Search results for: spectroscopy data analysis
42034 Risk Factors’ Analysis on Shanghai Carbon Trading
Authors: Zhaojun Wang, Zongdi Sun, Zhiyuan Liu
Abstract:
First of all, the carbon trading price and trading volume in Shanghai are transformed by Fourier transform, and the frequency response diagram is obtained. Then, the frequency response diagram is analyzed and the Blackman filter is designed. The Blackman filter is used to filter, and the carbon trading time domain and frequency response diagram are obtained. After wavelet analysis, the carbon trading data were processed; respectively, we got the average value for each 5 days, 10 days, 20 days, 30 days, and 60 days. Finally, the data are used as input of the Back Propagation Neural Network model for prediction.Keywords: Shanghai carbon trading, carbon trading price, carbon trading volume, wavelet analysis, BP neural network model
Procedia PDF Downloads 39142033 Enhanced Cell Adhesion on PMMA by Radio Frequency Oxygen Plasma Treatment
Authors: Fatemeh Rezaei, Babak Shokri
Abstract:
In this study, PMMA films are modified by oxygen plasma treatment for biomedical applications. The plasma generator is capacitively coupled radio frequency (13.56 MHz) power source. The oxygen pressure and gas flow rate are kept constant at 40 mTorr and 30 sccm, respectively and samples are treated for 2 minutes. Hydrophilicity and biocompatibility of PMMA films are studied before and after treatments in different applied powers (10-80 W). In order to monitor the plasma process, the optical emission spectroscopy is used. The wettability and cellular response of samples are investigated by water contact angle (WCA) analysis and MTT assay, respectively. Also, surface free energy (SFE) variations are studied based on the contact angle measurements of three liquids. It is found that RF oxygen plasma treatment enhances the biocompatibility and also hydrophilicity of PMMA films.Keywords: cellular response, hydrophilicity, MTT assay, PMMA, RF plasma
Procedia PDF Downloads 67142032 Determination of Heavy Metal Concentration in Soil from Flood Affected Area
Authors: Nor Sayzwani Sukri, Siti Hajar Ya’acob, Musfiroh Jani, Farah Khaliz Kedri, Noor Syuhadah Subki, Zulhazman Hamzah
Abstract:
In mid-December 2014, the biggest flood event occurred in East Coast of Peninsular Malaysia especially at Dabong area, Kelantan. As a consequent of flood disaster, the heavy metals concentration in soil may changes and become harmful to the environment due to the pollution that deposited in soil. This study was carried out to determine the heavy metal concentration from flood affected area. Sample have been collected and analysed by using Atomic Absorption Spectroscopy (AAS). Lead (Pb), Cadmium (Cd), Mercury (Hg), and Arsenic (As) were chosen for the heavy metals concentration. The result indicated that the heavy metal concentration did not exceed the limit. In-situ parameters also were carried out, were the results showed the range of soil pH (6.5-6.8), temperature (25°C – 26.5°C), and moisture content (1-2), respectively. The results from this study can be used as a base data to improve the soil quality and for consideration of future land use activities.Keywords: flood, soil, heavy metal, AAS
Procedia PDF Downloads 42242031 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation
Authors: Zhidong Zhang
Abstract:
This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis
Procedia PDF Downloads 17942030 Investigating the Neural Heterogeneity of Developmental Dyscalculia
Authors: Fengjuan Wang, Azilawati Jamaludin
Abstract:
Developmental Dyscalculia (DD) is defined as a particular learning difficulty with continuous challenges in learning requisite math skills that cannot be explained by intellectual disability or educational deprivation. Recent studies have increasingly recognized that DD is a heterogeneous, instead of monolithic, learning disorder with not only cognitive and behavioral deficits but so too neural dysfunction. In recent years, neuroimaging studies employed group comparison to explore the neural underpinnings of DD, which contradicted the heterogenous nature of DD and may obfuscate critical individual differences. This research aimed to investigate the neural heterogeneity of DD using case studies with functional near-infrared spectroscopy (fNIRS). A total of 54 aged 6-7 years old of children participated in this study, comprising two comprehensive cognitive assessments, an 8-minute resting state, and an 8-minute one-digit addition task. Nine children met the criteria of DD and scored at or below 85 (i.e., the 16th percentile) on the Mathematics or Math Fluency subtest of the Wechsler Individual Achievement Test, Third Edition (WIAT-III) (both subtest scores were 90 and below). The remaining 45 children formed the typically developing (TD) group. Resting-state data and brain activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), and intraparietal sulcus (IPS) were collected for comparison between each case and the TD group. Graph theory was used to analyze the brain network under the resting state. This theory represents the brain network as a set of nodes--brain regions—and edges—pairwise interactions across areas to reveal the architectural organizations of the nervous network. Next, a single-case methodology developed by Crawford et al. in 2010 was used to compare each case’s brain network indicators and brain activation against 45 TD children’s average data. Results showed that three out of the nine DD children displayed significant deviation from TD children’s brain indicators. Case 1 had inefficient nodal network properties. Case 2 showed inefficient brain network properties and weaker activation in the IFG and IPS areas. Case 3 displayed inefficient brain network properties with no differences in activation patterns. As a rise above, the present study was able to distill differences in architectural organizations and brain activation of DD vis-à-vis TD children using fNIRS and single-case methodology. Although DD is regarded as a heterogeneous learning difficulty, it is noted that all three cases showed lower nodal efficiency in the brain network, which may be one of the neural sources of DD. Importantly, although the current “brain norm” established for the 45 children is tentative, the results from this study provide insights not only for future work in “developmental brain norm” with reliable brain indicators but so too the viability of single-case methodology, which could be used to detect differential brain indicators of DD children for early detection and interventions.Keywords: brain activation, brain network, case study, developmental dyscalculia, functional near-infrared spectroscopy, graph theory, neural heterogeneity
