Search results for: performance dialogue
1268 Analyzing the Impacts of Sustainable Tourism Development on Residents’ Well-Being Based on Stakeholder Perception: Evidence from a Coastal-Hinterland Region
Authors: Elham Falatoonitoosi, Vikki Schaffer, Don Kerr
Abstract:
Over-development for tourism and its consequences on residents’ well-being turn into a critical issue in tourism destinations. Learning about undesirable impacts of tourism has led many people to seek more sustainable and responsible tourism. The main objective of this research is to understand how and to what extent sustainable tourism development enhances locals’ well-being regarding stakeholder perception. The research was conducted in a coastal-hinterland tourism region through two sequential phases. At the first phase, a unique set of 19 sustainable tourism indicators resulted from a triplex model was used to examine the sustainability effects on the main factors of residents’ well-being including equity and living condition, life satisfaction, health condition, and education quality. The triplex model including i) systematic literature search, ii) convergent interviewing, and iii) DEMATEL aimed to develop sustainability indicators, specify them for a particular destination, and identify the dominant sustainability issues acting as key predictors in sustainable development. At the second phase, a hierarchical multiple regression was used to examine the relationship between sustainable development and local residents’ well-being. A number of 167 participants from five different groups of stakeholders perceived the importance level of each sustainability indicators regarding well-being factors on 5-point Likert scale. Results from the first phase indicated that sustainability training, government support, tourism sociocultural effects, tourism revenue, and climate change are the top dominant sustainability issues in the regional sustainable development. Results from the second phase showed that sustainable development considerably improves the overall residents’ well-being and has positive relationships with all well-being factors except life satisfaction. It explains that it was difficult for stakeholders to recognize a link between sustainable development and their overall life satisfaction and happiness. Among well-being’s factors, health condition was influenced the most by sustainability indicators that indicate stakeholders believed sustainability development can promote public health, health sector performance, quality of drinking water, and sanitation. For the future research, it is highly recommended to analysis the effects of sustainable tourism development on the other features of a tourism destination’s well-being including residents sociocultural empowerment, local economic growth, and attractiveness of the destination.Keywords: residents' well-being, stakeholder perception, sustainability indicators, sustainable tourism
Procedia PDF Downloads 2651267 Risk and Reliability Based Probabilistic Structural Analysis of Railroad Subgrade Using Finite Element Analysis
Authors: Asif Arshid, Ying Huang, Denver Tolliver
Abstract:
Finite Element (FE) method coupled with ever-increasing computational powers has substantially advanced the reliability of deterministic three dimensional structural analyses of a structure with uniform material properties. However, railways trackbed is made up of diverse group of materials including steel, wood, rock and soil, while each material has its own varying levels of heterogeneity and imperfections. It is observed that the application of probabilistic methods for trackbed structural analysis while incorporating the material and geometric variabilities is deeply underworked. The authors developed and validated a 3-dimensional FE based numerical trackbed model and in this study, they investigated the influence of variability in Young modulus and thicknesses of granular layers (Ballast and Subgrade) on the reliability index (-index) of the subgrade layer. The influence of these factors is accounted for by changing their Coefficients of Variance (COV) while keeping their means constant. These variations are formulated using Gaussian Normal distribution. Two failure mechanisms in subgrade namely Progressive Shear Failure and Excessive Plastic Deformation are examined. Preliminary results of risk-based probabilistic analysis for Progressive Shear Failure revealed that the variations in Ballast depth are the most influential factor for vertical stress at the top of subgrade surface. Whereas, in case of Excessive Plastic Deformations in subgrade layer, the variations in its own depth and Young modulus proved to be most important while ballast properties remained almost indifferent. For both these failure moods, it is also observed that the reliability index for subgrade failure increases with the increase in COV of ballast depth and subgrade Young modulus. The findings of this work is of particular significance in studying the combined effect of construction imperfections and variations in ground conditions on the structural performance of railroad trackbed and evaluating the associated risk involved. In addition, it also provides an additional tool to supplement the deterministic analysis procedures and decision making for railroad maintenance.Keywords: finite element analysis, numerical modeling, probabilistic methods, risk and reliability analysis, subgrade
Procedia PDF Downloads 1391266 Assessing the Effect of Waste-based Geopolymer on Asphalt Binders
Authors: Amani A. Saleh, Maram M. Saudy, Mohamed N. AbouZeid
Abstract:
Asphalt cement concrete is a very commonly used material in the construction of roads. It has many advantages, such as being easy to use as well as providing high user satisfaction in terms of comfortability and safety on the road. However, there are some problems that come with asphalt cement concrete, such as its high carbon footprint, which makes it environmentally unfriendly. In addition, pavements require frequent maintenance, which could be very costly and uneconomic. The aim of this research is to study the effect of mixing waste-based geopolymers with asphalt binders. Geopolymer mixes were prepared by combining alumino-silicate sources such as fly ash, silica fumes, and metakaolin with alkali activators. The purpose of mixing geopolymers with the asphalt binder is to enhance the rheological and microstructural properties of asphalt. This was done through two phases, where the first phase was developing an optimum mix design of the geopolymer additive itself. The following phase was testing the geopolymer-modified asphalt binder after the addition of the optimum geopolymer mix design to it. The testing of the modified binder is performed according to the Superpave testing procedures, which include the dynamic shear rheometer to measure parameters such as rutting and fatigue cracking, and the rotational viscometer to measure workability. In addition, the microstructural properties of the modified binder is studied using the environmental scanning electron microscopy test (ESEM). In the testing phase, the aim is to observe whether the addition of different geopolymer percentages to the asphalt binder will enhance the properties of the binder and yield desirable results. Furthermore, the tests on the geopolymer-modified binder were carried out at fixed time intervals, therefore, the curing time was the main parameter being tested in this research. It was observed that the addition of geopolymers to asphalt binder has shown an increased performance of asphalt binder with time. It is worth mentioning that carbon emissions are expected to be reduced since geopolymers are environmentally friendly materials that minimize carbon emissions and lead to a more sustainable environment. Additionally, the use of industrial by-products such as fly ash and silica fumes is beneficial in the sense that they are recycled into producing geopolymers instead of being accumulated in landfills and therefore wasting space.Keywords: geopolymer, rutting, superpave, fatigue cracking, sustainability, waste
Procedia PDF Downloads 1281265 Diagrid Structural System
Authors: K. Raghu, Sree Harsha
Abstract:
The interrelationship between the technology and architecture of tall buildings is investigated from the emergence of tall buildings in late 19th century to the present. In the late 19th century early designs of tall buildings recognized the effectiveness of diagonal bracing members in resisting lateral forces. Most of the structural systems deployed for early tall buildings were steel frames with diagonal bracings of various configurations such as X, K, and eccentric. Though the historical research a filtering concept is developed original and remedial technology- through which one can clearly understand inter-relationship between the technical evolution and architectural esthetic and further stylistic transition buildings. Diagonalized grid structures – “diagrids” - have emerged as one of the most innovative and adaptable approaches to structuring buildings in this millennium. Variations of the diagrid system have evolved to the point of making its use non-exclusive to the tall building. Diagrid construction is also to be found in a range of innovative mid-rise steel projects. Contemporary design practice of tall buildings is reviewed and design guidelines are provided for new design trends. Investigated in depths are the behavioral characteristics and design methodology for diagrids structures, which emerge as a new direction in the design of tall buildings with their powerful structural rationale and symbolic architectural expression. Moreover, new technologies for tall building structures and facades are developed for performance enhancement through design integration, and their architectural potentials are explored. By considering the above data the analysis and design of 40-100 storey diagrids steel buildings is carried out using E-TABS software with diagrids of various angle to be found for entire building which will be helpful to reduce the steel requirement for the structure. The present project will have to undertake wind analysis, seismic analysis for lateral loads acting on the structure due to wind loads, earthquake loads, gravity loads. All structural members are designed as per IS 800-2007 considering all load combination. Comparison of results in terms of time period, top storey displacement and inter-storey drift to be carried out. The secondary effect like temperature variations are not considered in the design assuming small variation.Keywords: diagrid, bracings, structural, building
