Search results for: spherical organic particles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4262

Search results for: spherical organic particles

3122 Effects and Mechanization of a High Gradient Magnetic Separation Process for Particulate and Microbe Removal from Ballast Water

Authors: Zhijun Ren, Zhang Lin, Zhao Ye, Zuo Xiangyu, Mei Dongxing

Abstract:

As a pretreatment process of ballast water treatment, the performance of high gradient magnetic separation (HGMS) technology for the removal of particulates and microorganisms was studied. The results showed that HGMS process could effectively remove suspended particles larger than 5 µm and had ability to resist impact load. Microorganism could also be effectively removed by HGMS process, and the removal effect increased with increasing magnetic field strength. The maximum removal rates for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 4016.1% and 9675.3% higher, respectively, than without the magnetic field. In addition, the superoxide dismutase (SOD) activity of the microbes decreased by 32.2% when the magnetic field strength was 15.4 mT for 72 min. The microstructure of the stainless steel wool was investigated, and the results showed that particle removal by HGMS has common function by the magnetic force of the high-strength, high-gradient magnetic field on weakly magnetic particles in the water, and on the stainless steel wool.

Keywords: HGMS, particulates, superoxide dismutase (SOD) activity, steel wool magnetic medium

Procedia PDF Downloads 442
3121 Synthesis of Novel Organic Dyes Based on Indigo for Dye-Sensitized Solar Cells

Authors: M. Hosseinnejad, K. Gharanjig, S. Moradian

Abstract:

A novel metal free organic dyes based on indigo was prepared and used as sensitizers in dye-sensitized solar cells. The synthesized dye together with its corresponding intermediates were purified and characterized by analytical techniques. Such techniques confirmed the corresponding structures of dye and its intermediate and the yield of all the stages of dye preparation were calculated to be above 85%. Fluorometric analyses show fluorescence in the green region of the visible spectrum for dye. Oxidation potential measurements for dye ensured an energetically permissible and thermodynamically favourable charge transfer throughout the continuous cycle of photo-electric conversion. Finally, dye sensitized solar cells were fabricated in order to determine the photovoltaic behaviour and conversion efficiencies of dye. Such evaluations demonstrate rather medium conversion efficiencies of 2.33% for such simple structured synthesized dye. Such conversion efficiencies demonstrate the potentiality of future use of such dye structures in dye-sensitized solar cells with respect to low material costs, ease of molecular tailoring, high yields of reactions, high performance and ease of recyclability.

Keywords: conversion efficiency, Dye-sensitized solar cells, indigo, photonic material

Procedia PDF Downloads 362
3120 High Temperature and High Pressure Purification of Hydrogen from Syngas Using Metal Organic Framework Adsorbent

Authors: Samira Rostom, Robert Symonds, Robin W. Hughes

Abstract:

Hydrogen is considered as one of the most important clean and renewable energy carriers for a sustainable energy future. However, its efficient and cost-effective purification remains challenging. This paper presents the potential of using metal–organic frameworks (MOFs) in combination with pressure swing adsorption (PSA) technology for syngas based H2 purification. PSA process analysis is done considering high pressure and elevated temperature process conditions, it reduces the demand for off-gas recycle to the fuel reactor and simultaneously permits higher desorption pressure, thereby reducing the parasitic load on the hydrogen compressor. The elevated pressure and temperature adsorption we present here is beneficial to minimizing overall process heating and cooling demand compared to existing processes. Here, we report the comparative performance of zeolite-5A, Cu-BTC, and the mix of zeolite-5A/Cu-BTC for H2 purification from syngas typical of those exiting water-gas-shift reactors. The MOFs were synthesized hydrothermally and then mixed systematically at different weight ratios to find the optimum composition based on the adsorption performance. The formation of different compounds were characterized by XRD, N2 adsorption and desorption, SEM, FT-IR, TG, and water vapor adsorption technologies. Single-component adsorption isotherms of CO2, CO, CH4, N2, and H2 over single materials and composites were measured at elevated pressures and different temperatures to determine their equilibrium adsorption capacity. The examination of the stability and regeneration performance of metal–organic frameworks was carried out using a gravimetric system at temperature ranges of 25-150℃ for a pressure range of 0-30 bar. The studies of adsorption/desorption on the MOFs showed selective adsorption of CO2, CH4, CO, and N2 over H2. Overall, the findings of this study suggest that the Ni-MOF-74/Cu-BTC composites are promising candidates for industrial H2 purification processes.

Keywords: MOF, H2 purification, high T, PSA

Procedia PDF Downloads 81
3119 Microwave Accelerated Simultaneous Distillation –Extraction: Preparative Recovery of Volatiles from Food Products

Authors: Ferhat Mohamed, Boukhatem Mohamed Nadjib, Chemat Farid

Abstract:

Simultaneous distillation–extraction (SDE) is routinely used by analysts for sample preparation prior to gas chromatography analysis. In this work, a new process design and operation for microwave assisted simultaneous distillation – solvent extraction (MW-SDE) of volatile compounds was developed. Using the proposed method, isolation, extraction and concentration of volatile compounds can be carried out in a single step. To demonstrate its feasibility, MW-SDE was compared with the conventional technique, Simultaneous distillation–extraction (SDE), for gas chromatography-mass spectrometry (GC-MS) analysis of volatile compounds in a fresh orange juice and a dry spice “carvi seeds”. SDE method required long time (3 h) to isolate the volatile compounds, and large amount of organic solvent (200 mL of hexane) for further extraction, while MW-SDE needed little time (only 30 min) to prepare sample, and less amount of organic solvent (10 mL of hexane). These results show that MW-SDE–GC-MS is a simple, rapid and solvent-less method for determination of volatile compounds from aromatic plants.

Keywords: essential oil, extraction, distillation, carvi seeds

Procedia PDF Downloads 554
3118 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins

Authors: Navab Karimi, Tohid Alizadeh

Abstract:

An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.

Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.