Procedia PDF Downloads 5342029 Identification of Membrane Foulants in Direct Contact Membrane Distillation for the Treatment of Reject Brine
Authors: Shefaa Mansour, Hassan Arafat, Shadi Hasan
Abstract:
Management of reverse osmosis (RO) brine has become a major area of research due to the environmental concerns associated with it. This study worked on studying the feasibility of the direct contact membrane distillation (DCMD) system in the treatment of this RO brine. The system displayed great potential in terms of its flux and salt rejection, where different operating conditions such as the feed temperature, feed salinity, feed and permeate flow rates were varied. The highest flux of 16.7 LMH was reported with a salt rejection of 99.5%. Although the DCMD has displayed potential of enhanced water recovery from highly saline solutions, one of the major drawbacks associated with the operation is the fouling of the membranes which impairs the system performance. An operational run of 77 hours for the treatment of RO brine of 56,500 ppm salinity was performed in order to investigate the impact of fouling of the membrane on the overall operation of the system over long time operations. Over this time period, the flux was observed to have reduced by four times its initial flux. The fouled membrane was characterized through different techniques for the identification of the organic and inorganic foulants that have deposited on the membrane surface. The Infrared Spectroscopy method (IR) was used to identify the organic foulants where SEM images displayed the surface characteristics of the membrane. As for the inorganic foulants, they were identified using X-ray Diffraction (XRD), Ion Chromatography (IC) and Energy Dispersive Spectroscopy (EDS). The major foulants found on the surface of the membrane were inorganic salts such as sodium chloride and calcium sulfate.Keywords: brine treatment, membrane distillation, fouling, characterization
Procedia PDF Downloads 43642028 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection
Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine
Abstract:
Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine
Procedia PDF Downloads 26842027 Investigating Dynamic Transition Process of Issues Using Unstructured Text Analysis
Authors: Myungsu Lim, William Xiu Shun Wong, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Namgyu Kim
Abstract:
The amount of real-time data generated through various mass media has been increasing rapidly. In this study, we had performed topic analysis by using the unstructured text data that is distributed through news article. As one of the most prevalent applications of topic analysis, the issue tracking technique investigates the changes of the social issues that identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has limitation that it cannot discover dynamic mutation process of complex social issues. The purpose of this study is to overcome the limitations of the existing issue tracking method. We first derived core issues of each period, and then discover the dynamic mutation process of various issues. In this study, we further analyze the mutation process from the perspective of the issues categories, in order to figure out the pattern of issue flow, including the frequency and reliability of the pattern. In other words, this study allows us to understand the components of the complex issues by tracking the dynamic history of issues. This methodology can facilitate a clearer understanding of complex social phenomena by providing mutation history and related category information of the phenomena.Keywords: Data Mining, Issue Tracking, Text Mining, topic Analysis, topic Detection, Trend Detection
Procedia PDF Downloads 40842026 Hydrothermal Synthesis of Mesoporous Carbon Nanospheres and Their Electrochemical Properties for Glucose Detection
Authors: Ali Akbar Kazemi Asl, Mansour Rahsepar
Abstract:
Mesoporous carbon nanospheres (MCNs) with uniform particle size distribution having an average of 290 nm and large specific surface area (274.4 m²/g) were synthesized by a one-step hydrothermal method followed by the calcination process and then utilized as an enzyme-free glucose biosensor. Morphology, crystal structure, and porous nature of the synthesized nanospheres were characterized by scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis, respectively. Also, the electrochemical performance of the MCNs@GCE electrode for the measurement of glucose concentration in alkaline media was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry (CA). MCNs@GCE electrode shows good sensing performance, including a rapid glucose oxidation response within 3.1 s, a wide linear range of 0.026-12 mM, a sensitivity of 212.34 μA.mM⁻¹.cm⁻², and a detection limit of 25.7 μM with excellent selectivity.Keywords: biosensor, electrochemical, glucose, mesoporous carbon, non-enzymatic
Procedia PDF Downloads 19042025 A Study of the Weld Properties of Inconel 625 Based on Nb Content
