Search results for: geographic information systems (GIS)
7063 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets
Authors: Hui Zhang, Sherif Beskhyroun
Abstract:
Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames
Procedia PDF Downloads 1067062 A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms
Authors: Divya Agarwal, Pushpendra S. Bharti
Abstract:
Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc.Keywords: path planning, obstacle avoidance, autonomous mobile robots, algorithms
Procedia PDF Downloads 2397061 [Keynote Talk]: The Challenges and Solutions for Developing Mobile Apps in a Small University
Authors: Greg Turner, Bin Lu, Cheer-Sun Yang
Abstract:
As computing technology advances, smartphone applications can assist in student learning in a pervasive way. For example, the idea of using a mobile apps for the PA Common Trees, Pests, Pathogens, in the field as a reference tool allows middle school students to learn about trees and associated pests/pathogens without bringing a textbook. In the past, some researches study the mobile software Mobile Application Software Development Life Cycle (MADLC) including traditional models such as the waterfall model, or more recent Agile Methods. Others study the issues related to the software development process. Very little research is on the development of three heterogenous mobile systems simultaneously in a small university where the availability of developers is an issue. In this paper, we propose to use a hybride model of Waterfall Model and the Agile Model, known as the Relay Race Methodology (RRM) in practice, to reflect the concept of racing and relaying for scheduling. Based on the development project, we observe that the modeling of the transition between any two phases is manifested naturally. Thus, we claim that the RRM model can provide a de fecto rather than a de jure basis for the core concept in the MADLC. In this paper, the background of the project is introduced first. Then, the challenges are pointed out followed by our solutions. Finally, the experiences learned and the future work are presented.Keywords: agile methods, mobile apps, software process model, waterfall model
Procedia PDF Downloads 4107060 Residual Life Estimation Based on Multi-Phase Nonlinear Wiener Process
Authors: Hao Chen, Bo Guo, Ping Jiang
Abstract:
Residual life (RL) estimation based on multi-phase nonlinear Wiener process was studied in this paper, which is significant for complicated products with small samples. Firstly, nonlinear Wiener model with random parameter was introduced and multi-phase nonlinear Wiener model was proposed to model degradation process of products that were nonlinear and separated into different phases. Then the multi-phase RL probability density function based on the presented model was derived approximately in a closed form and parameters estimation was achieved with the method of maximum likelihood estimation (MLE). Finally, the method was applied to estimate the RL of high voltage plus capacitor. Compared with the other three different models by log-likelihood function (Log-LF) and Akaike information criterion (AIC), the results show that the proposed degradation model can capture degradation process of high voltage plus capacitors in a better way and provide a more reliable result.Keywords: multi-phase nonlinear wiener process, residual life estimation, maximum likelihood estimation, high voltage plus capacitor
Procedia PDF Downloads 4547059 A Quantitative Survey Research on the Development and Assessment of Attitude toward Mathematics Instrument
Authors: Soofia Malik
Abstract:
The purpose of this study is to develop an instrument to measure undergraduate students’ attitudes toward mathematics (MAT) and to assess the data collected from the instrument for validity and reliability. The instrument is developed using five subscales: anxiety, enjoyment, self-confidence, value, and technology. The technology dimension is added as the fifth subscale of attitude toward mathematics because of the recent trend of incorporating online homework in mathematics courses as well as due to heavy reliance of higher education on using online learning management systems, such as Blackboard and Moodle. The sample consists of 163 (M = 82, F = 81) undergraduates enrolled in College Algebra course in the summer 2017 semester at a university in the USA. The data is analyzed to answer the research question: if and how do undergraduate students’ attitudes toward mathematics load using Principal Components Analysis (PCA)? As a result of PCA, three subscales emerged namely: anxiety/self-confidence scale, enjoyment, and value scale. After deleting the last five items or the last two subscales from the initial MAT scale, the Cronbach’s alpha was recalculated using the scores from 20 items and was found to be α = .95. It is important to note that the reliability of the initial MAT form was α = .93. This means that employing the final MAT survey form would yield consistent results in repeated uses. The final MAT form is, therefore, more reliable as compared to the initial MAT form.Keywords: college algebra, Cronbach's alpha reliability coefficient, Principal Components Analysis, PCA, technology in mathematics