Procedia PDF Downloads 63
3117 Polyvinyl Alcohol Incorporated with Hibiscus Extract Microcapsules as Combined Active and Intelligent Composite Film for Meat Preservation: Antimicrobial, Antioxidant, and Physicochemical Investigations

Authors: Ahmed F. Ghanem, Marwa I. Wahba, Asmaa N. El-Dein, Mohamed A. EL-Raey, Ghada E. A. Awad

Abstract:

Numerous attempts are being performed in order to formulate suitable packaging materials for the meat products. However, to the best of our knowledge, the incorporation of the free hibiscus extract or its microcapsules in the pure polyvinyl alcohol (PVA) matrix as packaging materials for the meats is seldom reported. Therefore, this study aims at the protection of the aqueous crude extract of the hibiscus flowers utilizing the spry drying encapsulation technique. Results of the Fourier transform infrared (FTIR), the scanning electron microscope (SEM), and the particle size analyzer confirmed the successful formation of the assembled capsules via strong interactions, the spherical rough microparticles, and the particle size of ~ 235 nm, respectively. Also, the obtained microcapsules enjoy higher thermal stability than the free extract. Then, the obtained spray-dried particles were incorporated into the casting solution of the pure PVA film with a concentration of 10 wt. %. The segregated free-standing composite films were investigated, compared to the neat matrix, with several characterization techniques such as FTIR, SEM, thermal gravimetric analysis (TGA), mechanical tester, contact angle, water vapor permeability, and oxygen transmission. The results demonstrated variations in the physicochemical properties of the PVA film after the inclusion of the free and the extract microcapsules. Moreover, biological studies emphasized the biocidal potential of the hybrid films against the microorganisms contaminating the meat. Specifically, the microcapsules imparted not only antimicrobial but also antioxidant activities to the PVA matrix. Application of the prepared films on the real meat samples displayed a low bacterial growth with a slight increase in the pH over the storage time which continued up to 10 days at 4 oC, as further evidence to the meat safety. Moreover, the colors of the films did not significantly changed except after 21 days indicating the spoilage of the meat samples. No doubt, the dual-functional of the prepared composite films pave the way towards combined active and smart food packaging applications. This would play a vital role in the food hygiene, including also the quality control and the assurance.

Keywords: PVA, hibiscus, extraction, encapsulation, active packaging, smart and intelligent packaging, meat spoilage

Procedia PDF Downloads 80
3116 Measuring the Effect of Ventilation on Cooking in Indoor Air Quality by Low-Cost Air Sensors

Authors: Andres Gonzalez, Adam Boies, Jacob Swanson, David Kittelson

Abstract:

The concern of the indoor air quality (IAQ) has been increasing due to its risk to human health. The smoking, sweeping, and stove and stovetop use are the activities that have a major contribution to the indoor air pollution. Outdoor air pollution also affects IAQ. The most important factors over IAQ from cooking activities are the materials, fuels, foods, and ventilation. The low-cost, mobile air quality monitoring (LCMAQM) sensors, is reachable technology to assess the IAQ. This is because of the lower cost of LCMAQM compared to conventional instruments. The IAQ was assessed, using LCMAQM, during cooking activities in a University of Minnesota graduate-housing evaluating different ventilation systems. The gases measured are carbon monoxide (CO) and carbon dioxide (CO2). The particles measured are particle matter (PM) 2.5 micrometer (µm) and lung deposited surface area (LDSA). The measurements are being conducted during April 2019 in Como Student Community Cooperative (CSCC) that is a graduate housing at the University of Minnesota. The measurements are conducted using an electric stove for cooking. The amount and type of food and oil using for cooking are the same for each measurement. There are six measurements: two experiments measure air quality without any ventilation, two using an extractor as mechanical ventilation, and two using the extractor and windows open as mechanical and natural ventilation. 3The results of experiments show that natural ventilation is most efficient system to control particles and CO2. The natural ventilation reduces the concentration in 79% for LDSA and 55% for PM2.5, compared to the no ventilation. In the same way, CO2 reduces its concentration in 35%. A well-mixed vessel model was implemented to assess particle the formation and decay rates. Removal rates by the extractor were significantly higher for LDSA, which is dominated by smaller particles, than for PM2.5, but in both cases much lower compared to the natural ventilation. There was significant day to day variation in particle concentrations under nominally identical conditions. This may be related to the fat content of the food. Further research is needed to assess the impact of the fat in food on particle generations.

Keywords: cooking, indoor air quality, low-cost sensor, ventilation

Procedia PDF Downloads 106
3115 Development of Polymer Nano-Particles as in vivo Imaging Agents for Photo-Acoustic Imaging

Authors: Hiroyuki Aoki

Abstract:

Molecular imaging has attracted much attention to visualize a tumor site in a living body on the basis of biological functions. A fluorescence in vivo imaging technique has been widely employed as a useful modality for small animals in pre-clinical researches. However, it is difficult to observe a site deep inside a body because of a short penetration depth of light. A photo-acoustic effect is a generation of a sound wave following light absorption. Because the sound wave is less susceptible to the absorption of tissues, an in vivo imaging method based on the photoacoustic effect can observe deep inside a living body. The current study developed an in vivo imaging agent for a photoacoustic imaging method. Nano-particles of poly(lactic acid) including indocyanine dye were developed as bio-compatible imaging agent with strong light absorption. A tumor site inside a mouse body was successfully observed in a photo-acoustic image. A photo-acoustic imaging with polymer nano-particle agent would be a powerful method to visualize a tumor.

