a formation of calcium silicate hydroxide. When substituting cement with silica fume, it improves water tightness and durability by filling effect and Pozzolan reaction. However, it needs high range water reducer or super-plasticizer to distribute silica fume into a concrete because of its finesses and high specific surface area. In order to distribute into concrete evenly, cement manufacturers make a pre-blended cement of silica fume and provide to a market. However, a special mixing procedures and another transportation charge another cost and this result in a high price of pre-blended cement of silica fume. The purpose of this dissertation was to investigate the dispersion of silica fume by air slurry and its effect on the mechanical properties of at ready-mixed concrete. The results are as follows: A dispersion effect of silica fume was measured from an analysis of standard deviation for compressive strength test results. It showed that the standard deviation decreased as the air bubble content increased, which means that the dispersion became better as the air bubble content increased. The test result of rapid chloride permeability test showed that permeability resistance increased as the percentages of silica fume increased, but the permeability resistance decreased as the quantity of mixing air bubble increased. The image analysis showed that a spacing factor decreased and a specific surface area increased as the quantity of mixing air bubble increased.

Keywords: cellular sprayed concrete, silica fume, deviation, permeability

Procedia PDF Downloads 117
1681 Choice of Optimal Methods for Processing Phosphate Raw Materials into Complex Mineral Fertilizers

Authors: Andrey Norov

Abstract:

Based on the generalization of scientific and production experience and the latest developments of JSC “NIUIF”, the oldest (founded in September 1919) and the only Russian research institute for phosphorus-containing fertilizers, this paper shows the factors that determine the reasonable choice of a method for processing phosphate raw materials into complex fertilizers. These factors primarily include the composition of phosphate raw materials and the impurities contained in it, as well as some parameters of the process mode, wastelessness, ecofriendliness, energy saving, maximum use of the heat of chemical reactions, fire and explosion safety, efficiency, productive capacity, the required product range and the possibility of creating flexible technologies, compliance with BAT principles, etc. The presented data allow to choose the right technology for complex granular fertilizers, depending on the abovementioned factors.

Keywords: BAT, ecofriendliness, energy saving, phosphate raw materials, wastelessness

Procedia PDF Downloads 65
1680 Biosynthesis of Silver-Phosphate Nanoparticles Using the Extracellular Polymeric Substance of Sporosarcina pasteurii

Authors: Mohammadhosein Rahimi, Mohammad Raouf Hosseini, Mehran Bakhshi, Alireza Baghbanan

Abstract:

Silver ions (Ag+) and their compounds are consequentially toxic to microorganisms, showing biocidal effects on many species of bacteria. Silver-phosphate (or silver orthophosphate) is one of these compounds, which is famous for its antimicrobial effect and catalysis application. In the present study, a green method was presented to synthesis silver-phosphate nanoparticles using Sporosarcina pasteurii. The composition of the biosynthesized nanoparticles was identified as Ag3PO4 using X-ray Diffraction (XRD) and Energy Dispersive Spectroscopy (EDS). Also, Fourier Transform Infrared (FTIR) spectroscopy showed that Ag3PO4 nanoparticles was synthesized in the presence of biosurfactants, enzymes, and proteins. In addition, UV-Vis adsorption of the produced colloidal suspension approved the results of XRD and FTIR analyses. Finally, Transmission Electron Microscope (TEM) images indicated that the size of the nanoparticles was about 20 nm.

Keywords: bacteria, biosynthesis, silver-phosphate, Sporosarcina pasteurii, nanoparticle

Procedia PDF Downloads 428
1679 The Use of Cement Dust in the Glass Industry

Authors: Magda Kosmal, Anna A. Kuśnierz, Joanna Rybicka-Łada

Abstract:

In the case of waste glass cullet, a fully functioning recycling system for individual glass industries was developed, while recycling of cement dust encounters a number of difficulties and is conducted to a limited extent in the packaging and flat glass industry. The aim of the project was to examine the possibility of using dust arising in cement plants in the process of melting various types of glasses. Dust management has a positive effect on the aspect of environmental protection and ecology. Sets have been designed, and the parameters of the melting process have been optimized. Glasses were obtained with the addition of selected cement dust on a laboratory scale, using DTA, XRD, SEM tests, and a gradient furnace was conducted to check the tendency to crystallization.