Procedia PDF Downloads 3861264 Culture Sustainability in Contemporary Vernacular Architecture: Muscat International Airport Case Study
Authors: Soheir Mohamed Hegazy
Abstract:
Culture sustainability, which reflects a deep respect for people and history, is a cause of concern in contemporary architecture. Adopting ultramodern architecture styles was initiated in the 20th century by a plurality of states worldwide. Only a few countries, including Oman, realized that fashionable architectural designs ignore cultural values, identity, the context of its environment, economic perspective, and social performance. Stirring the Sultanate of Oman from being a listless and closed community to a modern country started in the year 1970. Despite unprecedented development in all aspects of Omani people's life, the leadership and the public had the capability to adjust to the changing global challenges without compromising social values and identity. This research provides a close analysis of one of the recent examples of contemporary vernacular architecture in the Sultanate of Oman, as a case study, Oman International Airport. The said airport gained an international appreciation for its Omani-themed architecture, distinguished traveler experience, and advanced technology. Accordingly, it was selected by the World Travel Awards as the Best Tourism Development Project in the Middle East only four weeks afterward after starting its operation. This paper aims to transfer this successful design approach of integrating the latest trends in technology, systems, eco-friendly aspects, and materials with the traditional Omani architectural features, which reflects symbiotic harmony of the community, individuals, and environment to other countries, designers, researchers, and students. In addition, the paper aims to encourage architects and teachers to take responsibility for valorizing built heritage as a source of inspiration for modern architecture, which could be considered as an added value. The work depends on reviewing the relevant literature, a case study, interviews with two architects who were involved in the project’s site work, and one current high-ranking employee in the airport besides data analysis and conclusion.Keywords: contemporary vernacular architecture, culture sustainability, Oman international airport, current Omani architecture type
Procedia PDF Downloads 1421263 Comparative Growth Kinetic Studies of Two Strains Saccharomyces cerevisiae Isolated from Dates and a Commercial Strain
Authors: Nizar Chaira
Abstract:
Dates, main products of the oases, due to their therapeutic interests, are considered highly nutritious fruit. Several studies on the valuation biotechnology and technology of dates are made, and several products are already prepared. Isolation of the yeast Saccharomyces cerevisiae, naturally presents in a scrap of date, optimization of growth in the medium based on date syrup and production biomass can potentially expand the range of secondary products of dates. To this end, this paper tries to study the suitability for processing dates technology and biotechnology to use the date pulp as a carbon source for biological transformation. Two strains of Saccharomyces cerevisiae isolated from date syrup (S1, S2) and a commercial strain have used for this study. After optimization of culture conditions, production in a fermenter on two different media (date syrup and beet molasses) was performed. This is followed by studying the kinetics of growth, protein production and consumption of sugars in crops strain 1, 2 and the commercial strain and on both media. The results obtained showed that a concentration of 2% sugar, 2.5 g/l yeast extract, pH 4.5 and a temperature between 25 and 35°C are the optimal conditions for cultivation in a bioreactor. The exponential phase of the specific growth rate of a strain on both media showed that it is about 0.3625 h-1 for the production of a medium based on date syrup and 0.3521 h-1 on beet molasses with a generation time equal to 1.912 h and on the medium based on date syrup, yeast consumes preferentially the reducing sugars. For the production of protein, we showed that this latter presents an exponential phase when the medium starts to run out of reducing sugars. For strain 2, the specific growth rate is about 0.261h-1 for the production on a medium based on date syrup and 0207 h-1 on beet molasses and the base medium syrup date of the yeast consumes preferentially reducing sugars. For the invertase and other metabolits, these increases rapidly after exhaustion of reducing sugars. The comparison of productivity between the three strains on the medium based on date syrup showed that the maximum value is obtained with the second strain: p = 1072 g/l/h as it is about of 0923 g/l/h for strain 1 and 0644 g/l/h for the commercial strain. Thus, isolates of date syrup are more competitive than the commercial strain and can give the same performance in a shorter time with energy gain.Keywords: date palm, fermentation, molasses, Saccharomyces, syrup
Procedia PDF Downloads 3211262 Soil Properties and Crop Productivity of Kiln Sites in the Highlands of North-western Ethiopia
Authors: Hanamariam Mekonnen
Abstract:
Ethiopian farmers traditionally produce charcoal under several kilns on cultivated land: particularly in Kasiry micro-watershed Fagita Lekoma district of Northwestern Ethiopia. However, the effects of such soil heating and remnants of charcoal leftover on soils have not been adequately documented. Hence, this study tried to quantify the effects of such kiln sites on selected soil properties and wheat crop performance. Soils from four kiln sites were thus purposively sampled at depths of 0-20 cm, 20-40 cm and 40-60 cm and were compared with the respective soil layers of none-kiln sites from similar adjacent fields. While soil moisture content was sampled at kiln and none-kiln site in wet and dry seasons from each depth. In addition, a pot experiment was conducted using two sources of biochar (Acacia decurrens and Eucalyptus Camaldulensis) with four rates (0, 10, 20, and 40 t/ha) and compared with crops grown from soils of 1kiln sites without biochar application laid out in a CRD with three replications. The data were analyzed using SAS software Version 9.4.The result revealed notable variations of kiln site soils and along soil depth. The appreciable increased (p<0.05) soil pH (5.5 to 5.74), organic carbon (3.89 to 4.27%), TN (0.30 to 0.32%), CEC (32.59 to 35.23 cmolckg-1), Ca (6.44 to 7.9 cmolckg-1), Mg (4.48 to 5.46 cmolckg-1), and significantly (p<0.01) Av. P (30.25 to 46.4 ppm) and K (2.11 to 2.82 cmolckg-1) were recorded from the none-kiln to kiln soils, respectively. On the other hand, ex. acidity and aluminum, available Fe and Mn were reduced from 2.20 to 1.54, 1.95 to 1.31 cmolckg-1 and 57.46 to 41.40 and 5.65 to 3.86 ppm, respectively, from the control to the kiln. Soil texture was significantly affected by soil heating and along soil depth. The sand content was (p<0.05) varied between the value of 23% to 29% from none-kiln to kiln site, and clay content was (p<0.01) increased from 0-20 cm (32%) soil depth to 40-60 cm (43%) deeper soil. Significantly (p<0.05) higher Soil moisture content was recorded at none-kiln site (45.85%) compared to kiln (40.44%) in wet season, whereas in dry season, lower moisture content was revealed at kiln site (26%) compared to none-kiln (30.7%). As wet to dry season, soil moisture was decreased from 43% to 28% respectively. Bulk density (P<0.01) varied between 0.88 to 0.94 gcm-3 from control to kiln in dry season. Similarly, the value of soil pH (6.10), Av. P (58.12), exchangeable bases (Ca (9.83), Mg (6.19) and K (3.67)) were (p<0.01) higher at the 0-20 cm soil depth as compared to the deeper soils, the result of soil moisture (30 to 42%) and CEC (31 to 36 cmolckg-1) increased down the soil profile. After wheat harvest, soil pH, Av. P, CEC, and exchangeable bases (Mg, K and Na) were significantly higher in the kiln soil, while soil moisture and OC increased by the applied biochar of 20 and 40 ton/ha. High yield 2.28 gpot-1 (p<0.01) was recorded in kiln soil, growth parameters of wheat were significantly increased with increasing biochar rates.Keywords: biochar, kasiry micro-watershed, kiln site, none-kiln site, soil properties
Procedia PDF Downloads 881261 An Exploratory Factor Analysis Approach to Explore Barriers to Oracy Proficiency among Thai EFL Learners
Authors: Patsawut Sukserm
Abstract:
Oracy proficiency, encompassing both speaking and listening skills, is vital for EFL learners, yet Thai university students often face significant challenges in developing these abilities. This study aims to identify and analyze the barriers that hinder oracy proficiency in EFL learners. To achieve this, a questionnaire was developed based on a comprehensive review of the literature and administered to a large cohort of Thai EFL students. The data were subjected to exploratory factor analysis (EFA) to validate the questionnaire and uncover the underlying factors influencing learners’ performance. The results revealed that the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy was 0.912, and Bartlett’s test of sphericity was significant at 2345.423 (p < 0.05), confirming the suitability for factor analysis. There are five main barriers in oracy proficiency, namely Listening and Comprehension Obstacles (LCO), Accent and Speech Understanding (ASU), Speaking Anxiety and Confidence Issues (SACI), Fluency and Expression Issues (FEI), and Grammar and Conversational Understanding (GCU), with eigenvalues ranging from 1.066 to 12.990, explaining 60.305 % of the variance of the 32 variables. These findings highlight the complexity of the challenges faced by Thai EFL learners and emphasize the need for diverse and authentic listening experiences, a supportive classroom environment, or balanced grammar instruction. The findings of the study suggest that educators, curriculum developers, and policy makers should implement evidence-based strategies to address these barriers in order to improve Thai EFL learners’ oral proficiency and enhance their overall academic and professional success. Also, this study will discuss these findings in depth, offering evidence-based strategies for addressing these barriers. Recommendations include integrating diverse and authentic listening experiences, fostering a supportive classroom environment, and providing targeted instruction in both speaking fluency and grammar. The study’s implications extend to educators, curriculum developers, and policymakers, offering practical solutions to enhance learners’ oracy proficiency and support their academic and professional development.Keywords: exploratory factor analysis, barriers, oracy proficiency, EFL learners
Procedia PDF Downloads 211260 A Multidimensional Indicator-Based Framework to Assess the Sustainability of Productive Green Roofs: A Case Study in Madrid
Authors: Francesca Maria Melucci, Marco Panettieri, Rocco Roma
Abstract:
Cities are at the forefront of achieving the sustainable development goals set out in the Sustainable Development Goals of Agenda 2030. For these reasons, increasing attention has been given to the creation of resilient, sustainable, inclusive and green cities and finding solutions to these problems is one of the greatest challenges faced by researchers today. In particular urban green infrastructures, including green roofs, play a key role in tackling environmental, social and economic problems. The starting point was an extensive literature review on 1. research developments on the benefits (environmental, economic and social) and implications of green roofs; 2. sustainability assessment and applied methodologies; 3. specific indicators to measure impacts on urban sustainability. Through this review, the appropriate qualitative and quantitative characteristics that are part of the complex 'green roof' system were identified, as studies that holistically capture its multifunctional nature are still lacking. So, this paper aims to find a method to improve community participation in green roof initiatives and support local governance processes in developing efficient proposals to achieve better sustainability and resilience of cities. To this aim, the multidimensional indicator-based framework, presented by Tapia in 2021, has been tested for the first time in the case of a green roof in the city of Madrid. The framework's set of indicators was implemented with other indicators such as those of waste management and circularity (OECD Inventory of Circular Economy indicators) and sustainability performance. The specific indicators to be used in the case study were decided after a consultation phase with relevant stakeholders. Data on the community's willingness to participate in green roof implementation initiatives were collected through interviews and online surveys with a heterogeneous sample of citizens. The results of the application of the framework suggest how the different aspects of sustainability influence the choice of a green roof and provide input on the main mechanisms involved in citizens' willingness to participate in such initiatives.Keywords: urban agriculture, green roof, urban sustainability, indicators, multi-criteria analysis
Procedia PDF Downloads 721259 Conflation Methodology Applied to Flood Recovery
Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong
Abstract:
Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.Keywords: community resilience, conflation, flood risk, nuisance flooding
Procedia PDF Downloads 1031258 Application of DSSAT-CSM Model for Estimating Rain-Water Productivity of Maize (Zea Mays L.) Under Changing Climate of Central Rift Valley, Ethiopia
Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke
Abstract:
Pressing demands for agricultural products and its associated pressure on water availability in the semi-arid areas demanded information for strategic decision-making in the changing climate conditions of Ethiopia. Availing such information through traditional agronomic research methods is not sufficient unless supported through the application of decision-support tools. The CERES (Crop Environmental Resource Synthesis) model in DSSAT-CSM was evaluated for estimating yield and water productivity of maize under two soil types (Andosol and Luvisol) of the Central Rift Valley of Ethiopia. A six-year data (2010 – 2017) obtained from national fertilizer determination experiments were used for model evaluation. Pertinent statistical indices were employed to evaluate model performance. Following model evaluation, yield and rain-water productivity of maize was assessed for the baseline (1981-2010) and future climate (2050’s and 2080’s) scenario. The model performed well in predicting phenology, growth, and yield of maize for the different seasons and phosphorous rates. A good agreement between simulated and observed grain yield was indicated by low values of the RMSE (0.15 - 0.37 Mg/ha) and other indices for the two soil types. The evaluated model predicted a decline in the potential (23.8 to 26.7% at Melkassa and from 21.7 to 26.1% at Ziway under RCP4.5 and RCP8.5 climate change scenarios, respectively) and water-limited yield (15 to 18.3% at Melkassa and by 6.5 to 10.5% at Ziway) in the mid-century due to climate change. Consequently, a decline in water productivity was projected in the future periods that necessitate availing options to improve water productivity in the region. In conclusion, the DSSAT-CERES-maize model can be used to simulate maize (Melkassa-2) phenology, growth and grain yield, as well as simulate water productivity under different management scenarios that can help to identify options to improve water productivity in the changing climate of the semi-arid central Rift valley of Ethiopia.Keywords: andosol, CERES-maize, luvisol, model evaluation, water productivity
Procedia PDF Downloads 751257 1D/3D Modeling of a Liquid-Liquid Two-Phase Flow in a Milli-Structured Heat Exchanger/Reactor
Authors: Antoinette Maarawi, Zoe Anxionnaz-Minvielle, Pierre Coste, Nathalie Di Miceli Raimondi, Michel Cabassud
Abstract:
Milli-structured heat exchanger/reactors have been recently widely used, especially in the chemical industry, due to their enhanced performances in heat and mass transfer compared to conventional apparatuses. In our work, the ‘DeanHex’ heat exchanger/reactor with a 2D-meandering channel is investigated both experimentally and numerically. The square cross-sectioned channel has a hydraulic diameter of 2mm. The aim of our study is to model local physico-chemical phenomena (heat and mass transfer, axial dispersion, etc.) for a liquid-liquid two-phase flow in our lab-scale meandering channel, which represents the central part of the heat exchanger/reactor design. The numerical approach of the reactor is based on a 1D model for the flow channel encapsulated in a 3D model for the surrounding solid, using COMSOL Multiphysics V5.5. The use of the 1D approach to model the milli-channel reduces significantly the calculation time compared to 3D approaches, which are generally focused on local effects. Our 1D/3D approach intends to bridge the gap between the simulation at a small scale and the simulation at the reactor scale at a reasonable CPU cost. The heat transfer process between the 1D milli-channel and its 3D surrounding is modeled. The feasibility of this 1D/3D coupling was verified by comparing simulation results to experimental ones originated from two previous works. Temperature profiles along the channel axis obtained by simulation fit the experimental profiles for both cases. The next step is to integrate the liquid-liquid mass transfer model and to validate it with our experimental results. The hydrodynamics of the liquid-liquid two-phase system is modeled using the ‘mixture model approach’. The mass transfer behavior is represented by an overall volumetric mass transfer coefficient ‘kLa’ correlation obtained from our experimental results in the millimetric size meandering channel. The present work is a first step towards the scale-up of our ‘DeanHex’ expecting future industrialization of such equipment. Therefore, a generalized scaled-up model of the reactor comprising all the transfer processes will be built in order to predict the performance of the reactor in terms of conversion rate and energy efficiency at an industrial scale.Keywords: liquid-liquid mass transfer, milli-structured reactor, 1D/3D model, process intensification