Keywords: nano-particle, photo-acoustic effect, polymer, dye, in vivo imaging

Procedia PDF Downloads 146
3114 Particle and Photon Trajectories near the Black Hole Immersed in the Nonstatic Cosmological Background

Authors: Elena M. Kopteva, Pavlina Jaluvkova, Zdenek Stuchlik

Abstract:

The question of constructing a consistent model of the cosmological black hole remains to be unsolved and still attracts the interest of cosmologists as far as it is important in a wide set of research problems including the problem of the black hole horizon dynamics, the problem of interplay between cosmological expansion and local gravity, the problem of structure formation in the early universe etc. In this work, the model of the cosmological black hole is built on the basis of the exact solution of the Einstein equations for the spherically symmetric inhomogeneous dust distribution in the approach of the mass function use. Possible trajectories for massive particles and photons near the black hole immersed in the nonstatic dust cosmological background are investigated in frame of the obtained model. The reference system of distant galaxy comoving to cosmological expansion combined with curvature coordinates is used, so that the resulting metric becomes nondiagonal and involves both proper ‘cosmological’ time and curvature spatial coordinates. For this metric the geodesic equations are analyzed for the test particles and photons, and the respective trajectories are built.

Keywords: exact solutions for Einstein equations, Lemaitre-Tolman-Bondi solution, cosmological black holes, particle and photon trajectories

Procedia PDF Downloads 331
3113 Organic Contaminant Degradation Using H₂O₂ Activated Biochar with Enhanced Persistent Free Radicals

Authors: Kalyani Mer

Abstract:

Hydrogen peroxide (H₂O₂) is one of the most efficient and commonly used oxidants in in-situ chemical oxidation (ISCO) of organic contaminants. In the present study, we investigated the activation of H₂O₂ by heavy metal (nickel and lead metal ions) loaded biochar for phenol degradation in an aqueous solution (concentration = 100 mg/L). It was found that H₂O₂ can be effectively activated by biochar, which produces hydroxyl (•OH) radicals owing to an increase in the formation of persistent free radicals (PFRs) on biochar surface. Ultrasound treated (30s duration) biochar, chemically activated by 30% phosphoric acid and functionalized by diethanolamine (DEA) was used for the adsorption of heavy metal ions from aqueous solutions. It was found that modified biochar could remove almost 60% of nickel in eight hours; however, for lead, the removal efficiency reached up to 95% for the same time duration. The heavy metal loaded biochar was further used for the degradation of phenol in the absence and presence of H₂O₂ (20 mM), within 4 hours of reaction time. The removal efficiency values for phenol in the presence of H₂O₂ were 80.3% and 61.9%, respectively, by modified biochar loaded with nickel and lead metal ions. These results suggested that the biochar loaded with nickel exhibits a better removal capacity towards phenol than the lead loaded biochar when used in H₂O₂ based oxidation systems. Meanwhile, control experiments were set in the absence of any activating biochar, and the removal efficiency was found to be 19.1% when only H₂O₂ was added in the reaction solution. Overall, the proposed approach serves a dual purpose of using biochar for heavy metal ion removal and treatment of organic contaminants by further using the metal loaded biochar for H₂O₂ activation in ISCO processes.

Keywords: biochar, ultrasound, heavy metals, in-situ chemical oxidation, chemical activation

Procedia PDF Downloads 123
3112 Investigation of Steady State Infiltration Rate for Different Head Condition

Authors: Nour Aljafari, Mariam, S. Maani, Serter Atabay, Tarig Ali, Said Daker, Lara Daher, Hamad Bukhammas, Mohammed Abou Shakra

Abstract:

This paper aims at determining the soil characteristics that influence the irrigation process of green landscapes and deciding on the optimum amount of water needed for irrigation. The laboratory experiments were conducted using the constant head methodology to determine the soil infiltration rates. The steady state infiltration rate was reached after 10 minutes of infiltration at a rate of 200 mm/hr. The effects of different water heads on infiltration rates were also investigated, and the head of 11 cm was found to be the optimum head for the test. The experimental results showed consistent infiltration results for the range between 11 cm and 15 cm. The study also involved finding the initial moisture content, which ranged between 5% and 25%, and finding the organic content, which occupied 1% to 2% of the soil. These results will be later utilized, using the water balance approach, to estimate the optimum amount of water needed for irrigation for changing weather conditions.

Keywords: infiltration rate, moisture content, grass type, organic content

Procedia PDF Downloads 289
3111 Nickel Oxide-Nitrogen-Doped Carbon (Ni/NiOx/NC) Derived from Pyrolysis of 2-Aminoterephthalic Acid for Electrocatalytic Oxidation of Ammonia

Authors: Yu-Jen Shih, Juan-Zhang Lou

Abstract:

Nitrogenous compounds, such as NH4+/NH3 and NO3-, have become important contaminants in water resources. Excessive concentration of NH3 leads to eutrophication, which poses a threat to aquatic organisms in the environment. Electrochemical oxidation emerged as a promising water treatment technology, offering advantages such as simplicity, small-scale operation, and minimal reliance on additional chemicals. In this study, a nickel-based metal-organic framework (Ni-MOF) was synthesized using 2-amino terephthalic acid (BDC-NH2) and nickel nitrate. The Ni-MOF was further carbonized as derived nickel oxide and nitrogen-carbon composite, Ni/NiOx/NC. The nickel oxide within the 2D porous carbon texture served as active sites for ammonia oxidation. Results of characterization showed that the Ni-MOF was a hexagonal and flaky nanoparticle. With increasing carbonization temperature, the nickel ions in the organic framework re-crystallized as NiO clusters on the surfaces of the 2D carbon. The electrochemical surface area of Ni/NiOx/NC significantly increased as to improve the efficiency of ammonia oxidation. The phase transition of Ni(OH)2⇌NiOOH at around +0.8 V was the primary mediator of electron transfer. Batch electrolysis was conducted under constant current and constant potential modes. The electrolysis parameters included pyrolysis temperatures, pH, current density, initial feed concentration, and electrode potential. The constant current batch experiments indicated that via carbonization at 800 °C, Ni/NiOx/NC(800) was able to decrease the ammonium nitrogen of 50 mg-N/L to below 1 ppm within 4 hours at a current density of 3 mA/cm2 and pH 11 with negligible oxygenated nitrogen formation. The constant potential experiments confirmed that N2 nitrogen selectivity was enhanced up to 90% at +0.8 V.