Authors: JongWon Han, NoHoon Kim, HyoIk Ahn, HaeWoo Lee
Abstract:
In this study, shielded metal arc welding was performed as a function of Nb content at 2.24 wt%, 3.25 wt%, and 4.26 wt%. The microstructure was observed using scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and showed the development of a columnar dendrite structure in the specimen having the least Nb content. From the hardness test, the hardness value was confirmed to reduce with decreasing Nb content. From electron backscatter diffraction (EBSD) analysis, the largest grain size was found in the specimen with Nb content of 2.24 wt%. The potentiodynamic polarization test was carried out to determine the pitting corrosion resistance; there was no significant difference in the pitting corrosion resistance with increasing Nb content. To evaluate the degree of sensitization to intergranular corrosion, the Double Loop Electrochemical Potentiodynamic Reactivation(DL-EPR test) was conducted. A similar degree of sensitization was found in two specimens except with a Nb content of 2.24 wt%, while a relatively high degree of sensitization was found in the specimen with a Nb content of 2.24 wt%.Keywords: inconel 625, Nb content, potentiodynamic test, DL-EPR test
Procedia PDF Downloads 30842024 A Social Cognitive Investigation in the Context of Vocational Training Performance of People with Disabilities
Authors: Majid A. AlSayari
Abstract:
The study reported here investigated social cognitive theory (SCT) in the context of Vocational Rehab (VR) for people with disabilities. The prime purpose was to increase knowledge of VR phenomena and make recommendations for improving VR services. The sample consisted of 242 persons with Spinal Cord Injuries (SCI) who completed questionnaires. A further 32 participants were Trainers. Analysis of questionnaire data was carried out using factor analysis, multiple regression analysis, and thematic analysis. The analysis suggested that, in motivational terms, and consistent with research carried out in other academic contexts, self-efficacy was the best predictor of VR performance. The author concludes that that VR self-efficacy predicted VR training performance.Keywords: people with physical disabilities, social cognitive theory, self-efficacy, vocational training
Procedia PDF Downloads 31442023 Genodata: The Human Genome Variation Using BigData
Authors: Surabhi Maiti, Prajakta Tamhankar, Prachi Uttam Mehta
Abstract:
Since the accomplishment of the Human Genome Project, there has been an unparalled escalation in the sequencing of genomic data. This project has been the first major vault in the field of medical research, especially in genomics. This project won accolades by using a concept called Bigdata which was earlier, extensively used to gain value for business. Bigdata makes use of data sets which are generally in the form of files of size terabytes, petabytes, or exabytes and these data sets were traditionally used and managed using excel sheets and RDBMS. The voluminous data made the process tedious and time consuming and hence a stronger framework called Hadoop was introduced in the field of genetic sciences to make data processing faster and efficient. This paper focuses on using SPARK which is gaining momentum with the advancement of BigData technologies. Cloud Storage is an effective medium for storage of large data sets which is generated from the genetic research and the resultant sets produced from SPARK analysis.Keywords: human genome project, Bigdata, genomic data, SPARK, cloud storage, Hadoop
Procedia PDF Downloads 25942022 Analysis of Some Produced Inhibitors for Corrosion of J55 Steel in NaCl Solution Saturated with CO₂
Authors: Ambrish Singh
Abstract:
The corrosion inhibition performance of pyran (AP) and benzimidazole (BI) derivatives on J55 steel in 3.5% NaCl solution saturated with CO₂ was investigated by electrochemical, weight loss, surface characterization, and theoretical studies. The electrochemical studies included electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical frequency modulation trend (EFMT). Surface characterization was done using contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. DFT and molecular dynamics (MD) studies were done using Gaussian and Materials Studio softwares. All the studies suggested the good inhibition by the synthesized inhibitors on J55 steel in 3.5% NaCl solution saturated with CO₂ due to the formation of a protective film on the surface. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface.Keywords: corrosion, inhibitor, EFM, AFM, DFT, MD
Procedia PDF Downloads 10542021 Assessment of Politeness Behavior on Communicating: Validation of Scale through Exploratory Factor Analysis and Confirmatory Factor Analysis
Authors: Abdullah Pandang, Mantasiah Rivai, Nur Fadhilah Umar, Azam Arifyadi
Abstract:
This study aims to measure the validity of the politeness behaviour scale and obtain a model that fits the scale. The researcher developed the Politeness Behavior on Communicating (PBC) scale. The research method uses descriptive quantitative by developing the PBC scale. The population in this study were students in three provinces, namely South Sulawesi, West Sulawesi, and Central Sulawesi, recorded in the 2022/2023 academic year. The sampling technique used stratified random sampling by determining the number of samples using the Slovin formula. The sample of this research is 1200 students. This research instrument uses the PBC scale, which consists of 5 (five) indicators: self-regulation of compensation behaviour, self-efficacy of compensation behaviour, fulfilment of social expectations, positive feedback, and no strings attached. The PBC scale consists of 34 statement items. The data analysis technique is divided into two types: the validity test on the correlated item values and the item reliability test referring to Cronbach's and McDonald's alpha standards using the JASP application. Furthermore, the data were analyzed using confirmatory factor analysis (CFA) and exploratory factor analysis (EFA). The results showed that the adaptation of the Politeness Behavior on Communicating (PBC) scale was on the Fit Index with a chi-square value (711,800/375), RMSEA (0.53), GFI (0.990), CFI (0.987), GFI (0.985).Keywords: polite behavior in communicating, positive communication, exploration factor analysis, confirmatory factor analysis
