Search results for: smart grid protection
3346 Geo-Collaboration Model between a City and Its Inhabitants to Develop Complementary Solutions for Better Household Waste Collection
Authors: Abdessalam Hijab, Hafida Boulekbache, Eric Henry
Abstract:
According to several research studies, the city as a whole is a complex, spatially organized system; its modeling must take into account several factors, socio-economic, and political, or geographical, acting at multiple scales of observation according to varied temporalities. Sustainable management and protection of the environment in this complex system require significant human and technical investment, particularly for monitoring and maintenance. The objective of this paper is to propose an intelligent approach based on the coupling of Geographic Information System (GIS) and Information and Communications Technology (ICT) tools in order to integrate the inhabitants in the processes of sustainable management and protection of the urban environment, specifically in the processes of household waste collection in urban areas. We are discussing a collaborative 'city/inhabitant' space. Indeed, it is a geo-collaborative approach, based on the spatialization and real-time geo-localization of topological and multimedia data taken by the 'active' inhabitant, in the form of geo-localized alerts related to household waste issues in their city. Our proposal provides a good understanding of the extent to which civil society (inhabitants) can help and contribute to the development of complementary solutions for the collection of household waste and the protection of the urban environment. Moreover, it allows the inhabitant to contribute to the enrichment of a data bank for future uses. Our geo-collaborative model will be tested in the Lamkansa sampling district of the city of Casablanca in Morocco.Keywords: geographic information system, GIS, information and communications technology, ICT, geo-collaboration, inhabitants, city
Procedia PDF Downloads 1163345 Risk Factors for Significant Obstetric Anal Sphincter Injury in a District General Hospital
Authors: A. Wahid Uddin
Abstract:
Obstetric anal sphincter injury carries significant morbidity for a woman and affects the quality of life to the extent of permanent damage to anal sphincter musculature. The study was undertaken in a district general hospital by retrospectively reviewing random 63 case notes of patients diagnosed with a significant third or fourth-degree perineal tear admitted between the year of 2015 to 2018. The observations were collected by a pre-designed questionnaire. All variables were expressed as percentages. The major risk factors noted were nulliparity (37%), instrumental delivery (25%), and birth weight of more than 4 kg (14%). Forceps delivery with or without episiotomy was the major contributing factor (75%). In the majority of the cases (71%), no record of any perineal protection measures undertaken. The study concluded that recommended perineal protection measures should be adopted as a routine practise.Keywords: forceps, obstetrics, perineal, sphincter
Procedia PDF Downloads 1353344 Influence of Coatings on Energy Conservation in Construction Industry
Authors: Nancy Sakr, Mohamed Abou-Zeid
Abstract:
World energy consumption has increased rapidly in the past few years. Due to population growth, total energy consumption is increasing; a large amount of energy is wasted on the cooling and heating processes in buildings. However, using thermal heating management can minimize costs, heat consumption and create a management system for the heat insulation for buildings. This concept is being implemented through different approaches. Based on analysis and research, there is evidence in the energy consumption before and after testing and applying construction approaches for thermal heating management in building units. This investigation addresses the evaluation of the influence of external coatings on energy consumption. Coatings are considered one of the smart effective available approaches for energy efficiency. Unfortunately, this approach is not widely applied in the construction industry. It needs more data to prove effectiveness and credibility between people to use it as a smart thermal insulation approach. Two precedents have been analyzed in order to monitor buildings’ heat exposure, and how the buildings will be affected by thermal insulation materials. Data sheets from chemical companies which produce similar coatings are compared with the usual products and the protective thermal products.Keywords: energy consumption, building envelope, thermal insulation, protective coatings
Procedia PDF Downloads 1443343 H.264 Video Privacy Protection Method Using Regions of Interest Encryption
Authors: Taekyun Doo, Cheongmin Ji, Manpyo Hong
Abstract:
Like a closed-circuit television (CCTV), video surveillance system is widely placed for gathering video from unspecified people to prevent crime, surveillance, or many other purposes. However, abuse of CCTV brings about concerns of personal privacy invasions. In this paper, we propose an encryption method to protect personal privacy system in H.264 compressed video bitstream with encrypting only regions of interest (ROI). There is no need to change the existing video surveillance system. In addition, encrypting ROI in compressed video bitstream is a challenging work due to spatial and temporal drift errors. For this reason, we propose a novel drift mitigation method when ROI is encrypted. The proposed method was implemented by using JM reference software based on the H.264 compressed videos, and experimental results show the verification of our proposed methods and its effectiveness.Keywords: H.264/AVC, video encryption, privacy protection, post compression, region of interest