Keywords: electrochemical oxidation, nickel oxyhydroxide, metal-organic framework, ammonium, nitrate

Procedia PDF Downloads 50
3110 Efficiency and Limits of Physicochemical Treatment of Dairy Wastewater: A Case Study of Dairy Industry in Western Algeria

Authors: Khedidja Benouis

Abstract:

Environmental issues in the food industry are related to the water because it consumes water and release large volumes of wastewater. The treatment of such discharges techniques can be adapted to different situations encountered. For dairy effluents, it is necessary and very effective to use a treatment that eliminates much of the pollutant load,thus, to drastically reduce the organic loading rate. This study aims to evaluate the Efficiency and limitations of physicochemical treatment by coagulation - flocculation of liquid effluent from this type of food industry in Algeria, to give an example of the type and the degree of pollution generated by this sector and in order to reduce pollution and minimize its environmental issues. Coagulation - flocculation-sedimentation was carried out using lime without addition of additive (flocculant), the processing efficiency is indicated by the concentration of pollutants in treated water. The results show that treatment is not sufficient to remove organic pollution, but it has significantly reduced the Total suspended solids (TSS), nitrate (NO3-N) and phosphate (PO4-P).

Keywords: Algeria, coagulation-flocculation, dairy effluent, treatment

Procedia PDF Downloads 412
3109 Improving Enhanced Oil Recovery by Using Alkaline-Surfactant-Polymer Injection and Nanotechnology

Authors: Amir Gerayeli, Babak Moradi

Abstract:

The continuously declining oil reservoirs and reservoirs aging have created a huge demand for utilization of Enhanced Oil Recovery (EOR) methods recently. Primary and secondary oil recovery methods have various limitations and are not practical for all reservoirs. Therefore, it is necessary to use chemical methods to improve oil recovery efficiency by reducing oil and water surface tension, increasing sweeping efficiency, and reducing displacer phase viscosity. One of the well-known methods of oil recovery is Alkaline-Surfactant-Polymer (ASP) flooding that shown to have significant impact on enhancing oil recovery. As some of the biggest oil reservoirs including those of Iran’s are fractional reservoirs with substantial amount of trapped oil in their fractures, the use of Alkaline-Surfactant-Polymer (ASP) flooding method is increasingly growing, the method in which the impact of several parameters including type and concentration of the Alkaline, Surfactant, and polymer are particularly important. This study investigated the use of Nano particles to improve Enhanced Oil Recovery (EOR). The study methodology included performing several laboratory tests on drill cores extracted from Karanj Oil field Asmary Formation in Khuzestan, Iran. In the experiments performed, Sodium dodecyl benzenesulfonate (SDBS) and 1-dodecyl-3-methylimidazolium chloride ([C12mim] [Cl])) were used as surfactant, hydrolyzed polyacrylamide (HPAM) and guar gum were used as polymer, Sodium hydroxide (NaOH) as alkaline, and Silicon dioxide (SiO2) and Magnesium oxide (MgO) were used as Nano particles. The experiment findings suggest that water viscosity increased from 1 centipoise to 5 centipoise when hydrolyzed polyacrylamide (HPAM) and guar gum were used as polymer. The surface tension between oil and water was initially measured as 25.808 (mN/m). The optimum surfactant concentration was found to be 500 p, at which the oil and water tension surface was measured to be 2.90 (mN/m) when [C12mim] [Cl] was used, and 3.28 (mN/m) when SDBS was used. The Nano particles concentration ranged from 100 ppm to 1500 ppm in this study. The optimum Nano particle concentration was found to be 1000 ppm for MgO and 500 ppm for SiO2.

Keywords: alkaline-surfactant-polymer, ionic liquids, relative permeability, reduced surface tension, tertiary enhanced oil recovery, wettability change

Procedia PDF Downloads 147
3108 Determination of Viscosity and Degree of Hydrogenation of Liquid Organic Hydrogen Carriers by Cavity Based Permittivity Measurement

Authors: I. Wiemann, N. Weiß, E. Schlücker, M. Wensing

Abstract:

A very promising alternative to compression or cryogenics is the chemical storage of hydrogen by liquid organic hydrogen carriers (LOHC). These carriers enable high energy density and allow, at the same time, efficient and safe storage under ambient conditions without leakage losses. Another benefit of this storage medium is the possibility of transporting it using already available infrastructure for the transport of fossil fuels. Efficient use of LOHC is related to precise process control, which requires a number of sensors in order to measure all relevant process parameters, for example, to measure the level of hydrogen loading of the carrier. The degree of loading is relevant for the energy content of the storage carrier and simultaneously represents the modification in the chemical structure of the carrier molecules. This variation can be detected in different physical properties like permittivity, viscosity, or density. E.g., each degree of loading corresponds to different viscosity values. Conventional measurements currently use invasive viscosity measurements or near-line measurements to obtain quantitative information. This study investigates permittivity changes resulting from changes in hydrogenation degree (chemical structure) and temperature. Based on calibration measurements, the degree of loading and temperature of LOHC can thus be determined by comparatively simple permittivity measurements in a cavity resonator. Subsequently, viscosity and density can be calculated. An experimental setup with a heating device and flow test bench was designed. By varying temperature in the range of 293,15 K -393,15 K and flow velocity up to 140 mm/s, corresponding changes in the resonation frequency were determined in the hundredths of the GHz range. This approach allows inline process monitoring of hydrogenation of the liquid organic hydrogen carrier (LOHC).

Keywords: hydrogen loading, LOHC, measurement, permittivity, viscosity

Procedia PDF Downloads 69
3107 Synthesis and Characterization of Some Nano-Structured Metal Hexacyanoferrates Using Sapindus mukorossi, a Natural Surfactant

Authors: Uma Shanker, Vidhisha Jassal

Abstract:

A novel green route was used to synthesize few metal hexacyanoferrates (FeHCF, NiHCF, CoHCF and CuHCF) nanoparticles using Sapindus mukorossias a natural surfactant and water as a solvent. The synthesized nanoparticles were characterized by Powder X-ray diffraction (PXRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and Thermo gravimetric techniques. Trasmission electron microscopic images showed that synthesized MHCF nanoparticles exhibited cubic and spherical shapes with exceptionally small sizes ranging from 3nm - 186 nm.