Procedia PDF Downloads 1301256 Lateral Capacity of Helical-Pile Groups Subjected to Bearing Combined Loads
Authors: Hesham Hamdy Abdelmohsen, Ahmed Shawky Abdul Azizb, Mona Fawzy Aldaghma
Abstract:
Helical piles have earned considerable attention as an effective deep foundation alternative due to their rapid installation process and their dual purpose in compression and tension. These piles find common uses as foundations for structures like solar panels, wind turbines, offshore platforms, and some kinds of retaining walls. These structures usually transfer different combinations of loads to their helical-pile foundations in the form of axial and lateral loads. Extensive research has been conducted to investigate and understand the behavior of these piles under the influence of either axial or lateral loads. However, the impacts of loading patterns that may act on the helical piles as combinations of axial compression and lateral loads still need more efforts of research work. This paper presents the results of an experimental (Lab tests) and numerical (PLAXIS-3D) study performed on vertical helical-pile groups under the action of combined loads as axial compression (bearing loads), acting successively with lateral (horizontal) loads. The study aims to clarify the effects of key factors, like helix location and direction of lateral load, on the lateral capacity of helical-pile groups and, consequently, on group efficiency. Besides the variation of helix location and lateral load direction, three patterns of successive bearing combined loads were considered, in which the axial vertical compression load was either zero, V1 or V2, whereas the lateral horizontal loads were varied under each vertical compression load. The study concluded that the lateral capacity of the helical-pile group is significantly affected by helix location within the length of the pile shaft. The optimal lateral performance is achieved with helices at a depth ratio of H/L = 0.4. Furthermore, groups of rectangular plan distribution exhibit greater lateral capacity if subjected to lateral horizontal load in the direction of its long axis. Additionally, the research emphasizes that the presence of vertical compression loading can enhance the lateral capacity of the group. This enhancement depends on the value of the vertical compression load, lateral load direction, and helix location, which highlights the complex interaction effect of these factors on the efficiency of helical-pile groups.Keywords: helical piles, experimental, numerical, lateral loading, group efficiency
Procedia PDF Downloads 321255 Estimation of Forces Applied to Forearm Using EMG Signal Features to Control of Powered Human Arm Prostheses
Authors: Faruk Ortes, Derya Karabulut, Yunus Ziya Arslan
Abstract:
Myoelectric features gathering from musculature environment are considered on a preferential basis to perceive muscle activation and control human arm prostheses according to recent experimental researches. EMG (electromyography) signal based human arm prostheses have shown a promising performance in terms of providing basic functional requirements of motions for the amputated people in recent years. However, these assistive devices for neurorehabilitation still have important limitations in enabling amputated people to perform rather sophisticated or functional movements. Surface electromyogram (EMG) is used as the control signal to command such devices. This kind of control consists of activating a motion in prosthetic arm using muscle activation for the same particular motion. Extraction of clear and certain neural information from EMG signals plays a major role especially in fine control of hand prosthesis movements. Many signal processing methods have been utilized for feature extraction from EMG signals. The specific objective of this study was to compare widely used time domain features of EMG signal including integrated EMG(IEMG), root mean square (RMS) and waveform length(WL) for prediction of externally applied forces to human hands. Obtained features were classified using artificial neural networks (ANN) to predict the forces. EMG signals supplied to process were recorded during only type of muscle contraction which is isometric and isotonic one. Experiments were performed by three healthy subjects who are right-handed and in a range of 25-35 year-old aging. EMG signals were collected from muscles of the proximal part of the upper body consisting of: biceps brachii, triceps brachii, pectorialis major and trapezius. The force prediction results obtained from the ANN were statistically analyzed and merits and pitfalls of the extracted features were discussed with detail. The obtained results are anticipated to contribute classification process of EMG signal and motion control of powered human arm prosthetics control.Keywords: assistive devices for neurorehabilitation, electromyography, feature extraction, force estimation, human arm prosthesis
Procedia PDF Downloads 3671254 Extracting Opinions from Big Data of Indonesian Customer Reviews Using Hadoop MapReduce
Authors: Veronica S. Moertini, Vinsensius Kevin, Gede Karya
Abstract:
Customer reviews have been collected by many kinds of e-commerce websites selling products, services, hotel rooms, tickets and so on. Each website collects its own customer reviews. The reviews can be crawled, collected from those websites and stored as big data. Text analysis techniques can be used to analyze that data to produce summarized information, such as customer opinions. Then, these opinions can be published by independent service provider websites and used to help customers in choosing the most suitable products or services. As the opinions are analyzed from big data of reviews originated from many websites, it is expected that the results are more trusted and accurate. Indonesian customers write reviews in Indonesian language, which comes with its own structures and uniqueness. We found that most of the reviews are expressed with “daily language”, which is informal, do not follow the correct grammar, have many abbreviations and slangs or non-formal words. Hadoop is an emerging platform aimed for storing and analyzing big data in distributed systems. A Hadoop cluster consists of master and slave nodes/computers operated in a network. Hadoop comes with distributed file system (HDFS) and MapReduce framework for supporting parallel computation. However, MapReduce has weakness (i.e. inefficient) for iterative computations, specifically, the cost of reading/writing data (I/O cost) is high. Given this fact, we conclude that MapReduce function is best adapted for “one-pass” computation. In this research, we develop an efficient technique for extracting or mining opinions from big data of Indonesian reviews, which is based on MapReduce with one-pass computation. In designing the algorithm, we avoid iterative computation and instead adopt a “look up table” technique. The stages of the proposed technique are: (1) Crawling the data reviews from websites; (2) cleaning and finding root words from the raw reviews; (3) computing the frequency of the meaningful opinion words; (4) analyzing customers sentiments towards defined objects. The experiments for evaluating the performance of the technique were conducted on a Hadoop cluster with 14 slave nodes. The results show that the proposed technique (stage 2 to 4) discovers useful opinions, is capable of processing big data efficiently and scalable.Keywords: big data analysis, Hadoop MapReduce, analyzing text data, mining Indonesian reviews
Procedia PDF Downloads 2011253 End-Users Tools to Empower and Raise Awareness of Behavioural Change towards Energy Efficiency
Authors: G. Calleja-Rodriguez, N. Jimenez-Redondo, J. J. Peralta Escalante
Abstract:
This research work aims at developing a solution to take advantage of the potential energy saving related to occupants behaviour estimated in between 5-30 % according to existing studies. For that purpose, the following methodology has been followed: 1) literature review and gap analysis, 2) define concept and functional requirements, 3) evaluation and feedback by experts. As result, the concept for a tool-box that implements continuous behavior change interventions named as engagement methods and based on increasing energy literacy, increasing energy visibility, using bonus system, etc. has been defined. These engagement methods are deployed through a set of ICT tools: Building Automation and Control System (BACS) add-ons services installed in buildings and Users Apps installed in smartphones, smart-TVs or dashboards. The tool-box called eTEACHER identifies energy conservation measures (ECM) based on energy behavioral change through a what-if analysis that collects information about the building and its users (comfort feedback, behavior, etc.) and carry out cost-effective calculations to provide outputs such us efficient control settings of building systems. This information is processed and showed in an attractive way as tailored advice to the energy end-users. Therefore, eTEACHER goal is to change the behavior of building´s energy users towards energy efficiency, comfort and better health conditions by deploying customized ICT-based interventions taking into account building typology (schools, residential, offices, health care centres, etc.), users profile (occupants, owners, facility managers, employers, etc.) as well as cultural and demographic factors. One of the main findings of this work is the common failure when technological interventions on behavioural change are done to not consult, train and support users regarding technological changes leading to poor performance in practices. As conclusion, a strong need to carry out social studies to identify relevant behavioural issues and to identify effective pro-evironmental behavioral change strategies has been identified.Keywords: energy saving, behavioral bhange, building users, engagement methods, energy conservation measures