Procedia PDF Downloads 3403342 Determinants Affecting to Adoption of Climate Smart Agriculture Technologies in the Northern Bangladesh
Authors: Md. Rezaul Karim, Andreas Thiel
Abstract:
Bangladesh is known as one of the most climate vulnerable countries in the world. Innovative technologies are always the key responses to the management of climate impacts. The objectives of this study are to determine the farmer’s perception of climate variability, to compare farmers’ perceptions with metrological data, and to explore the determinants that affect the likelihood of adoption of the selected Climate Smart Agricultural (CSA) technologies. Data regarding climate change perception, determinants and adoption were collected based on the household survey from stratified and randomly selected 365 farmers of the Biral sub-district under Dinajpur district in drought-prone northern Bangladesh. The likelihood of adoption of CSA technologies was analyzed following a multivariate probit model. The findings show that about 82.5% of the farmers perceived increasing temperature, and 75.1 % of farmers perceived decreasing dry season rainfall over the years, which is similarly relevant to metrological data. About 76.4.7% and 80.85% of farmers were aware of the drought tolerance crops and vermicompost, respectively; more than half of the farmers adopted these practices. Around 70.7% of farmers were aware of perching for insect control, but 46.3% of farmers adopted this practice. Although two-thirds of farmers were aware of crop diversification and pheromone trap, adoption was lower compared to the other three CSAs. Results also indicate that the likelihood of adoption of the selected CSAs is significantly influenced by different factors such as socio-economic characteristics, institutional factors and perceived technological or innovation attributes. The likelihood of adopting drought tolerance crops is affected by 11, while crop diversification and perching method by 7, pheromone trap by 9 and vermicompost by 8 determining factors. Lack of information and unavailability of input appear to be major obstacles to the non-adoption of CSA technologies. This study suggests that policy implications are necessary to promote extension services and overcome the obstacles to the non-adoption of individual CSA technologies. It further recommends that the research study should be conducted in a diverse context, nationally or globally.Keywords: determinants, adoption, climate smart agriculture, northern Bangladesh
Procedia PDF Downloads 673341 The Effects of Emotional Working Memory Training on Trait Anxiety
Authors: Gabrielle Veloso, Welison Ty
Abstract:
Trait anxiety is a pervasive tendency to attend to and experience fears and worries to a disproportionate degree, across various situations. This study sought to determine if participants who undergo emotional working memory training will have significantly lower scores on the trait anxiety scales post-intervention. The study also sought to determine if emotional regulation mediated the relationship between working memory training and trait anxiety. Forty-nine participants underwent 20 days of computerized emotional working memory training called Emotional Dual n-back, which involves viewing a continuous stream of emotional content on a grid, and then remembering the location and color of items presented on the grid. Participants of the treatment group had significantly lower trait anxiety compared to controls post-intervention. Mediation analysis determined that working memory training had no significant relationship to anxiety as measured by the Beck’s Anxiety Inventory-Trait (BAIT), but was significantly related to anxiety as measured by form Y2 of the Spielberger State-Trait Anxiety Inventory (STAI-Y2). Emotion regulation, as measured by the Emotional Regulation Questionnaire (ERQ), was found not to mediate between working memory training and trait anxiety reduction. Results suggest that working memory training may be useful in reducing psychoemotional symptoms rather than somatic symptoms of trait anxiety. Moreover, it proposes for future research to further look into the mediating role of emotion regulation via neuroimaging and the development of more comprehensive measures of emotion regulation.Keywords: anxiety, emotion regulation, working-memory, working-memory training
Procedia PDF Downloads 1513340 Performance and Damage Detection of Composite Structural Insulated Panels Subjected to Shock Wave Loading
Authors: Anupoju Rajeev, Joanne Mathew, Amit Shelke
Abstract:
In the current study, a new type of Composite Structural Insulated Panels (CSIPs) is developed and investigated its performance against shock loading which can replace the conventional wooden structural materials. The CSIPs is made of Fibre Cement Board (FCB)/aluminum as the facesheet and the expanded polystyrene foam as the core material. As tornadoes are very often in the western countries, it is suggestable to monitor the health of the CSIPs during its lifetime. So, the composite structure is installed with three smart sensors located randomly at definite locations. Each smart sensor is fabricated with an embedded half stainless phononic crystal sensor attached to both ends of the nylon shaft that can resist the shock and impact on facesheet as well as polystyrene foam core and safeguards the system. In addition to the granular crystal sensors, the accelerometers are used in the horizontal spanning and vertical spanning with a definite offset distance. To estimate the health and damage of the CSIP panel using granular crystal sensor, shock wave loading experiments are conducted. During the experiments, the time of flight response from the granular sensors is measured. The main objective of conducting shock wave loading experiments on the CSIP panels is to study the effect and the sustaining capacity of the CSIP panels in the extreme hazardous situations like tornados and hurricanes which are very common in western countries. The effects have been replicated using a shock tube, an instrument that can be used to create the same wind and pressure intensity of tornado for the experimental study. Numerous experiments have been conducted to investigate the flexural strength of the CSIP. Furthermore, the study includes the damage detection using three smart sensors embedded in the CSIPs during the shock wave loading.Keywords: composite structural insulated panels, damage detection, flexural strength, sandwich structures, shock wave loading
Procedia PDF Downloads 1463339 Digital Watermarking Based on Visual Cryptography and Histogram
Authors: R. Rama Kishore, Sunesh
Abstract:
Nowadays, robust and secure watermarking algorithm and its optimization have been need of the hour. A watermarking algorithm is presented to achieve the copy right protection of the owner based on visual cryptography, histogram shape property and entropy. In this, both host image and watermark are preprocessed. Host image is preprocessed by using Butterworth filter, and watermark is with visual cryptography. Applying visual cryptography on water mark generates two shares. One share is used for embedding the watermark, and the other one is used for solving any dispute with the aid of trusted authority. Usage of histogram shape makes the process more robust against geometric and signal processing attacks. The combination of visual cryptography, Butterworth filter, histogram, and entropy can make the algorithm more robust, imperceptible, and copy right protection of the owner.Keywords: digital watermarking, visual cryptography, histogram, butter worth filter
Procedia PDF Downloads 3583338 Designing a Socio-Technical System for Groundwater Resources Management, Applying Smart Energy and Water Meter
Authors: S. Mahdi Sadatmansouri, Maryam Khalili
Abstract:
World, nowadays, encounters serious water scarcity problem. During the past few years, by advent of Smart Energy and Water Meter (SEWM) and its installation at the electro-pumps of the water wells, one had believed that it could be the golden key to address the groundwater resources over-pumping issue. In fact, implementation of these Smart Meters managed to control the water table drawdown for short; but it was not a sustainable approach. SEWM has been considered as law enforcement facility at first; however, for solving a complex socioeconomic problem like shared groundwater resources management, more than just enforcement is required: participation to conserve common resources. The well owners or farmers, as water consumers, are the main and direct stakeholders of this system and other stakeholders could be government sectors, investors, technology providers, privet sectors or ordinary people. Designing a socio-technical system not only defines the role of each stakeholder but also can lubricate the communication to reach the system goals while benefits of each are considered and provided. Farmers, as the key participators for solving groundwater problem, do not trust governments but they would trust a fair system in which responsibilities, privileges and benefits are clear. Technology could help this system remained impartial and productive. Social aspects provide rules, regulations, social objects and etc. for the system and help it to be more human-centered. As the design methodology, Design Thinking provides probable solutions for the challenging problems and ongoing conflicts; it could enlighten the way in which the final system could be designed. Using Human Centered Design approach of IDEO helps to keep farmers in the center of the solution and provides a vision by which stakeholders’ requirements and needs are addressed effectively. Farmers would be considered to trust the system and participate in their groundwater resources management if they find the rules and tools of the system fair and effective. Besides, implementation of the socio-technical system could change farmers’ behavior in order that they concern more about their valuable shared water resources as well as their farm profit. This socio-technical system contains nine main subsystems: 1) Measurement and Monitoring system, 2) Legislation and Governmental system, 3) Information Sharing system, 4) Knowledge based NGOs, 5) Integrated Farm Management system (using IoT), 6) Water Market and Water Banking system, 7) Gamification, 8) Agribusiness ecosystem, 9) Investment system.Keywords: human centered design, participatory management, smart energy and water meter (SEWM), social object, socio-technical system, water table drawdown
Procedia PDF Downloads 2943337 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building
Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser
Abstract:
This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.Keywords: building's energy, control system, energy management, energy storage, genetic optimization algorithm, greenhouse gases, modelling, renewable energy
Procedia PDF Downloads 2573336 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization
Authors: Taha Benarbia
Abstract:
The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metricsKeywords: automated vehicles, connected vehicles, deep learning, smart transportation network
Procedia PDF Downloads 793335 Cement-Based Composites with Carbon Nanofillers for Smart Structural Health Monitoring Sensors
Authors: Antonella D'Alessandro, Filippo Ubertini, Annibale Luigi Materazzi
Abstract:
The progress of nanotechnology resulted in the development of new instruments in the field of civil engineering. In particular, the introduction of carbon nanofillers into construction materials can enhance their mechanical and electrical properties. In construction, concrete is among the most used materials. Due to the characteristics of its components and its structure, concrete is suitable for modification, at the nanometer level too. Moreover, to guarantee structural safety, it is desirable to achieve a widespread monitoring of structures. The ideal thing would be to realize structures able to identify their behavior modifications, states of incipient damage or conditions of possible risk for people. This paper presents a research work about novel cementitious composites with conductive carbon nanoinclusions able of monitoring their state of deformation, with particular attention to concrete. The self-sensing ability is achieved through the correlation between the variation of stress or strain and that of electrical resistance. Carbon nanofillers appear particularly suitable for such applications. Nanomodified concretes with different carbon nanofillers has been tested. The samples have been subjected to cyclic and dynamic loads. The experimental campaign shows the potentialities of this new type of sensors made of nanomodified concrete for diffuse Structural Health Monitoring.Keywords: carbon nanofillers, cementitious nanocomposites, smart sensors, structural health monitoring.
Procedia PDF Downloads 3353334 Simulating Elevated Rapid Transit System for Performance Analysis
Authors: Ran Etgar, Yuval Cohen, Erel Avineri
Abstract:
One of the major challenges of transportation in medium sized inner-cities (such as Tel-Aviv) is the last-mile solution. Personal rapid transit (PRT) seems like an applicable candidate for this, as it combines the benefits of personal (car) travel with the operational benefits of transit. However, the investment required for large area PRT grid is significant and there is a need to economically justify such investment by correctly evaluating the grid capacity. PRT main elements are small automated vehicles (sometimes referred to as podcars) operating on a network of specially built guideways. The research is looking at a specific concept of elevated PRT system. Literature review has revealed the drawbacks PRT modelling and simulation approaches, mainly due to the lack of consideration of technical and operational features of the system (such as headways, acceleration, safety issues); the detailed design of infrastructure (guideways, stations, and docks); the stochastic and sessional characteristics of demand; and safety regulations – all of them have a strong effect on the system performance. A highly detailed model of the system, developed in this research, is applying a discrete event simulation combined with an agent-based approach, to represent the system elements and the podecars movement logic. Applying a case study approach, the simulation model is used to study the capacity of the system, the expected throughput of the system, the utilization, and the level of service (journey time, waiting time, etc.).Keywords: capacity, productivity measurement, PRT, simulation, transportation
Procedia PDF Downloads 1663333 Energy Metabolites Show Cross-Protective Plastic Responses for Stress Resistance in a Circumtropical Drosophila Species
Authors: Ankita Pathak, Ashok Munjal, Ravi Parkash
Abstract:
Plastic responses to multiple environmental stressors in wet or dry seasonal populations of tropical Drosophila species have received less attention. We tested plastic effects of heat hardening, acclimation to drought or starvation; and changes in trehalose, proline and body lipids in D. ananassae flies reared under wet or dry season specific conditions. Wet season flies revealed significant increase in heat knockdown, starvation resistance and body lipids after heat hardening. However, accumulation of proline was observed only after desiccation acclimation of dry season flies while wet season flies elicited no proline but trehalose only. Therefore, drought-induced proline can be a marker metabolite for dry season flies. Further, partial utilization of proline and trehalose under heat hardening reflects their possible thermoprotective effects. Heat hardening elicited cross-protection to starvation stress. Stressor-specific accumulation or utilization, as well as rates of metabolic change for each energy metabolite, were significantly higher in wet season flies than dry season flies. Energy metabolite changes due to inter-related stressors (heat vs. desiccation or starvation) resulted in possible maintenance of energetic homeostasis in wet or dry season flies. Thus, low or high humidity induced plastic changes in energy metabolites can provide cross-protection to seasonally varying climatic stressors.Keywords: wet-dry seasons, plastic changes, stress related traits, energy metabolites, cross protection