Keywords: metal hexacyanoferrates, natural surfactant, Sapindus mukorossias, nanoparticles

Procedia PDF Downloads 516
3106 Optimization Principles of Eddy Current Separator for Mixtures with Different Particle Sizes

Authors: Cao Bin, Yuan Yi, Wang Qiang, Amor Abdelkader, Ali Reza Kamali, Diogo Montalvão

Abstract:

The study of the electrodynamic behavior of non-ferrous particles in time-varying magnetic fields is a promising area of research with wide applications, including recycling of non-ferrous metals, mechanical transmission, and space debris. The key technology for recovering non-ferrous metals is eddy current separation (ECS), which utilizes the eddy current force and torque to separate non-ferrous metals. ECS has several advantages, such as low energy consumption, large processing capacity, and no secondary pollution, making it suitable for processing various mixtures like electronic scrap, auto shredder residue, aluminum scrap, and incineration bottom ash. Improving the separation efficiency of mixtures with different particle sizes in ECS can create significant social and economic benefits. Our previous study investigated the influence of particle size on separation efficiency by combining numerical simulations and separation experiments. Pearson correlation analysis found a strong correlation between the eddy current force in simulations and the repulsion distance in experiments, which confirmed the effectiveness of our simulation model. The interaction effects between particle size and material type, rotational speed, and magnetic pole arrangement were examined. It offer valuable insights for the design and optimization of eddy current separators. The underlying mechanism behind the effect of particle size on separation efficiency was discovered by analyzing eddy current and field gradient. The results showed that the magnitude and distribution heterogeneity of eddy current and magnetic field gradient increased with particle size in eddy current separation. Based on this, we further found that increasing the curvature of magnetic field lines within particles could also increase the eddy current force, providing a optimized method to improving the separation efficiency of fine particles. By combining the results of the studies, a more systematic and comprehensive set of optimization guidelines can be proposed for mixtures with different particle size ranges. The separation efficiency of fine particles could be improved by increasing the rotational speed, curvature of magnetic field lines, and electrical conductivity/density of materials, as well as utilizing the eddy current torque. When designing an ECS, the particle size range of the target mixture should be investigated in advance, and the suitable parameters for separating the mixture can be fixed accordingly. In summary, these results can guide the design and optimization of ECS, and also expand the application areas for ECS.

Keywords: eddy current separation, particle size, numerical simulation, metal recovery

Procedia PDF Downloads 79
3105 A Study of Impact of Changing Fuel Practices on Organic Carbon and Elemental Carbon Levels in Indoor Air in Two States of India

Authors: Kopal Verma, Umesh C. Kulshrestha

Abstract:

India is a rural major country and majority of rural population is dependent on burning of biomass as fuel for domestic cooking on traditional stoves (Chullahs) and heating purposes. This results into indoor air pollution and ultimately affects health of the residents. Still, a very small fraction of rural population has been benefitted by the facilities of Liquefied Petroleum Gas (LPG) cylinders. Different regions of country follow different methods and use different type of biomass for cooking. So in order to study the differences in cooking practices and resulting indoor air pollution, this study was carried out in two rural areas of India viz. Budhwada, Madhya Pradesh and Baggi, Himachal Pradesh. Both the regions have significant differences in terms of topography, culture and daily practices. Budhwada lies in plain area and Baggi belongs to hilly terrain. The study of carbonaceous aerosols was carried out in four different houses of each village. The residents were asked to bring slight change in their practices by cooking only with biomass (BB) then with a mix of biomass and LPG (BL) and then finally only with LPG (LP). It was found that in BB, average values of organic carbon (OC) and elemental carbon (EC) were 28% and 44% lower in Budhwada than in Baggi whereas a reverse trend was found where OC and EC was respectively more by 56% and 26% with BL and by 54% and 29% with LP in Budhwada than in Baggi. Although, a significant reduction was found both in Budhwada (OC by 49% and EC by 34%) as well as in Baggi (OC by 84% and EC by 73%) when cooking was shifted from BB to LP. The OC/EC ratio was much higher for Budhwada (BB=9.9; BL=2.5; LP=6.1) than for Baggi (BB=1.7; BL=1.6; LP=1.3). The correlation in OC and EC was found to be excellent in Baggi (r²=0.93) and relatively poor in Budhwada (r²=0.65). A questionnaire filled by the residents suggested that they agree to the health benefits of using LPG over biomass burning but the challenges of supply of LPG and changing the prevailing tradition of cooking on Chullah are making it difficult for them to make this shift.

Keywords: biomass burning, elemental carbon, liquefied petroluem gas, organic carbon

Procedia PDF Downloads 182
3104 Study on Breakdown Voltage Characteristics of Different Types of Oils with Contaminations

Authors: C. Jouhar, B. Rajesh Kamath, M. K. Veeraiah, M. Z. Kurian

Abstract:

Since long time ago, petroleum-based mineral oils have been used for liquid insulation in high voltage equipments. Mineral oils are widely used as insulation for transmission and distribution power transformers, capacitors and other high voltage equipment. Petroleum-based insulating oils have excellent dielectric properties such as high electric field strength, low dielectric losses and good long-term performance. Due to environmental consideration, an attempt to search the alternate liquid insulation is required. The influence of particles on the voltage breakdown in insulating oil and other liquids has been recognized for many years. Particles influence both AC and DC voltage breakdown in insulating oil. Experiments are conducted under AC voltage. The breakdown process starts with a microscopic bubble, an area of large distance where ions or electrons initiate avalanches. Insulating liquids drive their dielectric strength from the much higher density compare to gases. Experiments are carried out under High Voltage AC (HVAC) in different types of oils namely castor oil, vegetable oil and mineral oil. The Breakdown Voltage (BDV) with presence of moisture and particle contamination in different types of oils is studied. The BDV of vegetable oil is better when compared to other oils without contamination. The BDV of mineral oil is better when compared to other types of oils in presence of contamination.