Procedia PDF Downloads 1701252 Development of a Nursing Care Program Based on Anthroposophic External Therapy for the Pediatric Hospital in Brazil and Germany
Authors: Karina Peron, Ricardo Ghelman, Monica Taminato, Katia R. Oliveira, Debora C. A. Rodrigues, Juliana R. C. Mumme, Olga K. M. Sunakozaua, Georg Seifert, Vicente O. Filho
Abstract:
The nurse is the most available health professional for the interventions of support in the integrative approach in hospital environment, therefore a professional group key to changes in the model of care. The central components in the performance of anthroposophic nursing procedures are direct physical contact, promotion of proper rhythm, thermal regulation and the construction of a calm and empathic atmosphere, safe for patients and their caregivers. The procedures of anthroposophic external therapies (AET), basically composed of the application of compresses and the use of natural products, provide an opportunity to intensify the therapeutic results through an innovative, complementary and integrative model in the university hospital. The objective of this work is to report the implementation of a program of nursing techniques (AET) through a partnership between the Pediatric Oncology Sector of the Department of Pediatrics of the Faculty of Medicine of the University of Sao Paulo and Charite University of Berlin, with lecturers from Berlin's Integrative Hospital Havelhöhe and Witten-Herdecke Integrative Hospital, both in Germany. Intensive training activities of the Hospital's nursing staff and a survey on AET needs were developed based on the most prevalent complaints in pediatric oncology patients in the three environments of the Hospital of Pediatric Oncology: Bone Marrow Transplantation Unit, Intensive Care Unit and Division of Internal Patients. We obtained the approval of the clinical protocol of external anthroposophic therapies for nursing care by the Ethics Committee and the Academic Council of the Hospital. With this project, we highlight the key AET needs that will be part of the standard program of pediatric oncology care with appropriate scientific support. The results of the prevalent symptoms were: vomiting, nausea, pain, difficulty in starting sleep, constipation, cold extremities, mood disorder and psychomotor agitation. This project was the pioneer within the Integrative Pediatrics Program, as an innovative concept of Medicine and Integrative Health presented at scientific meetings.Keywords: integrative health care, integrative nursing, pediatric nursing, pediatric oncology
Procedia PDF Downloads 2661251 Electromagnetic Energy Harvesting by Using a Rectenna with a Metamaterial Lens
Authors: Ursula D. C. Resende, Fabiano S. Bicalho, Sandro T. M. Gonçalves
Abstract:
The growing demand for cheap and clean energy sources have been motivated by the study and development of distinct technologies and devices able to provide different amounts of energy. In order to supply energy for small loads, the energy from the electromagnetic spectrum can be harvested. This possibility is particularly interesting because this kind of energy is constantly available in the environment and the number of radiofrequency sources is permanently increasing, due to advances in telecommunications services. A rectenna, which is a combination of an antenna and a rectifier circuit, is an equipment that can efficiently perform the electromagnetic energy harvesting. However, since the amount of electromagnetic energy available in the environment is very small, limited values of power can be harvested by the rectenna. Therefore, several technical strategies have been investigated in order to increase this amount of power. In this work, a metamaterial electromagnetic lens is used to improve the electromagnetic energy harvesting. The rectenna investigated was designed and optimized to charge a Li-Ion battery using the electromagnetic energy from an internet Wi-Fi commercial router model TL-WR841HP operating in 2.45 GHz with maximal output power equal to 18 dBm. The rectenna consists of a high directive antenna, a double voltage rectifier circuit and a metamaterial lens. The printed antenna, constituted of two rectangular radiator elements, was projected and optimized by using the Computer Simulation Software (CST) in order to obtain high directivities and values of S11 parameter below -10 dB in 2.45 GHz. The antenna was printed over a double-sided copper fiberglass substrate, FR4, with characterized relative electric permittivity εr = 4.3 and tangent of losses δ = 0.01. The rectifier circuit, which incorporates a circuit for impedance matching and uses the Schottky diode HSMS-2852, was projected and optimized by using Advanced Design Software (ADS) and built over the same FR4 substrate. The metamaterial cell is composed of two Square Split Ring Resonator (S-SRR) and a thin wire in order to operate with negative values of εr and relative magnetic permeability in 2.45 GHz. In order to evaluate the performance of the purposed rectenna two experimental charging tests were performed, one without and other with the metamaterial lens. The result obtained demonstrate that the electromagnetic lens was able to significantly increase the levels of electric current delivered to the battery, approximately 44%.Keywords: electromagnetic energy harvesting, electromagnetic lens, metamaterial, rectenna
Procedia PDF Downloads 1431250 Clinical Value of 18F-FDG-PET Compared with CT Scan in the Detection of Nodal and Distant Metastasis in Urothelial Carcinoma or Bladder Cancer
Authors: Mohammed Al-Zubaidi, Katherine Ong, Pravin Viswambaram, Steve McCombie, Oliver Oey, Jeremy Ong, Richard Gauci, Ronny Low, Dickon Hayne
Abstract:
Objective: Lymph node involvement along with distant metastasis in a patient with invasive bladder cancer determines the disease survival, therefeor, it is an essential determinant of the therapeutic management and outcome. This retrospective study aims to determine the accuracy of FDG PET scan in detecting lymphatic involvement and distant metastatic urothelial cancer compared to conventional CT staging. Method: A retrospective review of 76 patients with UC or BC who underwent surgery or confirmatory biopsy that was staged with both CT and 18F-FDG-PET (up to 8 weeks apart) between 2015 and 2020. Fifty-sevenpatients (75%) had formal pelvic LN dissection or biopsy of suspicious metastasis. 18F-FDG-PET reports for positive sites were qualitative depending on SUV Max. On the other hand, enlarged LN by RECIST criteria 1.1 (>10 mm) and other qualitative findings suggesting metastasis were considered positive in CT scan. Histopathological findings from surgical specimens or image-guided biopsies were considered the gold standard in comparison to imaging reports. 18F-FDG-avid or enlarged pelvic LNs with surgically proven nodal metastasis were considered true positives. Performance characteristics of 18F-FDG-PET and CT, including sensitivity, specificity, positive predictive value (PPV), and negative predictive value (PPV), were calculated. Results: Pelvic LN involvement was confirmed histologically in 10/57 (17.5%) patients. Sensitivity, specificity, PPV and NPV of CT for detecting pelvic LN metastases were 41.17% (95% CI:18-67%), 100% (95% CI:90-100%) 100% (95% CI:59-100%) and 78.26% (95% CI:64-89%) respectively. Sensitivity, specificity, PPV and NPV of 18F-FDG-PET for detecting pelvic LN metastases were 62.5% (95% CI:35-85%), 83.78% (95% CI:68-94%), 62.5% (95% CI:35-85%), and 83.78% (95% CI:68-94%) respectively. Pre-operative staging with 18F-FDG-PET identified the distant metastatic disease in 9/76 (11.8%) patients who were occult on CT. This retrospective study suggested that 18F-FDG-PET may be more sensitive than CT for detecting pelvic LN metastases. 7/76 (9.2%) patients avoided cystectomy due to 18F-FDG-PET diagnosed metastases that were not reported on CT. Conclusion: 18F-FDG-PET is more sensitive than CT for pelvic LN metastases, which can be used as the standard modality of bladder cancer staging, as it may change the treatment by detecting lymph node metastasis that was occult in CT. Further research involving randomised controlled trials comparing the diagnostic yield of 18F-FDG-PET and CT in detecting nodal and distant metastasis in UC or BC is warranted to confirm our findings.Keywords: FDG PET, CT scan, urothelial cancer, bladder cancer
Procedia PDF Downloads 1211249 Glycerol-Based Bio-Solvents for Organic Synthesis
Authors: Dorith Tavor, Adi Wolfson
Abstract:
In the past two decades a variety of green solvents have been proposed, including water, ionic liquids, fluorous solvents, and supercritical fluids. However, their implementation in industrial processes is still limited due to their tedious and non-sustainable synthesis, lack of experimental data and familiarity, as well as operational restrictions and high cost. Several years ago we presented, for the first time, the use of glycerol-based solvents as alternative sustainable reaction mediums in both catalytic and non-catalytic organic synthesis. Glycerol is the main by-product from the conversion of oils and fats in oleochemical production. Moreover, in the past decade, its price has substantially decreased due to an increase in supply from the production and use of fatty acid derivatives in the food, cosmetics, and drugs industries and in biofuel synthesis, i.e., biodiesel. The renewable origin, beneficial physicochemical properties and reusability of glycerol-based solvents, enabled improved product yield and selectivity as well as easy product separation and catalyst recycling. Furthermore, their high boiling point and polarity make them perfect candidates for non-conventional heating and mixing techniques such as ultrasound- and microwave-assisted reactions. Finally, in some reactions, such as catalytic transfer-hydrogenation or transesterification, they can also be used simultaneously as both solvent and reactant. In our ongoing efforts to design a viable protocol that will facilitate the acceptance of glycerol and its derivatives as sustainable solvents, pure glycerol and glycerol triacetate (triacetin) as well as various glycerol-triacetin mixtures were tested as sustainable solvents in several representative organic reactions, such as nucleophilic substitution of benzyl chloride to benzyl acetate, Suzuki-Miyaura cross-coupling of iodobenzene and phenylboronic acid, baker’s yeast reduction of ketones, and transfer hydrogenation of olefins. It was found that reaction performance was affected by the glycerol to triacetin ratio, as the solubility of the substrates in the solvent determined product yield. Thereby, employing optimal glycerol to triacetin ratio resulted in maximum product yield. In addition, using glycerol-based solvents enabled easy and successful separation of the products and recycling of the catalysts.Keywords: glycerol, green chemistry, sustainability, catalysis
Procedia PDF Downloads 6241248 The Impact of Temperamental Traits of Candidates for Aviation School on Their Strategies for Coping with Stress during Selection Exams in Physical Education
Authors: Robert Jedrys, Zdzislaw Kobos, Justyna Skrzynska, Zbigniew Wochynski
Abstract:
Professions connected to aviation require an assessment of the suitability of health, psychological and psychomotor skills and overall physical fitness of the organism, who applies. Assessment of the physical condition is conducted by the committees consisting of aero-medical specialists in clinical medicine and aviation. In addition, psychological predispositions should be evaluated by specialized psychologists familiar with the specifics of the tasks and requirements for the various positions in aviation. Both, physical abilities and general physical fitness of candidates for aviation shall be assessed during the selection exams, which also test the ability to deal with stress what is very important in aviation. Hence, the mentioned exams in physical education not only help to judge on the ranking in candidates in terms of their efficiency and performance, but also allows to evaluate the functioning under stress measured using psychological tests. Moreover, before-test stress is a predictors of successfulness in the next stages of education and practical training in the aviation. The aim of the study was to evaluate the influence of temperamental traits on strategies used for coping with stress during selection exams in physical education, deciding on admission to aviation school. The study involved 30 candidates for fighter pilot training in aviation school . To evaluate the temperament 'The Formal Characteristics of Behavior-Temperament Inventory' (FCB-TI) by B. Zawadzki and J.Strelau was used. To determine the pattern of coping with stress 'The Coping Inventory for Stressful Situations' (CISS) to N. S. Endler and J. D. A. Parker were engaged. Study of temperament and styles of coping with stress was conducted directly before the exam selection of physical education. The results were analyzed with 'Statistica 9' program. The studies showed that:-There is a negative correlation between such a temperament feature as 'perseverance' and preferred style of coping with stress concentrated on the task (r = -0.590; p < 0.004); -There is a positive correlation between such a feature of temperament as 'emotional reactivity,' and preference to deal with a stressful situation with ‘style centered on emotions’ (r = 0.520; p <0.011); -There is a negative correlation between such a feature of temperament as ‘strength’ and ‘style of coping with stress concentrated on emotions’ (r = -0.580; p < 0.004). Studies indicate that temperament traits determine the perception of stress and preferred coping styles used during the selection, as during the exams in physical education.Keywords: aviation, physical education, stress, temperamental traits
Procedia PDF Downloads 2571247 Understanding the Processwise Entropy Framework in a Heat-powered Cooling Cycle
Authors: P. R. Chauhan, S. K. Tyagi
Abstract:
Adsorption refrigeration technology offers a sustainable and energy-efficient cooling alternative over traditional refrigeration technologies for meeting the fast-growing cooling demands. With its ability to utilize natural refrigerants, low-grade heat sources, and modular configurations, it has the potential to revolutionize the cooling industry. Despite these benefits, the commercial viability of this technology is hampered by several fundamental limiting constraints, including its large size, low uptake capacity, and poor performance as a result of deficient heat and mass transfer characteristics. The primary cause of adequate heat and mass transfer characteristics and magnitude of exergy loss in various real processes of adsorption cooling system can be assessed by the entropy generation rate analysis, i. e. Second law of Thermodynamics. Therefore, this article presents the second law of thermodynamic-based investigation in terms of entropy generation rate (EGR) to identify the energy losses in various processes of the HPCC-based adsorption system using MATLAB R2021b software. The adsorption technology-based cooling system consists of two beds made up of silica gel and arranged in a single stage, while the water is employed as a refrigerant, coolant, and hot fluid. The variation in process-wise EGR is examined corresponding to cycle time, and a comparative analysis is also presented. Moreover, the EGR is also evaluated in the external units, such as the heat source and heat sink unit used for regeneration and heat dump, respectively. The research findings revealed that the combination of adsorber and desorber, which operates across heat reservoirs with a higher temperature gradient, shares more than half of the total amount of EGR. Moreover, the EGR caused by the heat transfer process is determined to be the highest, followed by a heat sink, heat source, and mass transfer, respectively. in case of heat transfer process, the operation of the valve is determined to be responsible for more than half (54.9%) of the overall EGR during the heat transfer. However, the combined contribution of the external units, such as the source (18.03%) and sink (21.55%), to the total EGR, is 35.59%. The analysis and findings of the present research are expected to pinpoint the source of the energy waste in HPCC based adsorption cooling systems.Keywords: adsorption cooling cycle, heat transfer, mass transfer, entropy generation, silica gel-water
Procedia PDF Downloads 1071246 Development of a Distance Training Package on Production of Handbook and Report Writing for Innovative Learning and Teaching for Vocational Teachers of Office of the Vocational Education Commission
Authors: Petchpong Mayukhachot
Abstract:
The purposes of this research were (1) to develop a distance training package on topic of Production of Handbook and Report writing for innovative learning and teaching for Vocational Teachers of Office of The Vocational Education Commission; (2) to study the effects of using the distance training package on topic Production of Handbook and Report writing for innovative learning and teaching for Vocational Teachers of Office of The Vocational Education Commission. and (3) to study the samples’ opinion on the distance training package on topic Production of Handbook and Report writing for innovative learning and teaching for Vocational Teachers of Office of The Vocational Education Commission Research and Development was used in this research. The purposive sampling group of this research was 39 Vocational Teachers of Office of The Vocational Education Commission. Instruments were; (1) the distance training package, (2) achievement tests on understanding of Production of Handbook and Report writing for innovative learning and teaching and learning activities to develop practical skills, and (3) a questionnaire for sample’s opinion on the distance training package. Percent, Mean, Standard Deviation, the E1/E2 efficiency index and t-test were used for data analysis. The findings of the research were as follows: (1) The efficiency of the distance training package was established as 80.90 / 81.90. The distance training package composed of the distance training package document and a manual for the distance training package. The distance training package document consisted of the name of the distance training package, direction for studying the distance training package, content’s structure, concepts, objectives, and activities after studying the distance training package. The manual for the distance training package consisted of the explanation of the distance training package and objectives, direction for using the distance training package, training schedule, documents as a manual of speech, and evaluations. (2) The effects of using the distance training package on topic Production of Handbook and Report writing for innovative learning and teaching for Vocational Teachers of Office of The Vocational Education Commission were the posttest average scores of achievement on understanding of Technology and Occupations teaching for development of critical thinking of the sample group were higher than the pretest average scores. (3) The most appropriate of trainees’ opinion were contents of the distance training package is beneficial to performance. That can be utilized in Teaching or operations. Due to the content of the two units is consistent and activities assigned to the appropriate content.Keywords: distance training package, handbook writing for innovative learning, teaching report writing for innovative learning, teaching