Keywords: cement dust, crystallization, glass, XRD, SEM

Procedia PDF Downloads 59
1678 Effects of Egg Yolk Peptide on the Retardation of Bone Growth Induced by Low-Calcium Diets

Authors: Kang-Hyun Leem, Myung-Gyou Kim, Hye Kyung Kim

Abstract:

Eggs have long been an important contributor to the nutritional quality of the human, and recognized as a very valuable source of proteins for human nutrition. Egg yolk is composed of various important chemical substances for human health. Growth means not only the increase of body weight but also the elongation of height and the enlargement of each organ's anatomical and morphological size. A calcium shortage causes the growth retardation on the body growth. In this study, we examined the therapeutic effects of egg yolk peptide (EYP) on the retardation of the longitudinal bone growth induced by low-calcium diet (0.05%) in adolescent rats. Low calcium diets were administrated for 15 days. During the last five days, calcium and/or vitamin D and/or EYP were administrated. The body weights, longitudinal bone growth rates, the heights of growth plates, and bone morphogenetic protein (BMP)-2 and insulin-like growth factor (IGF)-1 expressions were measured using histochemical analysis. Low calcium diets caused the significant reduction in body weight gains and the longitudinal bone growth. The heights of growth plates and the expressions of BMP-2 and IGF-1 showed the impairment of body growth as well. Calcium and/or vitamin D administration could not significantly increase the longitudinal bone growth. However, calcium, vitamin D, and EYP administration significantly increased the bone growth, the growth plate height, and BMP-2 and IGF-1 expressions. These results suggest that EYP enhances the longitudinal bone growth in the calcium and/or vitamin D deficiency and it could be a promising agent for the treatment of children suffering from malnutrition.

Keywords: egg yolk peptide, low-calcium diet, longitudinal bone growth, morphogenetic protein-2, insulin-like growth factor-1, vitamin D

Procedia PDF Downloads 425
1677 Effect of Phosphate and Zinc Biofertilizers on Seed Yield and Molar Ratio of Phytic Acid to Zinc in Two Cultivars of Bean (Phaseolus vulgaris L.)

Authors: M. Mohammadi

Abstract:

In order to evaluate the effect of phosphate and Zn bio-fertilizers on the yield, phytic acid (PA), Zn concentration and PA/Zn molar ratio in bean, a field experiment was carried out for two years. The treatments included two cultivars of bean (Talash and Sadri), four levels of P (P0, P1: 100 kg ha-1 triple super phosphate (TSP), P2: 50 kg ha-1 TSP + phosphate bio-fertilizer, P3: phosphate bio-fertilizer), three levels of Zn (Zn0, Zn1: 50 kg ha-1 ZnSO4, Zn2: Zn bio-fertilizer). Phosphate bio-fertilizer consisted of inoculum of mycorrhizal fungus and Azotobacter and Zn bio-fertilizer consisted of Pseudomonas bacteria. The results revealed that there was significant difference between yield and Zn concentration between years. The effect of cultivar was significant on studied parameters. The lowest content of PA and PA/Zn were obtained from Talash. P treatment caused to significant difference on parameters in which P2 caused to increase yield, P and Zn concentration, and decrease PA and PA/Zn by 21.8%, 38.2%, 33.4%, 17.4% and 38.6% respectively. Zn treatment caused to significant difference on studied parameters. The maximum number of parameters were obtained from Zn1 and Zn2. The higher Zn concentration led to lower content of PA and PA/Zn. Using of P and Zn bio–fertilizers were caused to increasing nutrient uptake, improving growth condition and reducing PA and PA/Zn molar ratio.