Procedia PDF Downloads 1297058 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain
Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed
Abstract:
In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.Keywords: prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy
Procedia PDF Downloads 4447057 Economic Forecasting Analysis for Solar Photovoltaic Application
Authors: Enas R. Shouman
Abstract:
Economic development with population growth is leading to a continuous increase in energy demand. At the same time, growing global concern for the environment is driving to decrease the use of conventional energy sources and to increase the use of renewable energy sources. The objective of this study is to present the market trends of solar energy photovoltaic technology over the world and to represent economics methods for PV financial analyzes on the basis of expectations for the expansion of PV in many applications. In the course of this study, detailed information about the current PV market was gathered and analyzed to find factors influencing the penetration of PV energy. The paper methodology depended on five relevant economic financial analysis methods that are often used for investment decisions maker. These methods are payback analysis, net benefit analysis, saving-to-investment ratio, adjusted internal rate of return, and life-cycle cost. The results of this study may be considered as a marketing guide that helps diffusion of using PV Energy. The study showed that PV cost is economically reliable. The consumers will pay higher purchase prices for PV system installation but will get lower electricity bill.Keywords: photovoltaic, financial methods, solar energy, economics, PV panel
Procedia PDF Downloads 1137056 An Innovative Equipment for ICU Infection Control
Authors: Ankit Agarwal
Abstract:
Background: To develop a fully indigenous equipment which is an innovation in critical care, which can effectively scavenge contaminated ICU ventilator air. Objectives: Infection control in ICUs is a concern the world over. Various modalities from simple hand hygiene to costly antibiotics exist. However, one simple and scientific fact has been unnoticed till date, that the air exhaled by patients harboring MDR and other microorganisms, is released by ventilators into ICU atmosphere itself. This increases infection in ICU atmosphere and poses risk to other patients. Material and Methods: Some parts of the ventilator are neither disposable nor sterilizable. Over time, microorganisms accumulate in ventilator and act as a source of infection and also contaminate ICU air. This was demonstrated by exposing microbiological culture plates to air from expiratory port of ventilator, whereby dense growth of pathogenic microorganisms was observed. The present prototype of the equipment is totally self-made. It has a mechanism of controlled negative pressure, active and passive systems and various alarms and is versatile to be used with any ventilator. Results: This equipment captures the whole of contaminated exhaled air from the expiratory port of the ventilator and directs it out of the ICU space. Thus, it does not allow contaminated ventilator air to release into the ICU atmosphere. Therefore, there is no chance of exposure of other patients to contaminated air. Conclusion: The equipment is first of its kind the world over and is already under patent process. It has rightly been called ICU Ventilator Air Removal System (ICU VARS). It holds a chance that this technique will gain widespread acceptance shall find use in all the ventilators in most of the ICUs throughout the world.Keywords: innovative, ICU Infection Control, microorganism, negative pressure
Procedia PDF Downloads 3537055 To Ensure Maximum Voter Privacy in E-Voting Using Blockchain, Convolutional Neural Network, and Quantum Key Distribution
Authors: Bhaumik Tyagi, Mandeep Kaur, Kanika Singla
Abstract:
The advancement of blockchain has facilitated scholars to remodel e-voting systems for future generations. Server-side attacks like SQL injection attacks and DOS attacks are the most common attacks nowadays, where malicious codes are injected into the system through user input fields by illicit users, which leads to data leakage in the worst scenarios. Besides, quantum attacks are also there which manipulate the transactional data. In order to deal with all the above-mentioned attacks, integration of blockchain, convolutional neural network (CNN), and Quantum Key Distribution is done in this very research. The utilization of blockchain technology in e-voting applications is not a novel concept. But privacy and security issues are still there in a public and private blockchains. To solve this, the use of a hybrid blockchain is done in this research. This research proposed cryptographic signatures and blockchain algorithms to validate the origin and integrity of the votes. The convolutional neural network (CNN), a normalized version of the multilayer perceptron, is also applied in the system to analyze visual descriptions upon registration in a direction to enhance the privacy of voters and the e-voting system. Quantum Key Distribution is being implemented in order to secure a blockchain-based e-voting system from quantum attacks using quantum algorithms. Implementation of e-voting blockchain D-app and providing a proposed solution for the privacy of voters in e-voting using Blockchain, CNN, and Quantum Key Distribution is done.Keywords: hybrid blockchain, secure e-voting system, convolutional neural networks, quantum key distribution, one-time pad
Procedia PDF Downloads 997054 A Fuzzy Approach to Liver Tumor Segmentation with Zernike Moments
Authors: Abder-Rahman Ali, Antoine Vacavant, Manuel Grand-Brochier, Adélaïde Albouy-Kissi, Jean-Yves Boire
Abstract:
In this paper, we present a new segmentation approach for liver lesions in regions of interest within MRI (Magnetic Resonance Imaging). This approach, based on a two-cluster Fuzzy C-Means methodology, considers the parameter variable compactness to handle uncertainty. Fine boundaries are detected by a local recursive merging of ambiguous pixels with a sequential forward floating selection with Zernike moments. The method has been tested on both synthetic and real images. When applied on synthetic images, the proposed approach provides good performance, segmentations obtained are accurate, their shape is consistent with the ground truth, and the extracted information is reliable. The results obtained on MR images confirm such observations. Our approach allows, even for difficult cases of MR images, to extract a segmentation with good performance in terms of accuracy and shape, which implies that the geometry of the tumor is preserved for further clinical activities (such as automatic extraction of pharmaco-kinetics properties, lesion characterization, etc).Keywords: defuzzification, floating search, fuzzy clustering, Zernike moments
Procedia PDF Downloads 4547053 Statistical Analysis of the Main Causes of Delay Factors of Infrastructure Projects
Authors: Seyed Ali Mohammadiborna, Mehdi Ravanshadnia
Abstract:
Project delays usually detrimentally affect perceptions of project success and can in some instances, result in increased costs and other time-related damages to project stakeholders. One of the realities in the national infrastructure projects is that since the primary stakeholders are state-affiliated, the delay factors of the projects have not been seriously taken into account despite the importance of on-time completion of projects. Project postponement has different economic and social consequences and leads to the technical and economic infeasibility of the infrastructure projects in the form of reduced productivity and exploitation capacity. The present study aimed at investigating delay factors of Iranian national infrastructure projects according to regulatory reports of the Plan and Budget Organization (BPO) of Iran. The present study scrutinized the influence of each of the factors that caused delays in national Iranian infrastructure projects according to the supervision reports of the planning and budget organization in 8 years. For this purpose, the study analyzed the information regarding the impact of 12 key delay factors causing delays in average 4867 projects per year in all provinces. The said factors were classified into the three groups of executive, credit, and financial and environmental-procurement factors.Keywords: delays, infrastructure, projects, regulatory
Procedia PDF Downloads 1417052 Industrial Applications of Additive Manufacturing and 3D Printing Technology: A Review from South Africa Perspective
Authors: Micheal O. Alabi
Abstract:
Additive manufacturing (AM) is the official industry standard term (ASTM F2792) for all applications of the technology which is also known as 3D printing technology. It is defined as the process of joining materials to make objects from 3D model data, and it is usually layer upon layer, as opposed to subtractive manufacturing methodologies. This technology has gained significant interest within the academic, research institute and industry because of its ability to create complex geometries with customizable material properties. Despite the late adoption of the technology, additive manufacturing has been active in South Africa for past 21 years and it is predicted that additive manufacturing technology will play a significant and game-changing role in the fourth industrial revolution and in particular it promises to play an ever-growing role in efforts to re-industrialize the economy of South Africa. At the end of 2006, there are approximately ninety 3D printers in South Africa and in 2015 it was estimated that there are 3500 additive manufacturing systems and 3D printers in circulation in South Africa. A reasonable number of these additive manufacturing machines are in the high end of the market, in science councils and higher education institutions and this shows that the future of additive manufacturing in South Africa is very brighter compared to other African countries. This paper reviews the past and current industrial applications of additive manufacturing in South Africa from the academic research and industry perspective and what are the benefits of this technology to manufacturing companies and industrial sectors in the country.Keywords: additive manufacturing, 3D printing technology, industrial applications, manufacturing
Procedia PDF Downloads 4757051 Investigation of Physical Properties of W-Doped CeO₂ and Mo-Doped CeO₂: A Density Functional Theory Study
Authors: Aicha Bouhlala, Sabah Chettibi
Abstract:
A systematic investigation on structural, electronic, and magnetic properties of Ce₀.₇₅A₀.₂₅O₂ (A = W, Mo) is performed using first-principles calculations within the framework Full-Potential Linear Augmented Plane Wave (FP-LAPW) method based on the Density Functional Theory (DFT). The exchange-correlation potential has been treated using the generalized gradient approximation (WC-GGA) developed by Wu-Cohen. The host compound CeO2 was doped with transition metal atoms W and Mo in the doping concentration of 25% to replace the Ce atom. In structural properties, the equilibrium lattice constant is observed for the W-doped CeO₂ compound which exists within the value of 5.314 A° and the value of 5.317 A° for Mo-doped CeO2. The present results show that Ce₀.₇₅A₀.₂₅O₂ (A=W, Mo) systems exhibit semiconducting behavior in both spin channels. Although undoped CeO₂ is a non-magnetic semiconductor. The band structure of these doped compounds was plotted and they exhibit direct band gap at the Fermi level (EF) in the majority and minority spin channels. In the magnetic properties, the doped atoms W and Mo play a vital role in increasing the magnetic moments of the supercell and the values of the total magnetic moment are found to be 1.998 μB for Ce₀.₇₅W₀.₂₅O₂ and to be 2.002 μB for Ce₀.₇₅Mo₀.₂₅O₂ compounds. Calculated results indicate that the magneto-electronic properties of the Ce₁₋ₓAₓO₂(A= W, Mo) oxides supply a new way to the experimentalist for the potential applications in spintronics devices.Keywords: FP-LAPW, DFT, CeO₂, properties
Procedia PDF Downloads 2217050 A Quasi Z-Source Based Full Bridge Isolated DC-DC Converter as a Power Module for PV System Connected to HVDC Grid
Authors: Xinke Huang, Huan Wang, Lidong Guo, Changbin Ju, Runbiao Liu, Guoen Cao, Yibo Wang, Honghua Xu
Abstract:
Grid connected photovoltaic (PV) power system is to be developed in the direction of large-scale, clustering. Large-scale PV generation systems connected to HVDC grid have many advantages compared to its counterpart of AC grid, and DC connection is the tendency. DC/DC converter as the most important device in the system, has become one of the hot spots recently. The paper proposes a Quasi Z-Source(QZS) based Boost Full Bridge Isolated DC/DC Converter(BFBIC) topology as a basis power module and combination through input parallel output series(IPOS) method to improve power capacity and output voltage to match with the HVDC grid. The topology has both traditional voltage source and current source advantages, it permit the H-bridge short through and open circuit, which adopt utility duty cycle control and achieved input current and output voltage balancing through input current sharing control strategy. A ±10kV/200kW system model is built in MATLAB/SIMULINK to verify the proposed topology and control strategy.Keywords: PV Generation System, Cascaded DC/DC converter, HVDC, Quasi Z Source Converter
Procedia PDF Downloads 3957049 Integrative Analysis of Urban Transportation Network and Land Use Using GIS: A Case Study of Siddipet City
Authors: P. Priya Madhuri, J. Kamini, S. C. Jayanthi
Abstract:
Assessment of land use and transportation networks is essential for sustainable urban growth, urban planning, efficient public transportation systems, and reducing traffic congestion. The study focuses on land use, population density, and their correlation with the road network for future development. The scope of the study covers inventory and assessment of the road network dataset (line) at the city, zonal, or ward level, which is extracted from very high-resolution satellite data (spatial resolution < 0.5 m) at 1:4000 map scale and ground truth verification. Road network assessment is carried out by computing various indices that measure road coverage and connectivity. In this study, an assessment of the road network is carried out for the study region at the municipal and ward levels. In order to identify gaps, road coverage and connectivity were associated with urban land use, built-up area, and population density in the study area. Ward-wise road connectivity and coverage maps have been prepared. To assess the relationship between road network metrics, correlation analysis is applied. The study's conclusions are extremely beneficial for effective road network planning and detecting gaps in the road network at the ward level in association with urban land use, existing built-up, and population.Keywords: road connectivity, road coverage, road network, urban land use, transportation analysis
Procedia PDF Downloads 377048 Ubiquitous Collaborative Learning Activities with Virtual Teams Using CPS Processes to Develop Creative Thinking and Collaboration Skills
Authors: Sitthichai Laisema, Panita Wannapiroon
Abstract:
This study is a research and development which is intended to: 1) design ubiquitous collaborative learning activities with virtual teams using CPS processes to develop creative thinking and collaboration skills, and 2) assess the suitability of the ubiquitous collaborative learning activities. Its methods are divided into 2 phases. Phase 1 is the design of ubiquitous collaborative learning activities with virtual teams using CPS processes, phase 2 is the assessment of the suitability of the learning activities. The samples used in this study are 5 professionals in the field of learning activity design, ubiquitous learning, information technology, creative thinking, and collaboration skills. The results showed that ubiquitous collaborative learning activities with virtual teams using CPS processes to develop creative thinking and collaboration skills consist of 3 main steps which are: 1) preparation before learning, 2) learning activities processing and 3) performance appraisal. The result of the learning activities suitability assessment from the professionals is in the highest level.Keywords: ubiquitous learning, collaborative learning, virtual team, creative problem solving
Procedia PDF Downloads 5187047 Food and Agricultural Waste Management for Sustainable Agriculture
Authors: Shubhangi Salokhe
Abstract:
Agriculture encompasses crop and livestock production, forestry, and fisheries for food and non-food products. Farmers combine land, water, commercial inputs, labor, and their management skills into practices and systems that produce food and fibre. Harvesting of agricultural produce is either followed by the processing of fresh produce or storage for later consumption. All these activities result in a vast generation of waste in terms of crop residue or food waste. So, a large amount of agricultural waste is produced every year. Waste arising from food and agricultural sectors has the potential for vast applications. So, agricultural waste management is an essential component of sustainable agriculture. The major portion of the waste comes from the residues of crops on farms, food processing, livestock, aquaculture, and agro-industry waste. Therefore, management of these agricultural wastes is an important task, and it requires robust strategic planning. It can contribute to three pillars of sustainable agriculture development. It protects the environment (environmental pillar), enhances the livelihoods of farmers (economic pillar), and can contribute to increasing the sustainability of the agricultural sector (social pillar). This paper addresses the essential technological aspects, possible solutions, and sound policy concerns to accomplish long-term way out of agriculture waste management and to minimize the negative impact of waste on the environment. The author has developed a sustainable agriculture waste management model for improving the sustainability of agriculture.Keywords: agriculture, development, management, waste
Procedia PDF Downloads 577046 Synthesis and Characterization of Chitosan Schiff Base Supported Pd(II) Catalyst and Its Application in Suzuki Coupling Reactions
Authors: Talat Baran
Abstract:
Palladium-catalyzed Suzuki coupling reactions are powerful ways for synthesis of biaryls compounds and so far different palladium sources as have been used in catalyst systems. However, the high cost of the ligands using as support materials for palladium ion and so researchers have explored alternative low-cost support materials such as silica, cellule and zeolite. A natural polymer chitosan is suitable for support material because of it unique properties such as eco-friendly, renewable, abundant, low cost, biodegradable and it has free reactive -NH2 and –OH groups. Especially, pendant amino groups of chitosan can easily react with carbonyl groups of aldehyde or ketone by Schiff base formation and thus palladium ions can coordinate with imine groups of Schiff base. This purpose, in this study, firstly a new chitosan Schiff base supported palladium (II) catalyst was synthesized and its chemical structure was characterized with FT-IR, SEM/EDAX, XRD, TG-DTG, ICP-OES and magnetic moment techniques. Then catalytic performance of the catalyst was investigated in Suzuki cross coupling reactions under simple and fast microwave heating methods. Also, recycle activity of palladium catalyst was tested under optimum condition and the catalyst showed long life time. At the end of catalytic performance tests of chitosan supported palladium (II) catalysts indicated high turnover numbers, turnover frequency and selectivity with very small loading catalystKeywords: catalyst, chitosan, Schiff base, Suzuki coupling
Procedia PDF Downloads 3307045 The Impact of System Cascading Collapse and Transmission Line Outages to the Transfer Capability Assessment
Authors: Nur Ashida Salim, Muhammad Murtadha Othman, Ismail Musirin, Mohd Salleh Serwan
Abstract:
Uncertainty of system operating conditions is one of the causative reasons which may render to the instability of a transmission system. This will encumber the performance of transmission system to efficiently transmit the electrical power between areas. For that reason, accurate assessment of Transmission Reliability Margin (TRM) is essential in order to ensure effective power transfer between areas during the occurrence of system uncertainties. The power transfer is also called as the Available Transfer Capability (ATC) in which it is the information required by the utilities and marketers to instigate selling and buying the electric energy. This paper proposes a computationally effective approach to estimate TRM and ATC by considering the uncertainties of system cascading collapse and transmission line outages which is identified as the main reasons in power system instability. In accordance to the results that have been obtained, the proposed method is essential for the transmission providers which could help the power marketers and planning sectors in the operation and reserving transmission services based on the ATC calculated.Keywords: system cascading collapse, transmission line outages, transmission reliability margin, available transfer capability
Procedia PDF Downloads 4307044 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul
Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini
Abstract:
The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.Keywords: decision tree, breast cancer, probability, data mining
Procedia PDF Downloads 1467043 A Comparative Analysis of Geometric and Exponential Laws in Modelling the Distribution of the Duration of Daily Precipitation
Authors: Mounia El Hafyani, Khalid El Himdi
Abstract:
Precipitation is one of the key variables in water resource planning. The importance of modeling wet and dry durations is a crucial pointer in engineering hydrology. The objective of this study is to model and analyze the distribution of wet and dry durations. For this purpose, the daily rainfall data from 1967 to 2017 of the Moroccan city of Kenitra’s station are used. Three models are implemented for the distribution of wet and dry durations, namely the first-order Markov chain, the second-order Markov chain, and the truncated negative binomial law. The adherence of the data to the proposed models is evaluated using Chi-square and Kolmogorov-Smirnov tests. The Akaike information criterion is applied to assess the most effective model distribution. We go further and study the law of the number of wet and dry days among k consecutive days. The calculation of this law is done through an algorithm that we have implemented based on conditional laws. We complete our work by comparing the observed moments of the numbers of wet/dry days among k consecutive days to the calculated moment of the three estimated models. The study shows the effectiveness of our approach in modeling wet and dry durations of daily precipitation.Keywords: Markov chain, rainfall, truncated negative binomial law, wet and dry durations
Procedia PDF Downloads 1307042 The Flavonoids for a Plant Grows in the Arid and Semi-Arid Zone of the Northern Sahara of Algeria - Atriplex halimus L.