Procedia PDF Downloads 4351245 Posterior Thigh Compartment Syndrome Associated with Hamstring Avulsion and Antiplatelet Therapy
Authors: Andrea Gatti, Federica Coppotelli, Ma Primavera, Laura Palmieri, Umberto Tarantino
Abstract:
Aim of study: Scientific literature is scarce of studies and reviews valuing the pros and cons of the paratricipital approach for the treatment of humeral shaft fractures; the lateral paratricipital approach is a valid alternative to the classical posterior approach to the humeral shaft as it preserves both the triceps muscle and the elbow extensor mechanisms; based on our experience, this retrospective analysis aims at analyzing outcome, risks and benefits of the lateral paratricipital approach for humeral shaft fractures. Methods: Our study includes 14 patients treated between 2018 and 2019 for unilateral humeral shaft fractures: 13 with a B1 or B2 and a patient with a C fracture type (according to the AO/ATO Classification); 6 of our patients identified as male while 8 as female; age average was 57.8 years old (range 21-73 years old). A lateral paratricipital approach was performed on all 14 patients, sparing the triceps muscle by avoiding the olecranon osteotomy and by assessing the integrity and the preservation of the radial nerve; the humeral shaft fracture osteosynthesis was performed by means of plates and screws. After surgery all patients have started elbow functional rehabilitation with acceptable pain management. Post-operative follow-up has been carried out by assessing radiographs, MEPS (Mayo Elbow Performance Score) and DASH (Disability of Arm Shoulder and Hand) functional assessment and ROM of the affected joint. Results: All 14 patients had an optimal post-operative follow-up with an adequate osteosynthesis and functional rehabilitations by entirely preserving the operated elbow joint; the mean elbow ROM was 0-118.6 degree (range of 0-130) while the average MEPS score was 86 (range75-100) and 79.9 for the DASH (range 21.7-86.1). Just 2 patients suffered of temporary radial nerve apraxia, healed in the subsequent follow-ups. CONCLUSION: The lateral paratricipital approach preserve both the integrity of the triceps muscle and the elbow biomechanism but we do strongly recommend additional studies to be carried out to highlight differences between it and the classical posterior approach in treating humeral shaft fractures.Keywords: paratricepital approach, humerus shaft fracture, posterior approach humeral shaft, paratricipital postero-lateral approach
Procedia PDF Downloads 1291244 Treatment of High Concentration Cutting Fluid Wastewater by Ceramic Membrane Bioreactor
Authors: Kai-Shiang Chang, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu
Abstract:
In recent years, membrane bioreactors (MBR) have been widely utilized as it can effectively replace conventional activated sludge process (CAS). Membrane bioreactor (MBR) is found to be more effective technology compared to other conventional activated sludge process and advanced membrane separation technique. Additionally, as far as the MBR is concerned, it is having excellent control of sludge retention time (SRT) and hydraulic retention time (HRT) and conducive to the retention of high concentration of sludge biomass. The membrane bioreactor (MBR) can effectively reduce footprint in terms of area and omit the secondary processing procedures in the conventional activated sludge process (CAS). Currently, as per the membrane technology, the ceramic membrane is found to have highly strong anti-acid-base properties, and it is more suitable than polymeric membrane while using for backwash and chemical cleaning. This study is based upon the treatment of Cutting Fluid wastewater, as the Cutting Fluid is widely used in the cutting equipment. However, the Cutting Fluid wastewater is very difficult to treat. In this study, the ceramic membrane was used and combine with of MBR system to treat the Cutting Fluid wastewater. In this present study, different kind of chemical coagulants have been utilized for pretreatment purpose in order to get the supernatant and simultaneously this wastewater (supernatant) was treated by MBR process. Nevertheless, ceramic membrane has three advantages such as high mechanical strength, drug resistance and reuse. During the experiment, the backwash technique was used for every interval of 10 minutes in order to avoid fouling of the membrane. In this study, during pretreatment the Chemical Oxygen Demand (COD) removal efficiency was found to be 71-86% and oil removal efficiency was analyzed to be 83-92%. This pretreatment study suggests that it is quiet effective methodology to reduce COD and oil concentration. Finally, In the MBR system when the HRT is more than 7.5 hour, the COD removal efficiency was found to be 87-93% and could achieve 100% oil removal efficiency. Coagulation test series were seen in Refs coagulants for the treatment of wastewater containing cutting oil with better oil and COD removal efficiency. The results also showed that the oil removal efficiency in the MBR system could reduce the oil content to less than 1 mg / L when the oil quality was 126 mg / L. Therefore, in this paper, the performance of membrane bioreactor by utilizing ceramic membrane has been demonstrated for treatment of Cutting Fluid wastewater.Keywords: membrane bioreactor, cutting fluid, oil, chemical oxygen demand
Procedia PDF Downloads 3141243 Public Art as Social Critique to Shape Urban-Scape
Authors: Po-Ching Wang
Abstract:
Public art may be regarded as a social agenda. It is assumed that public art acts as an intermediate form that contributes significantly to community resurgence. That is, public art may be regarded as a verb/process or social intervention. It functions as a vanguard form, attacking boundaries and providing a sensibility for social strategy. Public art in tradition is generally expected to bring aesthetic pleasure to public. Contemporary public art, however, not only focuses on art installation, but it also often offers a process that aims to comment on, question, and challenge the socio-cultural status quo. During the last few decades, accelerated changes in the values and expectations brought to bear on varied urban issues, together with the destruction of the hegemony of traditional art and of museum authorities, has begun to contribute to freer and more democratic representations of public art. It is said that part of a public artwork’s role is to ruffle sacred feathers. In many cases, public art is created to address the dynamic social contradictions and mutability of public life; and artists and community participants approach public art from a variety of social critical perspectives and methodologies. Urban issues, such as social and environmental justice, health problems, violence, and political statements, provide plentiful source materials that fuel the performance of public art in many different settings. Further, public artworks have been extensively adopted to express social identity, make political statements, and/or to remedy social and environmental crises. Many murals on urban walls, for instance, reflect social conflicts and address civic rights, and these projects are usually the work of artists who though denied access to traditional gallery and museum channels are supported by community engagement and involvement. Public art as a social practice challenges the traditional western view of artistic practice. Art in the public realm creates a new media that provides a platform for a dialogical exchange between diverse social groups. It seems that public art has evolved as an arena for activism that addresses wide-ranging and highly controversial social issues and civilian concerns. The findings of this study indicate that public artworks are capable of playing a role of activist in facilitating community evolution via social progress.Keywords: aesthetics, community regeneration, city development, publicness, public participation, social progress
Procedia PDF Downloads 2301242 Effect of Submaximal Eccentric versus Maximal Isometric Contraction on Delayed Onset Muscle Soreness
Authors: Mohamed M. Ragab, Neveen A. Abdel Raoof, Reham H. Diab
Abstract:
Background: Delayed onset muscle soreness (DOMS) is the most common symptom when ordinary individuals and athletes are exposed to unaccustomed physical activity, especially eccentric contraction which impairs athletic performance, ordinary people work ability and physical functioning. A multitude of methods have been investigated to reduce DOMS. One of the valuable method to control DOMS is repeated bout effect (RBE) as a prophylactic method. Purpose: To compare the repeated bout effect of submaximal eccentric contraction versus maximal isometric contraction on induced DOMS. Methods: Sixty normal male volunteers were assigned randomly into three groups of equal number: Group (A) “first study group”: 20 subjects received submaximal eccentric contraction on non-dominant elbow flexors as prophylactic exercise. Group (B) “second study group”: 20 subjects received maximal isometric contraction on non-dominant elbow flexors as prophylactic exercise. Group (C) “control group”: 20 subjects did not receive any prophylactic exercise. Maximal isometric contraction peak torque of elbow flexors and patient related elbow evaluation (PREE) scale were measured for each subject 3 times before, immediately after and 48 hours after induction of DOMS. Results: Post-hoc test for maximal isometric peak torque and PREE scale immediately and 48 hours after induction of DOMS revealed that group (A) and group (B) resulted in significant decrease in maximal isometric strength loss and elbow pain and disability rather than control group (C), but submaximal eccentric group (A) was more effective than maximal isometric group (B) as it showed more rapid recovery of functional strength and less degrees of elbow pain and disability. Conclusion: Both submaximal eccentric contraction and maximal isometric contraction were effective in prevention of DOMS but submaximal eccentric contraction had the greatest protective effect.Keywords: delayed onset muscle soreness, maximal isometric peak torque, patient related elbow evaluation scale, repeated bout effect
Procedia PDF Downloads 3651241 Stress-Strain Behavior of Banana Fiber Reinforced and Biochar Amended Compressed Stabilized Earth Blocks
Authors: Farnia Nayar Parshi, Mohammad Shariful Islam
Abstract:
Though earth construction is an ancient technology, researchers are working on increasing its strength by adding different types of stabilizers. Ordinary Portland cement for sandy soil and lime for clayey soil is very popular practice as well as recommended by various authorities for making stabilized blocks for satisfactory performance. The addition of these additives improves compressive strength but fails to improve ductility. The addition of both synthetic and natural fibers increases both compressive strength and ductility. Studies are conducted to make earth blocks more cost-effective, energy-efficient and sustainable. In this experiment, an agricultural waste banana fiber and biochar is used to study the compressive stress-strain behavior of earth blocks made with four types of soil low plastic clay, sandy low plastic clay, very fine sand and medium to fine sand. Biochar is a charcoal-like carbon usually produced from organic or agricultural waste in high temperatures through a controlled condition called pyrolysis. In this experimental study, biochar was collected from BBI (Bangladesh Biochar Initiative) produced from wood flakes around 400 deg. Celsius. Locally available PPC (Portland Pozzolana Cement) is used. 5 cm × 5 cm × 5 cm earth blocks were made with eight different combinations such as bare soil, soil with 6% cement, soil with 6% cement and 5% biochar, soil with 6% cement, 5% biochar and 1% fiber, soil with 1% fiber, soil with 5% biochar and 1% fiber and soil with 6% cement and 1% fiber. All samples were prepared with 10-12% water content. Uniaxial compressive strength tests were conducted on 21 days old earth blocks. Stress-strain diagram shows that the addition of banana fiber improved compressive strength drastically, but the combined effect of fiber and biochar is different based on different soil types. For clayey soil, 6% cement and 1% fiber give maximum compressive strength of 991 kPa, and for very fine sand, a combination of 5% biochar, 6% cement and 1% fiber gives maximum compressive strength of 522 kPa as well as ductility. For medium-to-find sand, 6% cement and 1% fiber give the best result, 1530 kPa, among other combinations. The addition of fiber increases not only ductility but also compressive strength as well. The effect of biochar with fiber varies with the soil type.Keywords: banana fiber, biochar, cement, compressed stabilized earth blocks, compressive strength
Procedia PDF Downloads 1211240 Removal of Heavy Metals from Municipal Wastewater Using Constructed Rhizofiltration System
Authors: Christine A. Odinga, G. Sanjay, M. Mathew, S. Gupta, F. M. Swalaha, F. A. O. Otieno, F. Bux
Abstract:
Wastewater discharged from municipal treatment plants contain an amalgamation of trace metals. The presence of metal pollutants in wastewater poses a huge challenge to the choice and applications of the preferred treatment method. Conventional treatment methods are inefficient in the removal of trace metals due to their design approach. This study evaluated the treatment performance of a constructed rhizofiltration system in the removal of heavy metals from municipal wastewater. The study was conducted at an eThekwni municipal wastewater treatment plant in Kingsburgh - Durban in the province of KwaZulu-Natal. The construction details of the pilot-scale rhizofiltration unit included three different layers of substrate consisting of medium stones, coarse gravel and fine sand. The system had one section planted with Phragmites australis L. and Kyllinga nemoralis L. while the other section was unplanted and acted as the control. Influent, effluent and sediment from the system were sampled and assessed for the presence of and removal of selected trace heavy metals using standard methods. Efficiency of metals removal was established by gauging the transfer of metals into leaves, roots and stem of the plants by calculations based on standard statistical packages. The Langmuir model was used to assess the heavy metal adsorption mechanisms of the plants. Heavy metals were accumulated in the entire rhizofiltration system at varying percentages of 96.69% on planted and 48.98% on control side for cadmium. Chromium was 81% and 24%, Copper was 23.4% and 1.1%, Nickel was 72% and 46.5, Lead was 63% and 31%, while Zinc was 76% and 84% on the on the water and sediment of the planted and control sides of the rhizofilter respectively. The decrease in metal adsorption efficiencies on the planted side followed the pattern of Cd>Cr>Zn>Ni>Pb>Cu and Ni>Cd>Pb>Cr>Cu>Zn on the control side. Confirmatory analysis using Electron Scanning Microscopy revealed that higher amounts of metals was deposited in the root system with values ranging from 0.015mg/kg (Cr), 0.250 (Cu), 0.030 (Pb) for P. australis, and 0.055mg/kg (Cr), 0.470mg/kg (Cu) and 0.210mg/kg,(Pb) for K. nemoralis respectively. The system was found to be efficient in removing and reducing metals from wastewater and further research is necessary to establish the immediate mechanisms that the plants display in order to achieve these reductions.Keywords: wastewater treatment, Phragmites australis L., Kyllinga nemoralis L., heavy metals, pathogens, rhizofiltration
Procedia PDF Downloads 2641239 The Effectiveness of Psychosocial Intervention in Reducing Career Anxiety among Nigerian University Students
Authors: Mkpoikanke Sunday Otu
Abstract:
Introduction: Career anxiety is a common issue among university students, particularly in developing countries like Nigeria. This anxiety can significantly impact students' academic performance, overall well-being, and future career prospects. Therefore, it is crucial to explore effective interventions that can alleviate career anxiety among university students. The primary aim of this study was to determine the effectiveness of a psychosocial intervention in reducing career anxiety among Nigerian university students. The study employed a group randomized trial research design to further analyze the impact on career anxiety. Methodology: A total of 306 university students from various universities in Akwa Ibom State, Nigeria, were recruited for this study. The participants were purposively selected to ensure diversity and represent a range of academic disciplines. A group randomized trial research design was employed, with participants randomly assigned to either the treatment group or the control group. The treatment group received a comprehensive psychosocial intervention, while the control group served as a comparison group. The Career Anxiety Questionnaire (CAQ) was used to assess career anxiety levels among the participants. The CAQ is a validated and reliable tool that assesses various aspects of career-related anxiety, including uncertainty, fear, and self-doubt. It was administered to the participants at baseline (before the intervention), immediately after the intervention, and at follow-up (after the intervention). Results: Data analysis was conducted using statistical techniques, including analysis of variance (ANOVA). The results demonstrated that the treatment group showed a significantly lower mean score of career anxiety compared to the control group (p-value<0.05). This finding suggests that the psychosocial intervention was effective in reducing the career anxiety levels of the participants at post-test and follow-up. Conclusion: The findings of this study provide compelling evidence that psychosocial interventions have a significant impact on the reduction of career anxiety among Nigerian university students. The treatment group demonstrated a significant reduction in career anxiety scores, indicating the effectiveness of this intervention. Additionally, this study highlights the importance of addressing the career anxiety challenges faced by university students. By implementing targeted interventions, educational institutions can play a vital role in supporting the overall well-being and success of their students, both academically and professionally.Keywords: psychosocial intervention, career anxiety, psychoeducation, university students
Procedia PDF Downloads 58