Procedia PDF Downloads 12442020 Impact of Hashtags in Tweets Regarding COVID-19 on the Psyche of Pakistanis: A Critical Discourse Analytical Study
Authors: Muhammad Hamza
Abstract:
This study attempts to analyze the social media reports regarding Covid-19 that impacted the psyche of Pakistanis. This Study is delimited to hashtags from Tweets on a social media platform. During Covid-19, it has been observed that it affected the psychological conditions of Pakistanis. With the application of the three-dimensional model presented by Fairclough, together with a data analytic software “FireAnt” i.e., social media and data analysis toolkit, which is used to filter, identify, report and export data from social media accurately. A detailed and explicit exploration of the various hashtags by users from different fields was conducted. This study conducted a quantitative as well as qualitative methods of analysis. The study examined the perspectives of the Pakistanis behind the use of various hashtags with the lenses of Critical Discourse Analysis (CDA). While conducting this research, CDA was helpful to reveal the connection between the psyche of the people and the Covid-19 pandemic. It was found that how different Pakistanis used social media and how Covid-19 impacted their psyche. After collecting and analyzing the hashtags from twitter it was concluded that majority of people received negative impact from social media reports, while, some people used their hashtags positively and were found positive during Covid-19, and some people were found neutral.Keywords: Covid, Covid-19, psyche, Covid Pakistan
Procedia PDF Downloads 5942019 Evaluation of Esters Production by Oleic Acid Epoxidation Reaction
Authors: Flavio A. F. Da Ponte, Jackson Q. Malveira, Monica C. G. Albuquerque
Abstract:
In recent years a worldwide interest in renewable resources from the biomass has spurred the industry. In this work the chemical structure of oleic acid chains was modified by homogeneous and heterogeneous catalysis in order to produce esters. The homogeneous epoxidation was carried out at H2O2 to oleic acid unsaturation molar ratio of 20:1. The reaction temperature was 338 K and reaction time 16 h. Formic acid was used as catalyst. For heterogeneous catalysis reaction temperature was 343 K and reaction time 24 h. The esters production was carried out by heterogeneous catalysis of the epoxidized oleic acid and butanol using Mg/SBA-15 as catalyst. The resulting products were confirmed by NMR (1H and 13C) and FTIR spectroscopy. The products were characterized before and after each reaction. The catalysts were characterized by X-ray diffraction, X-ray fluorescence, thermogravimetric analysis (TGA) and BET surface areas. The results were satisfactory for the bioproducts formed.Keywords: acid oleic, bioproduct, esters, epoxidation
Procedia PDF Downloads 35642018 Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites
Authors: Joon Y. Lee, Seung H. Shin, Ho H. Chun, Wan K. Jo
Abstract:
Poly vinyl acetate (PVA)-based titania (TiO2)–carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13% , respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized.Keywords: mixing ratio, nanofiber, polymer, reference photocatalyst
Procedia PDF Downloads 37742017 Synthesis, Characterization, Photocatalytic and Photovoltaic Performance of Ag-Doped ZnO2 Loaded on the Pt-Carbon Spheres
Authors: M. Mujahid, Omar A. Al-Hartomy
Abstract:
Ag-doped ZnO2 loaded on the Pt-carbon spheres have been synthesized and characterized by standard analytical techniques. i.e., UV-Vis spectroscopy, X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). In order to find the effect of loading of Ag doping on ZnO2, the concentration of Ag was varied from 0-3.5%. The XRD analysis showed that the obtained particles are anatase phase. The SEM images showed Ag-doped ZnO2 are loaded on the surface of the Pt-carbon spheres. The photocatalytic activity of the synthesized particles was tested by studying the degradation of methyl orange dye and 4-chlorophenol as a function of time on irradiation in aqueous suspension. Ag-doped ZnO2@Pt-carbon sphere particle with platinum concentration of 3.0 % showed the highest photocatalytic activity as compared to the other Ag concentrations for the degradation of methyl orange and 4-chlorophenol.Keywords: Ag-ZnO2, Pt-carbon spheres, degradation, methyl orange, 4-chlorophenol
Procedia PDF Downloads 37042016 Analysis of School Burnout and Academic Motivation through Structural Equation Modeling
Authors: Ismail Seçer
Abstract:
The purpose of this study is to analyze the relationship between school burnout and academic motivation in high school students. The working group of the study consists of 455 students from the high schools in Erzurum city center, selected with appropriate sampling method. School Burnout Scale and Academic Motivation Scale were used in the study to collect data. Correlation analysis and structural equation modeling were used in the analysis of the data collected through the study. As a result of the study, it was determined that there are significant and negative relations between school burnout and academic motivation, and the school burnout has direct and indirect significant effects on the getting over himself, using knowledge and exploration dimension through the latent variable of academic motivation. Lastly, it was determined that school burnout is a significant predictor of academic motivation.Keywords: school burnout, motivation, structural equation modeling, university