Authors: O. Smara, H. Dendougui, B. Legseir
Abstract:
Atriplex halimus L. is particularly well adapted to arid and salt-affected areas. In this species, salinity resistance is often attributed to the presence of vesiculated hairs covering leaf surface and containing a large amount of salt. Atriplex halimus L. (Chenopodiaceae) is a perennial shrub native to the Mediterranean basin with excellent tolerance to drought and salinity. The species is present in semiarid to subhumid areas of the north Mediterranean and in arid zones from North Africa and the eastern Mediterranean. The main aim of this study was to identify a medicinal plant used in the Ouargla (Est-southern Algeria) for the treatment of several human pathologies. This plant is an important source for livestock in nitrogenous matter, it is an effective and relatively inexpensive tool in the fight against erosion and desertification and rehabilitation of degraded lands. Phytochemical investigation is applied to the majority of extracts of the powder of the aerial parts of Atriplex halimus L. Different chromatographic methods after liquid-liquid extraction are used; it is the thin layer chromatography (TLC) and paper using multiple systems and chemical revelations. This study followed by an evaluation by the phenol assay the Folin-Ciocalteu method, using gallic acid as a reference for phenols and quercetin for flavonols. Some polar extracts showed an interesting result better than the less polar extracts.Keywords: Atriples halimus L., chenopodiaceae, flavonoids, phenols
Procedia PDF Downloads 3057041 The Analysis of Brain Response to Auditory Stimuli through EEG Signals’ Non-Linear Analysis
Authors: H. Namazi, H. T. N. Kuan
Abstract:
Brain activity can be measured by acquiring and analyzing EEG signals from an individual. In fact, the human brain response to external and internal stimuli is mapped in his EEG signals. During years some methods such as Fourier transform, wavelet transform, empirical mode decomposition, etc. have been used to analyze the EEG signals in order to find the effect of stimuli, especially external stimuli. But each of these methods has some weak points in analysis of EEG signals. For instance, Fourier transform and wavelet transform methods are linear signal analysis methods which are not good to be used for analysis of EEG signals as nonlinear signals. In this research we analyze the brain response to auditory stimuli by extracting information in the form of various measures from EEG signals using a software developed by our research group. The used measures are Jeffrey’s measure, Fractal dimension and Hurst exponent. The results of these analyses are useful not only for fundamental understanding of brain response to auditory stimuli but provide us with very good recommendations for clinical purposes.Keywords: auditory stimuli, brain response, EEG signal, fractal dimension, hurst exponent, Jeffrey’s measure
Procedia PDF Downloads 5367040 Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences
Authors: Yuan-Hsiang Chang, Pin-Chi Lin, Li-Der Jeng
Abstract:
Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.).Keywords: motion detection, motion tracking, trajectory analysis, video surveillance
Procedia PDF Downloads 5517039 A Prioritisation Guide for More Sustainable Manufacturing Processes
Authors: Cansu Kandemir, Marco Franchino
Abstract:
To attain sustainability goals, the manufacturing industries must assess and improve their processes, adopt the latest technologies, and ensure minimal environmental impact. Ongoing debates claim that the definition of sustainability and its assessment is vague. Companies struggle with understanding which processes they should prioritise and necessitate a methodology to aid decision-making. For that reason, our investigation focused on defining a prioritisation guide to help to manufacture engineers identify areas of a facility to prioritise de-carbonisation efforts based on existing sources of data. The authors at the University of Sheffield Advanced Manufacturing Research Centre (AMRC) worked with a range of major businesses, including Food and Drink (Moy Park), Automotive (Nissan), Aerospace and Defence (BAE, Meggitt, Leonardo, and GKN) and Technology (Accenture and Intellium AI). Collected information has been integrated into a prioritisation guide framework that helps process comparison and decision-making. The framework developed in this study aims to ensure that companies have guidance on where to focus their efforts whilst striving to fulfil their environmental and societal obligations.Keywords: decision making, sustainability, carbon emissions, manufacturing
Procedia PDF Downloads 667038 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 487037 Solvent Effects on Anticancer Activities of Medicinal Plants
Authors: Jawad Alzeer
Abstract:
Natural products are well recognized as sources of drugs in several human ailments. To investigate the impact of variable extraction techniques on the cytotoxic effects of medicinal plant extracts, 5 well-known medicinal plants from Palestine were extracted with 90% ethanol, 80% methanol, acetone, coconut water, apple vinegar, grape vinegar or 5% acetic acid. The resulting extracts were screened for cytotoxic activities against three different cancer cell lines (B16F10, MCF-7, and HeLa) using a standard resazurin-based cytotoxicity assay and Nile Blue A as the positive control. Highly variable toxicities and tissue sensitivity were observed, depending upon the solvent used for extraction. Acetone consistently gave lower extraction yields but higher cytotoxicity, whereas other solvent systems gave much higher extraction yields with lower cytotoxicity. Interestingly, coconut water was found to offer a potential alternative to classical organic solvents; it gave consistently highest extraction yields, and in the case of S. officinalis L., highly toxic extracts towards MCF-7 cells derived from human breast cancer. These results demonstrate how the cytotoxicity of plant extracts can be inversely proportional to the yield, and that solvent selection plays an important role in both factors.Keywords: plant extract, natural products, anti cancer drug, cytotoxicity
Procedia PDF Downloads 4597036 Modified Bat Algorithm for Economic Load Dispatch Problem
Authors: Daljinder Singh, J.S.Dhillon, Balraj Singh
Abstract:
According to no free lunch theorem, a single search technique cannot perform best in all conditions. Optimization method can be attractive choice to solve optimization problem that may have exclusive advantages like robust and reliable performance, global search capability, little information requirement, ease of implementation, parallelism, no requirement of differentiable and continuous objective function. In order to synergize between exploration and exploitation and to further enhance the performance of Bat algorithm, the paper proposed a modified bat algorithm that adds additional search procedure based on bat’s previous experience. The proposed algorithm is used for solving the economic load dispatch (ELD) problem. The practical constraint such valve-point loading along with power balance constraints and generator limit are undertaken. To take care of power demand constraint variable elimination method is exploited. The proposed algorithm is tested on various ELD problems. The results obtained show that the proposed algorithm is capable of performing better in majority of ELD problems considered and is at par with existing algorithms for some of problems.Keywords: bat algorithm, economic load dispatch, penalty method, variable elimination method
Procedia PDF Downloads 4647035 Towards an Intelligent Ontology Construction Cost Estimation System: Using BIM and New Rules of Measurement Techniques
Authors: F. H. Abanda, B. Kamsu-Foguem, J. H. M. Tah
Abstract:
Construction cost estimation is one of the most important aspects of construction project design. For generations, the process of cost estimating has been manual, time-consuming and error-prone. This has partly led to most cost estimates to be unclear and riddled with inaccuracies that at times lead to over- or under-estimation of construction cost. The development of standard set of measurement rules that are understandable by all those involved in a construction project, have not totally solved the challenges. Emerging Building Information Modelling (BIM) technologies can exploit standard measurement methods to automate cost estimation process and improves accuracies. This requires standard measurement methods to be structured in ontologically and machine readable format; so that BIM software packages can easily read them. Most standard measurement methods are still text-based in textbooks and require manual editing into tables or Spreadsheet during cost estimation. The aim of this study is to explore the development of an ontology based on New Rules of Measurement (NRM) commonly used in the UK for cost estimation. The methodology adopted is Methontology, one of the most widely used ontology engineering methodologies. The challenges in this exploratory study are also reported and recommendations for future studies proposed.Keywords: BIM, construction projects, cost estimation, NRM, ontology
Procedia PDF Downloads 5537034 System Dynamics Projections of Environmental Issues for Domestic Water and Wastewater Scenarios in Urban Area of India
Authors: Isha Sharawat, R. P. Dahiya, T. R. Sreekrishnan
Abstract:
One of the environmental challenges in India is urban wastewater management as regulations and infrastructural development has not kept pace with the urbanization and growing population. The quality of life of people is also improving with the rapid growth of the gross domestic product. This has contributed to the enhancement in the per capita water requirement and consumption. More domestic water consumption generates more wastewater. The scarcity of potable water is making the situation quite serious, and water supply has to be regulated in most parts of the country during summer. This requires elaborate and concerted efforts to efficiently manage the water resources and supply systems. In this article, a system dynamics modelling approach is used for estimating the water demand and wastewater generation in a district headquarter city of North India. Projections are made till the year 2035. System dynamics is a software tool used for formulation of policies. On the basis of the estimates, policy scenarios are developed for sustainable development of water resources in conformity with the growing population. Mitigation option curtailing the water demand and wastewater generation include population stabilization, water reuse and recycle and water pricing. The model is validated quantitatively, and sensitivity analysis tests are carried out to examine the robustness of the model.Keywords: system dynamics, wastewater, water pricing, water recycle
Procedia PDF Downloads 267