Keywords: breakdown voltage, high voltage AC, insulating oil, oil breakdown

Procedia PDF Downloads 326
3103 Structural and Magnetic Properties of Calcium Mixed Ferrites Prepared by Co-Precipitation Method

Authors: Sijo S. Thomas, S. Hridya, Manoj Mohan, Bibin Jacob, Hysen Thomas

Abstract:

Ferrites are iron based oxides with technologically significant magnetic properties and have widespread applications in medicine, technology, and industry. There has been a growing interest in the study of magnetic, electrical and structural properties of mixed ferrites. In the present work, structural and magnetic properties of Nickel and Calcium substituted Fe₃O₄ nanoparticles were investigated. NiₓCa₁₋ₓFe₂O₄ nanoparticles (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) were synthesized by chemical co-precipitation method and the samples were subsequently sintered at 900°C. The magnetic and structural properties of NiₓCa₁₋ₓFe₂O₄ were investigated using Vibrating Sample Magnetometer and X-Ray diffraction. The XRD results revealed that the synthesized particles have nanometer size and it varies from 46-72 nm as the calcium concentration diminishes. The variation is explained based on the increase in the reaction rate with Ni concentration which favors the formation of ultrafine particles of mixed ferrites. VSM results show pure CaFe₂O₄ exhibit paramagnetic behavior with low saturation value. As the concentration of Ca decreases, a transition occurs from paramagnetic state to ferromagnetic state. When the concentration of Ni becomes dominant, magnetic saturation, coercivity, and retentivity become high, indicating near ferromagnetic behavior of the compound.

Keywords: co-precipitation, ferrites, magnetic behavior, structure

Procedia PDF Downloads 233
3102 Temporal Variation of Surface Runoff and Interrill Erosion in Different Soil Textures of a Semi-arid Region, Iran

Authors: Ali Reza Vaezi, Naser Fakori Ivand, Fereshteh Azarifam

Abstract:

Interrill erosion is the detachment and transfer of soil particles between the rills due to the impact of raindrops and the shear stress of shallow surface runoff. This erosion can be affected by some soil properties such as texture, amount of organic matter and stability of soil aggregates. Information on the temporal variation of interrill erosion during a rainfall event and the effect soil properties have on it can help in understanding the process of runoff production and soil loss between the rills in hillslopes. The importance of this study is especially grate in semi-arid regions, where the soil is weakly aggregated and vegetation cover is mostly poor. Therefore, this research was conducted to investigate the temporal variation of surface flow and interrill erosion and the effect of soil properties on it in some semi-arid soils. A field experiment was done in eight different soil textures under simulated rainfalls with uniform intensity. A total of twenty four plots were installed for eight study soils with three replicates in the form of a random complete block design along the land. The plots were 1.2 m (length) × 1 m (width) in dimensions which designed with a distance of 3 m from each other across the slope. Then, soil samples were purred into the plots. The plots were surrounded by a galvanized sheet, and runoff and soil erosion equipment were placed at their outlets. Rainfall simulation experiments were done using a designed portable simulator with an intensity of 60 mm per hour for 60 minutes. A plastic cover was used around the rainfall simulator frame to prevent the impact of the wind on the free fall of water drops. Runoff production and soil loss were measured during 1 hour time with 5-min intervals. In order to study soil properties, such as particle size distribution, aggregate stability, bulk density, ESP and Ks were determined in the laboratory. Correlation and regression analysis was done to determine the effect of soil properties on runoff and interrill erosion. Results indicated that the study soils have lower booth organic matter content and aggregate stability. The soils, except for coarse textured textures, are calcareous and with relatively higher exchangeable sodium percentages (ESP). Runoff production and soil loss didn’t occur in sand, which was associated with higher infiltration and drainage rates. In other study soils, interrill erosion occurred simultaneously with the generation of runoff. A strong relationship was found between interrill erosion and surface runoff (R2 = 0.75, p< 0.01). The correlation analysis showed that surface runoff was significantly affected by some soil properties consisting of sand, silt, clay, bulk density, gravel, hydraulic conductivity (Ks), lime (calcium carbonate), and ESP. The soils with lower Ks such as fine-textured soils, produced higher surface runoff and more interrill erosion. In the soils, Surface runoff production temporally increased during rainfall and finally reached a peak after about 25-35 min. Time to peak was very short (30 min) in fine-textured soils, especially clay, which was related to their lower infiltration rate.

Keywords: erosion plot, rainfall simulator, soil properties, surface flow

Procedia PDF Downloads 51
3101 Metallic and Semiconductor Thin Film and Nanoparticles for Novel Applications

Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien

Abstract:

The process of assembling metal nanoparticles at the interface of two liquids has received a great interest over the past few years due to a wide range of important applications and their unusual properties compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: firstly, to describe the achievement of a closed loop recycling for producing cadmium sulphide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulphides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be applied to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferro-fluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Noble metal like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.

Keywords: assembling nanoparticles, liquid/liquid interface, thin film, core/shell, solar cells, recording media

Procedia PDF Downloads 292
3100 Photocatalytic Degradation of Organic Polluant Reacting with Tungstates: Role of Microstructure and Size Effect on Oxidation Kinetics

Authors: A. Taoufyq, B. Bakiz, A. Benlhachemi, L. Patout, D. V. Chokouadeua, F. Guinneton, G. Nolibe, A. Lyoussi, J-R. Gavarri

Abstract:

Currently, the photo catalytic reactions occurring under solar illumination have attracted worldwide attentions due to a tremendous set of environmental problems. Taking the sunlight into account, it is indispensable to develop highly effective visible-light-driver photo catalysts. Nano structured materials such as MxM’1-xWO6 system are widely studied due to its interesting piezoelectric, dielectric and catalytic properties. These materials can be used in photo catalysis technique for environmental applications, such as waste water treatments. The aim of this study was to investigate the photo catalytic activity of polycrystalline phases of bismuth tungstate of formula Bi2WO6. Polycrystalline samples were elaborated using a coprecipitation technique followed by a calcination process at different temperatures (300, 400, 600 and 900°C). The obtained polycrystalline phases have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Crystal cell parameters and cell volume depend on elaboration temperature. High-resolution electron microscopy images and image simulations, associated with X-ray diffraction data, allowed confirming the lattices and space groups Pca21. The photo catalytic activity of the as-prepared samples was studied by irradiating aqueous solutions of Rhodamine B, associated with Bi2WO6 additives having variable crystallite sizes. The photo catalytic activity of such bismuth tungstates increased as the crystallite sizes decreased. The high specific area of the photo catalytic particles obtained at 300°C seems to condition the degradation kinetics of RhB.