Keywords: mycorrhizae, phosphorus, pseudomonas, zinc

Procedia PDF Downloads 235
1676 Role of Dispersion of Multiwalled Carbon Nanotubes on Compressive Strength of Cement Paste

Authors: Jyoti Bharj, Sarabjit Singh, Subhash Chander, Rabinder Singh

Abstract:

The outstanding mechanical properties of Carbon Nanotubes (CNTs) have generated great interest for their potential as reinforcements in high performance cementitious composites. The main challenge in research is the proper dispersion of carbon nanotubes in the cement matrix. The present work discusses the role of dispersion of Multiwall Carbon Nanotubes (MWCNTs) on the compressive strength characteristics of hydrated Portland IS 1489 cement paste. Cement-MWCNT composites with different mixing techniques were prepared by adding 0.2% (by weight) of MWCNTs to Portland IS 1489 cement. Rectangle specimens of size approximately 40mm × 40mm ×160mm were prepared and curing of samples was done for 7, 14, 28, and 35 days. An appreciable increase in compressive strength with both techniques; mixture of MWCNTs with cement in powder form and mixture of MWCNTs with cement in hydrated form 7 to 28 days of curing time for all the samples was observed.

Keywords: carbon nanotubes, Portland cement, composite, compressive strength

Procedia PDF Downloads 405
1675 Chemotactic Behaviour of Human Mesenchymal Stem Cells in Response to Silicate Substituted Hydroxyapatite

Authors: Dinara Ikramova, Karin A. Hing, Simon C. F. Rawlinson

Abstract:

Silicate-substituted hydroxyapatite (SiHA) has been shown to enhance bone regeneration in vivo compared with phase pure stoichiometric hydroxyapatite. Evidence suggests that substrate chemistry dependent formation of a permissive protein layer on the surface of synthetic bone graft substitute materials is key for bioactivity and cell attachment. However, little information is available on whether the substrate chemistry may affect cell migration and recruitment. The aim of this study is to investigate whether or not human Mesenchymal Stem Cells (hMSCs) exhibit a chemotactic response to SiHA porous granules and if it can be linked to either the ion exchange or protein sequestering and enrichment on the surface of the material. 150mg of SiHA granules with 80% total porosity and 20% strut porosity were incubated in 1ml of either Serum Free Media (SFM) or 10% Serum Containing Media (SCM) under static cell culture conditions (37°C, 5% CO2) in absence of cells. Protein sequestering and exchange of calcium, phosphate and silicate ions were analysed at 0.5, 1, 2, 4, 8, 16 and 24 hours with n=12 per time point. Migration of hMSCs in the presence of 150mg of SiHA granules was assessed over 24 hours using a modified transwell migration system in either SFM or SCM (n=6) with 30% serum containing media acting as a positive control. At 24 hours protein sequestering and ionic exchange were analysed, and the number of cells was quantified using a high throughput confocal microscope (IN Cell Analyser 6000). In acellular condition, both calcium and phosphate ion concentrations in media showed a decrease at 24 hours which was greater in SFM than in SCM. This suggests possible formation and precipitation of a bone like apatite on the surface of SiHA. Reduction in this activity observed in SCM indicates that the presence of serum proteins is interfering with the ion exchange at the material and media interface. Adsorbed protein levels showed fluctuation over time followed by sharp decrease at 24 hours, suggesting a possible protein rearrangement on the surface of the material. The ion analysis performed on SFM and SCM after 24-hour incubation with cells in the presence of granules showed a greater reduction in phosphate concentration in both SFM and SCM compared to phosphate levels in acellular condition. Silicate concentration in SCM increased from 1.6mM (absence of cells) to 5.1mM (presence of cells). This indicates that the cells are promoting the uptake of phosphate and release of silicate ions. No significant change was seen in levels of adsorbed proteins in the presence and absence of cells. Further analysis is required to determine whether the species of these proteins change over time. The analysis of cell migration after 24-hour incubation showed more cells migrating towards the granules, 12.7% in SFM and 8.3% in SCM, than in positive control, 4.5% in SFM and 3.6% in SCM respectively. These results suggest that SiHA has a chemotactic activity independent of serum proteins. A property which has not previously been demonstrated for a synthetic bone graft material.

Keywords: cell migration, hMSCs, SiHA, transwell migration system

Procedia PDF Downloads 117