Procedia PDF Downloads 32542015 Sequential Pattern Mining from Data of Medical Record with Sequential Pattern Discovery Using Equivalent Classes (SPADE) Algorithm (A Case Study : Bolo Primary Health Care, Bima)
Authors: Rezky Rifaini, Raden Bagus Fajriya Hakim
Abstract:
This research was conducted at the Bolo primary health Care in Bima Regency. The purpose of the research is to find out the association pattern that is formed of medical record database from Bolo Primary health care’s patient. The data used is secondary data from medical records database PHC. Sequential pattern mining technique is the method that used to analysis. Transaction data generated from Patient_ID, Check_Date and diagnosis. Sequential Pattern Discovery Algorithms Using Equivalent Classes (SPADE) is one of the algorithm in sequential pattern mining, this algorithm find frequent sequences of data transaction, using vertical database and sequence join process. Results of the SPADE algorithm is frequent sequences that then used to form a rule. It technique is used to find the association pattern between items combination. Based on association rules sequential analysis with SPADE algorithm for minimum support 0,03 and minimum confidence 0,75 is gotten 3 association sequential pattern based on the sequence of patient_ID, check_Date and diagnosis data in the Bolo PHC.Keywords: diagnosis, primary health care, medical record, data mining, sequential pattern mining, SPADE algorithm
Procedia PDF Downloads 40142014 Discrete Choice Modeling in Education: Evaluating Early Childhood Educators’ Practices
Authors: Michalis Linardakis, Vasilis Grammatikopoulos, Athanasios Gregoriadis, Kalliopi Trouli
Abstract:
Discrete choice models belong to the family of Conjoint analysis that are applied on the preferences of the respondents towards a set of scenarios that describe alternative choices. The scenarios have been pre-designed to cover all the attributes of the alternatives that may affect the choices. In this study, we examine how preschool educators integrate physical activities into their everyday teaching practices through the use of discrete choice models. One of the advantages of discrete choice models compared to other more traditional data collection methods (e.g. questionnaires and interviews that use ratings) is that the respondent is called to select among competitive and realistic alternatives, rather than objectively rate each attribute that the alternatives may have. We present the effort to construct and choose representative attributes that would cover all possible choices of the respondents, and the scenarios that have arisen. For the purposes of the study, we used a sample of 50 preschool educators in Greece that responded to 4 scenarios (from the total of 16 scenarios that the orthogonal design resulted), with each scenario having three alternative teaching practices. Seven attributes of the alternatives were used in the scenarios. For the analysis of the data, we used multinomial logit model with random effects, multinomial probit model and generalized mixed logit model. The conclusions drawn from the estimated parameters of the models are discussed.Keywords: conjoint analysis, discrete choice models, educational data, multivariate statistical analysis
Procedia PDF Downloads 46542013 Study of Inhibition of the End Effect Based on AR Model Predict of Combined Data Extension and Window Function
Authors: Pan Hongxia, Wang Zhenhua
Abstract:
In this paper, the EMD decomposition in the process of endpoint effect adopted data based on AR model to predict the continuation and window function method of combining the two effective inhibition. Proven by simulation of the simulation signal obtained the ideal effect, then, apply this method to the gearbox test data is also achieved good effect in the process, for the analysis of the subsequent data processing to improve the calculation accuracy. In the end, under various working conditions for the gearbox fault diagnosis laid a good foundation.Keywords: gearbox, fault diagnosis, ar model, end effect
Procedia PDF Downloads 36642012 Mechanical Properties of Nanocomposites Cobalt Matrix with Nano SiC Particles
Authors: Dhuha Albusalih, David Weston, Simon Gill
Abstract:
Nanocomposites Co-SiC with well dispersed nanoparticles and Co nano grain size has produced using Pulse Reverse Plating (PRP) and using anionic surfactant. Different particle contents of nanocomposites were produced by altering the plating parameters. The method allows great control over the level of nanoparticles in the coating, without changing bath chemistry. Examination by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), TEM and X-Ray Diffraction (XRD) analysis was performed to characterize and study the strengthening mechanisms of these nanocomposites. The primary strengthening mechanisms were shown to be grain refinement and dispersion strengthening. Tribological performances of the produced electroplated nanocomposite Co-SiC coatings were examined. Results showed that the coating with the higher volume fraction (vol. %) of SiC and the smallest grain size has the higher hardness and low wear rate.Keywords: nanocomposites, pulse reverse plating, tribological performance of cobalt nanocomposites
Procedia PDF Downloads 30742011 Exploring the Intersection Between the General Data Protection Regulation and the Artificial Intelligence Act
Authors: Maria Jędrzejczak, Patryk Pieniążek
Abstract:
The European legal reality is on the eve of significant change. In European Union law, there is talk of a “fourth industrial revolution”, which is driven by massive data resources linked to powerful algorithms and powerful computing capacity. The above is closely linked to technological developments in the area of artificial intelligence, which has prompted an analysis covering both the legal environment as well as the economic and social impact, also from an ethical perspective. The discussion on the regulation of artificial intelligence is one of the most serious yet widely held at both European Union and Member State level. The literature expects legal solutions to guarantee security for fundamental rights, including privacy, in artificial intelligence systems. There is no doubt that personal data have been increasingly processed in recent years. It would be impossible for artificial intelligence to function without processing large amounts of data (both personal and non-personal). The main driving force behind the current development of artificial intelligence is advances in computing, but also the increasing availability of data. High-quality data are crucial to the effectiveness of many artificial intelligence systems, particularly when using techniques involving model training. The use of computers and artificial intelligence technology allows for an increase in the speed and efficiency of the actions taken, but also creates security risks for the data processed of an unprecedented magnitude. The proposed regulation in the field of artificial intelligence requires analysis in terms of its impact on the regulation on personal data protection. It is necessary to determine what the mutual relationship between these regulations is and what areas are particularly important in the personal data protection regulation for processing personal data in artificial intelligence systems. The adopted axis of considerations is a preliminary assessment of two issues: 1) what principles of data protection should be applied in particular during processing personal data in artificial intelligence systems, 2) what regulation on liability for personal data breaches is in such systems. The need to change the regulations regarding the rights and obligations of data subjects and entities processing personal data cannot be excluded. It is possible that changes will be required in the provisions regarding the assignment of liability for a breach of personal data protection processed in artificial intelligence systems. The research process in this case concerns the identification of areas in the field of personal data protection that are particularly important (and may require re-regulation) due to the introduction of the proposed legal regulation regarding artificial intelligence. The main question that the authors want to answer is how the European Union regulation against data protection breaches in artificial intelligence systems is shaping up. The answer to this question will include examples to illustrate the practical implications of these legal regulations.Keywords: data protection law, personal data, AI law, personal data breach
Procedia PDF Downloads 6542010 BiFeO3-CoFe2O4-PbTiO3 Composites: Structural, Multiferroic and Optical Characteristics
Authors: Nidhi Adhlakha, K. L. Yadav
Abstract:
Three phase magnetoelectric (ME) composites (1-x)(0.7BiFeO3-0.3CoFe2O4)-xPbTiO3 (or equivalently written as (1-x)(0.7BFO-0.3CFO)-xPT) with x variations 0, 0.30, 0.35, 0.40, 0.45 and 1.0 were synthesized using hybrid processing route. The effects of PT addition on structural, multiferroic and optical properties have been subsequently investigated. A detailed Rietveld refinement analysis of X-ray diffraction patterns has been performed, which confirms the presence of structural phases of individual constituents in the composites. Field emission scanning electron microscopy (FESEM) images are taken for microstructural analysis and grain size determination. Transmission electron microscopy (TEM) analysis of 0.3CFO-0.7BFO reveals the average particle size to be lying in the window of 8-10 nm. The temperature dependent dielectric constant at various frequencies (1 kHz, 10 kHz, 50 kHz, 100 kHz and 500 kHz) has been studied and the dielectric study reveals that the increase of dielectric constant and decrease of average dielectric loss of composites with incorporation of PT content. The room temperature ferromagnetic behavior of composites is confirmed through the observation of Magnetization vs. Magnetic field (M-H) hysteresis loops. The variation of magnetization with temperature indicates the presence of spin glass behavior in composites. Magnetoelectric coupling is evidenced in the composites through the observation of the dependence of the dielectric constant on the magnetic field, and magnetodielectric response of 2.05 % is observed for 45 mol% addition of PT content. The fractional change of magnetic field induced dielectric constant can also be expressed as ∆ε_r~γM^2 and the value of γ is found to be ~1.08×10-2 (emu/g)-2 for composite with x=0.40. Fourier transformed infrared (FTIR) spectroscopy of samples is carried out to analyze various bonds formation in the composites.Keywords: composite, X-ray diffraction, dielectric properties, optical properties
Procedia PDF Downloads 30842009 Comparative Analysis of Medical Tourism Industry among Key Nations in Southeast Asia
Authors: Nur A. Azmi, Suseela D. Chandran, Fadilah Puteh, Azizan Zainuddin
Abstract:
Medical tourism has been associated as a global phenomenon in developed and developing countries in the 21st century. Medical tourism is defined as an activity in which individuals who travel from one country to another country to seek or receive medical healthcare. Based on the global trend, the number of medical tourists is increasing annually, especially in the Southeast Asia (SEA) region. Since the establishment of Association of Southeast Asian Nations (ASEAN) in 1967, the SEA nations have worked towards regional integration in medical tourism. The medical tourism in the SEA has become the third-largest sector that contributes towards economic development. Previous research has demonstrated several factors that affect the development of medical tourism. However, despite the already published literature on SEA's medical tourism in the last ten years there continues to be a scarcity of research on niche areas each of the SEA countries. Hence, this paper is significant in enriching the literature in the field of medical tourism particularly in showcasing the niche market of medical tourism among the SEA best players namely Singapore, Thailand, Malaysia and Indonesia. This paper also contributes in offering a comparative analysis between the said nations whether they are complementing or competing with each other in the medical tourism sector. This then, will increase the availability of information in SEA region on medical tourism. The data was collected through an in-depth interview with various stakeholders and private hospitals. The data was then analyzed using two approaches namely thematic analysis (interview data) and document analysis (secondary data). The paper concludes by arguing that the ASEAN countries have specific niche market to promote their medical tourism industry. This paper also concludes that these key nations complement each other in the industry. In addition, the medical tourism sector in SEA region offers greater prospects for market development and expansion that witnessed the emerging of new key players from other nations.Keywords: healthcare services, medical tourism, medical tourists, SEA region, comparative analysis
Procedia PDF Downloads 14442008 Nanoimprinted-Block Copolymer-Based Porous Nanocone Substrate for SERS Enhancement
Authors: Yunha Ryu, Kyoungsik Kim
Abstract:
Raman spectroscopy is one of the most powerful techniques for chemical detection, but the low sensitivity originated from the extremely small cross-section of the Raman scattering limits the practical use of Raman spectroscopy. To overcome this problem, Surface Enhanced Raman Scattering (SERS) has been intensively studied for several decades. Because the SERS effect is mainly induced from strong electromagnetic near-field enhancement as a result of localized surface plasmon resonance of metallic nanostructures, it is important to design the plasmonic structures with high density of electromagnetic hot spots for SERS substrate. One of the useful fabrication methods is using porous nanomaterial as a template for metallic structure. Internal pores on a scale of tens of nanometers can be strong EM hotspots by confining the incident light. Also, porous structures can capture more target molecules than non-porous structures in a same detection spot thanks to the large surface area. Herein we report the facile fabrication method of porous SERS substrate by integrating solvent-assisted nanoimprint lithography and selective etching of block copolymer. We obtained nanostructures with high porosity via simple selective etching of the one microdomain of the diblock copolymer. Furthermore, we imprinted of the nanocone patterns into the spin-coated flat block copolymer film to make three-dimensional SERS substrate for the high density of SERS hot spots as well as large surface area. We used solvent-assisted nanoimprint lithography (SAIL) to reduce the fabrication time and cost for patterning BCP film by taking advantage of a solvent which dissolves both polystyrenre and poly(methyl methacrylate) domain of the block copolymer, and thus block copolymer film was molded under the low temperature and atmospheric pressure in a short time. After Ag deposition, we measured Raman intensity of dye molecules adsorbed on the fabricated structure. Compared to the Raman signals of Ag coated solid nanocone, porous nanocone showed 10 times higher Raman intensity at 1510 cm(-1) band. In conclusion, we fabricated porous metallic nanocone arrays with high density electromagnetic hotspots by templating nanoimprinted diblock copolymer with selective etching and demonstrated its capability as an effective SERS substrate.Keywords: block copolymer, porous nanostructure, solvent-assisted nanoimprint, surface-enhanced Raman spectroscopy
Procedia PDF Downloads 62542007 Understanding the Qualitative Nature of Product Reviews by Integrating Text Processing Algorithm and Usability Feature Extraction
Authors: Cherry Yieng Siang Ling, Joong Hee Lee, Myung Hwan Yun
Abstract:
The quality of a product to be usable has become the basic requirement in consumer’s perspective while failing the requirement ends up the customer from not using the product. Identifying usability issues from analyzing quantitative and qualitative data collected from usability testing and evaluation activities aids in the process of product design, yet the lack of studies and researches regarding analysis methodologies in qualitative text data of usability field inhibits the potential of these data for more useful applications. While the possibility of analyzing qualitative text data found with the rapid development of data analysis studies such as natural language processing field in understanding human language in computer, and machine learning field in providing predictive model and clustering tool. Therefore, this research aims to study the application capability of text processing algorithm in analysis of qualitative text data collected from usability activities. This research utilized datasets collected from LG neckband headset usability experiment in which the datasets consist of headset survey text data, subject’s data and product physical data. In the analysis procedure, which integrated with the text-processing algorithm, the process includes training of comments onto vector space, labeling them with the subject and product physical feature data, and clustering to validate the result of comment vector clustering. The result shows 'volume and music control button' as the usability feature that matches best with the cluster of comment vectors where centroid comments of a cluster emphasized more on button positions, while centroid comments of the other cluster emphasized more on button interface issues. When volume and music control buttons are designed separately, the participant experienced less confusion, and thus, the comments mentioned only about the buttons' positions. While in the situation where the volume and music control buttons are designed as a single button, the participants experienced interface issues regarding the buttons such as operating methods of functions and confusion of functions' buttons. The relevance of the cluster centroid comments with the extracted feature explained the capability of text processing algorithms in analyzing qualitative text data from usability testing and evaluations.Keywords: usability, qualitative data, text-processing algorithm, natural language processing