Keywords: Bismuth tungstate, crystallite sizes, electron microscopy, photocatalytic activity, X-ray diffraction.

Procedia PDF Downloads 440
3099 Comparison of Different in vitro Models of the Blood-Brain Barrier for Study of Toxic Effects of Engineered Nanoparticles

Authors: Samir Dekali, David Crouzier

Abstract:

Due to their new physico-chemical properties engineered nanoparticles (ENPs) are increasingly employed in numerous industrial sectors (such as electronics, textile, aerospace, cosmetics, pharmaceuticals, food industry, etc). These new physico-chemical properties can also represent a threat for the human health. Consumers can notably be exposed involuntarily by different routes such as inhalation, ingestion or through the skin. Several studies recently reported a possible biodistribution of these ENPs on the blood-brain barrier (BBB). Consequently, there is a great need for developing BBB in vitro models representative of the in vivo situation and capable of rapidly and accurately assessing ENPs toxic effects and their potential translocation through this barrier. In this study, several in vitro models established with micro-endothelial brain cell lines of different origins (bEnd.3 mouse cell line or a new human cell line) co-cultivated or not with astrocytic cells (C6 rat or C8-B4 mouse cell lines) on Transwells® were compared using different endpoints: trans-endothelial resistance, permeability of the Lucifer yellow and protein junction labeling. Impact of NIST diesel exhaust particles on BBB cell viability is also discussed.

Keywords: nanoparticles, blood-brain barrier, diesel exhaust particles, toxicology

Procedia PDF Downloads 433
3098 The Impact of Corn Grain Consolidation on the Emission of Volatile Organic Compounds

Authors: Marek Gancarz, Katarzyna Grądecka-Jakubowska, Urszula Malaga-Toboła, Rafał Kornas, Aleksandra Żytek, Robert Rusinek

Abstract:

The aim of the research was to determine the emission of volatile organic compounds (VOCs) from corn grain depending on the degree of consolidation of the bulk material, imitating the processes occurring in silos during material storage. An electronic nose and a gas chromatograph were used for VOC analysis. Corn grain was densified under pressure of 40 and 80 kPa. Control samples of corn grain were not compacted and had bulk density. The analyzes were carried out at 14% and 17% humidity (w.b. – wet basis). The measurement system enabled quantitative and qualitative analyzes of volatile compounds and their emission intensity during the 10-day storage period. The study determined the profile of volatile compounds as a function of storage time and grain density level. The test results showed that the highest emission of volatile compounds was recorded in the first four days of storage of corn grain. VOC emissions, as well as grain moisture and volume, can be helpful in determining the quality of material stored in silos and its subsequent suitability for consumption.

Keywords: maize, consolidation, storage, VOCs, GC-MS, chemometrics

Procedia PDF Downloads 70
3097 Multistep Thermal Degradation Kinetics: Pyrolysis of CaSO₄-Complex Obtained by Antiscaling Effect of Maleic-Anhydride Polymer

Authors: Yousef M. Al-Roomi, Kaneez Fatema Hussain

Abstract:

This work evaluates the thermal degradation kinetic parameters of CaSO₄-complex isolated after the inhibition effect of maleic-anhydride based polymer (YMR-polymers). Pyrolysis experiments were carried out at four heating rates (5, 10, 15 and 20°C/min). Several analytical model-free methods were used to determine the kinetic parameters, including Friedman, Coats and Redfern, Kissinger, Flynn-Wall-Ozawa and Kissinger-Akahira–Sunose methods. The Criado model fitting method based on real mechanism followed in thermal degradation of the complex has been applied to explain the degradation mechanism of CaSO₄-complex. In addition, a simple dynamic model was proposed over two temperature ranges for successive decomposition of CaSO₄-complex which has a combination of organic and inorganic part (adsorbed polymer + CaSO₄.2H₂O scale). The model developed enabled the assessment of pre-exponential factor (A) and apparent activation-energy (Eₐ) for both stages independently using a mathematical developed expression based on an integral solution. The unique reaction mechanism approach applied in this study showed that (Eₐ₁-160.5 kJ/mole) for organic decomposition (adsorbed polymer stage-I) has been lower than Eₐ₂-388 kJ/mole for the CaSO₄ decomposition (inorganic stage-II). Further adsorbed YMR-antiscalant not only reduced the decomposition temperature of CaSO₄-complex compared to CaSO₄-blank (CaSO₄.2H₂O scales in the absence of YMR-polymer) but also distorted the crystal lattice of the organic complex of CaSO₄ precipitates, destroying their compact and regular crystal structures observed from XRD and SEM studies.

Keywords: CaSO₄-complex, maleic-anhydride polymers, thermal degradation kinetics and mechanism, XRD and SEM studies

Procedia PDF Downloads 112
3096 Effect of Biopesticide to Control Infestation of Whitefly Bemisia tabaci (Gennadius) on the Culantro Eryngium foetidum L.