Procedia PDF Downloads 28542006 A Crowdsourced Homeless Data Collection System and Its Econometric Analysis: Strengthening Inclusive Public Administration Policies
Authors: Praniil Nagaraj
Abstract:
This paper proposes a method to collect homeless data using crowdsourcing and presents an approach to analyze the data, demonstrating its potential to strengthen existing and future policies aimed at promoting socio-economic equilibrium. This paper's contributions can be categorized into three main areas. Firstly, a unique method for collecting homeless data is introduced, utilizing a user-friendly smartphone app (currently available for Android). The app enables the general public to quickly record information about homeless individuals, including the number of people and details about their living conditions. The collected data, including date, time, and location, is anonymized and securely transmitted to the cloud. It is anticipated that an increasing number of users motivated to contribute to society will adopt the app, thus expanding the data collection efforts. Duplicate data is addressed through simple classification methods, and historical data is utilized to fill in missing information. The second contribution of this paper is the description of data analysis techniques applied to the collected data. By combining this new data with existing information, statistical regression analysis is employed to gain insights into various aspects, such as distinguishing between unsheltered and sheltered homeless populations, as well as examining their correlation with factors like unemployment rates, housing affordability, and labor demand. Initial data is collected in San Francisco, while pre-existing information is drawn from three cities: San Francisco, New York City, and Washington D.C., facilitating the conduction of simulations. The third contribution focuses on demonstrating the practical implications of the data processing results. The challenges faced by key stakeholders, including charitable organizations and local city governments, are taken into consideration. Two case studies are presented as examples. The first case study explores improving the efficiency of food and necessities distribution, as well as medical assistance, driven by charitable organizations. The second case study examines the correlation between micro-geographic budget expenditure by local city governments and homeless information to justify budget allocation and expenditures. The ultimate objective of this endeavor is to enable the continuous enhancement of the quality of life for the underprivileged. It is hoped that through increased crowdsourcing of data from the public, the Generosity Curve and the Need Curve will intersect, leading to a better world for all.Keywords: crowdsourcing, homelessness, socio-economic policies, statistical analysis
Procedia PDF Downloads 4742005 Nonlinear Multivariable Analysis of CO2 Emissions in China
Authors: Hsiao-Tien Pao, Yi-Ying Li, Hsin-Chia Fu
Abstract:
This paper addressed the impacts of energy consumption, economic growth, financial development, and population size on environmental degradation using grey relational analysis (GRA) for China, where foreign direct investment (FDI) inflows is the proxy variable for financial development. The more recent historical data during the period 2004–2011 are used, because the use of very old data for data analysis may not be suitable for rapidly developing countries. The results of the GRA indicate that the linkage effects of energy consumption–emissions and GDP–emissions are ranked first and second, respectively. These reveal that energy consumption and economic growth are strongly correlated with emissions. Higher economic growth requires more energy consumption and increasing environmental pollution. Likewise, more efficient energy use needs a higher level of economic development. Therefore, policies to improve energy efficiency and create a low-carbon economy can reduce emissions without hurting economic growth. The finding of FDI–emissions linkage is ranked third. This indicates that China do not apply weak environmental regulations to attract inward FDI. Furthermore, China’s government in attracting inward FDI should strengthen environmental policy. The finding of population–emissions linkage effect is ranked fourth, implying that population size does not directly affect CO2 emissions, even though China has the world’s largest population, and Chinese people are very economical use of energy-related products. Overall, the energy conservation, improving efficiency, managing demand, and financial development, which aim at curtailing waste of energy, reducing both energy consumption and emissions, and without loss of the country’s competitiveness, can be adopted for developing economies. The GRA is one of the best way to use a lower data to build a dynamic analysis model.Keywords: China, CO₂ emissions, foreign direct investment, grey relational analysis
Procedia PDF Downloads 403