Authors: Udomporn Pangnakorn, Sombat Chuenchooklin

Abstract:

Effect of the biopesticide from entomopathogenic nematode (Steinernema thailandensis n. sp.), bacteria ISR (Pseudomonas fluorescens), wood vinegar and fermented organic substances from plants: (neem Azadirachta indica + citronella grass Cymbopogon nardus Rendle + bitter bush Chromolaena odorata L.) were tested on culantro (Eryngium foetidum L.). The biopesticide was carried out for reduction infestation of the major insects pest (whitefly Bemisia tabaci (Gennadius)). The experimental plots were located at farmers’ farm in Tumbol Takhian Luean, Nakhon Sawan Province, Thailand. This study was undertaken during the drought season (lately November to May). The populations of whitefly were observed and recorded every hour up to 3 hours with insect net and yellow sticky traps after the treatments were applied. The results showed that bacteria ISR was the highest effectiveness for control whitefly infestation on culantro, the whitefly numbers on insect net were 12.5, 10.0, and 7.5 after spraying in 1hr, 2hr, and 3hr, respectively. While the whitefly on yellow sticky traps showed 15.0, 10.0, and 10.0 after spraying in 1hr, 2hr, and 3hr, respectively. Furthermore, overall the experiments showed that treatment of bacteria ISR found the average whitefly numbers only 8.06 and 11.0 on insect net and sticky tap respectively, followed by treatment of nematode found the average whitefly with 9.87 and 11.43 on the insect net and sticky tap, respectively. Therefore, the application of biopesticide from entomopathogenic nematodes, bacteria ISR, organic substances from plants and wood vinegar combined with natural enemies is the alternative method of Integrated Pest Management (IPM) for against infestation of whitefly.

Keywords: whitefly (Bemisia tabaci Gennadius), culantro (Eryngium foetidum L.), entomopathogenic nematode (Steinernema thailandensis n. sp.), bacteria ISR (Pseudomonas fluorescens), wood vinegar, fermented organic substances

Procedia PDF Downloads 364
3095 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier

Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari

Abstract:

Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.

Keywords: Cyanex 272, emulsion liquid membrane, MWCNT nanofluid, response surface methology, Samarium

Procedia PDF Downloads 413
3094 Green Synthesis and Characterization of Zinc and Ferrous Nanoparticles for Their Potent Therapeutic Approach

Authors: Mukesh Saran, Ashima Bagaria

Abstract:

Green nanotechnology is the most researched field in the current scenario. Herein we study the synthesis of Zinc and Ferrous nanoparticles using Moringa oleifera leaf extracts. Our protocol using established protocols heat treatment of plant extracts along with the solution of copper sulphate in the ratio of 1:1. The leaf extracts of Moringa oleifera were prepared in deionized water. Copper sulfate solution (1mM) was added to this, and the change in color of the solution was observed indicating the formation of Cu nanoparticles. The as biosynthesized Cu nanoparticles were characterized with the help of Scanning Electron Microscopy (SEM), and Fourier Transforms Infrared Spectroscopy (FTIR). It was observed that the leaf extracts of Moringa oleifera can reduce copper ions into copper nanoparticles within 8 to 10 min of reaction time. The method thus can be used for rapid and eco-friendly biosynthesis of stable copper nanoparticles. Further, we checked their antimicrobial and antioxidant potential, and it was observed that maximum antioxidant activity was observed for the particles prepared using the heating method. The maximum antibacterial activity was observed in Streptomyces grisveus particles and in Triochoderma Reesei for the maximum antifungal activity. At present, we are engaged in studying the anti-inflammatory activities of these as prepared nanoparticles.

Keywords: green synthesis, antibacterial, antioxidant, antifungal, anti-inflammatory

Procedia PDF Downloads 341
3093 Investigation of a Single Feedstock Particle during Pyrolysis in Fluidized Bed Reactors via X-Ray Imaging Technique

Authors: Stefano Iannello, Massimiliano Materazzi

Abstract:

Fluidized bed reactor technologies are one of the most valuable pathways for thermochemical conversions of biogenic fuels due to their good operating flexibility. Nevertheless, there are still issues related to the mixing and separation of heterogeneous phases during operation with highly volatile feedstocks, including biomass and waste. At high temperatures, the volatile content of the feedstock is released in the form of the so-called endogenous bubbles, which generally exert a “lift” effect on the particle itself by dragging it up to the bed surface. Such phenomenon leads to high release of volatile matter into the freeboard and limited mass and heat transfer with particles of the bed inventory. The aim of this work is to get a better understanding of the behaviour of a single reacting particle in a hot fluidized bed reactor during the devolatilization stage. The analysis has been undertaken at different fluidization regimes and temperatures to closely mirror the operating conditions of waste-to-energy processes. Beechwood and polypropylene particles were used to resemble the biomass and plastic fractions present in waste materials, respectively. The non-invasive X-ray technique was coupled to particle tracking algorithms to characterize the motion of a single feedstock particle during the devolatilization with high resolution. A high-energy X-ray beam passes through the vessel where absorption occurs, depending on the distribution and amount of solids and fluids along the beam path. A high-speed video camera is synchronised to the beam and provides frame-by-frame imaging of the flow patterns of fluids and solids within the fluidized bed up to 72 fps (frames per second). A comprehensive mathematical model has been developed in order to validate the experimental results. Beech wood and polypropylene particles have shown a very different dynamic behaviour during the pyrolysis stage. When the feedstock is fed from the bottom, the plastic material tends to spend more time within the bed than the biomass. This behaviour can be attributed to the presence of the endogenous bubbles, which drag effect is more pronounced during the devolatilization of biomass, resulting in a lower residence time of the particle within the bed. At the typical operating temperatures of thermochemical conversions, the synthetic polymer softens and melts, and the bed particles attach on its outer surface, generating a wet plastic-sand agglomerate. Consequently, this additional layer of sand may hinder the rapid evolution of volatiles in the form of endogenous bubbles, and therefore the establishment of a poor drag effect acting on the feedstock itself. Information about the mixing and segregation of solid feedstock is of prime importance for the design and development of more efficient industrial-scale operations.

Keywords: fluidized bed, pyrolysis, waste feedstock, X-ray

Procedia PDF Downloads 161