Procedia PDF Downloads 1703332 Technological Measures to Reduce the Environmental Impact of Swimming Pools
Authors: Fátima Farinha, Miguel J. Oliveira, Gina Matias, Armando Inverno, Jânio Monteiro, Cristiano Cabrita
Abstract:
In the last decades, the construction of swimming pools for recreational activities has grown exponentially in southern Europe. Swimming pools are used both for private use in villas and for collective use in hotels or condominiums. However, they have a high environmental impact, mainly in terms of water and energy consumption, being used for a short period of time, depending significantly on favorable atmospheric conditions. Contrary to what would be expected, not enough research has been conducted to reduce the negative impact of this equipment. In this context, this work proposes and analyses technological measures to reduce the environmental impacts of swimming pools, such as thermal insulation of the tank, water balance in order to detect leaks and optimize the backwash process, integration of renewable energy generation, and a smart control system that meets the requirements of the user. The work was developed within the scope of the Ecopool+++ project, which aims to create innovative heated pools with reduced thermal losses and integration of SMART energy plus water management systems. The project is in the final phase of its development, with very encouraging results.Keywords: swimming pools, sustainability, thermal losses, water management system
Procedia PDF Downloads 1053331 Green approach of Anticorrosion Coating of Steel Based on Polybenzoxazine/Henna Nanocomposites
Authors: Salwa M. Elmesallamy, Ahmed A. Farag, Magd M. Badr, Dalia S. Fathy, Ahmed Bakry, Mona A. El-Etre
Abstract:
The term green environment is an international trend. It is become imperative to treat the corrosion of steel with a green coating to protect the environment. From the potential adverse effects of the traditional materials.A series of polybenzoxazine/henna composites (PBZ/henna), with different weight percent (3,5, and 7 wt % (of henna), were prepared for corrosion protection of carbon steel. The structures of the prepared composites were verified using FTIR analysis. The mechanical properties of the resins, such as adhesion, hardness, binding, and tensile strength, were also measured. It was found that the tensile strength increases by henna loading up to 25% higher than the tidy resin. The thermal stability was investigated by thermogravimetric analysis (TGA) the loading of lawsone (henna) molecules into the PBZ matrix increases the thermal stability of the composite. UV stability was tested by the UV weathering accelerator to examine the possibility that henna can also act as an aging UV stabilizer. The effect of henna content on the corrosion resistance of composite coatings was tested using potentiostatic polarization and electrochemical spectroscopy. The presence of henna in the coating matrix enhances the protection efficiency of polybenzoxazine coats. Increasing henna concentration increases the protection efficiency of composites. The quantum chemical calculations for polybenzoxazine/henna composites have resulted that the highest corrosion inhibition efficiency, has the highest EHOMO and lowest ELUMO; which is in good agreement with results obtained from experiments.Keywords: polybenzoxazine, corrosion, green chemistry, carbon steel
Procedia PDF Downloads 963330 Public Policy and Morality Principles as Grounds for Refusal of Trademarks: A Comparative Study of Islamic Shari’a and Common Law
Authors: Nawaf Alyaseen
Abstract:
This paper provides a comparative analysis of the Islamic and Western public policy and morality principles governing trademarks. The aim of this paper is to explore public policy and morality principles that affect trademark registration and protection under Shari'a by using Kuwaiti law as a case study. The findings provide a better understanding of trademark recognition from the perspective of Shari'a and the requirements demanded by Islamic Shari'a, especially of those who deal with strict Shari'a jurisdiction countries. In addition, this understanding is required for corporations or legislators that wish to take into consideration Muslim consumers. The conclusion suggests that trademarks in Western and Islamic systems are controlled by a number of public policy and morality rules that have a direct effect on the registration and protection of trademarks. Regardless of the fact that there are many commonalities between the two systems, there are still fundamental differences.Keywords: trademark, public policy and morality, Islamic sharia, western legal systems
Procedia PDF Downloads 763329 The Urban Stray Animal Identification Management System Based on YOLOv5
Authors: Chen Xi, LIU Xuebin, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Lao Xuerui
Abstract:
Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature have led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using Yolov5 recognition technology) and recording and managing them in a database.Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network, machine vision
Procedia PDF Downloads 993328 Engineered Reactor Components for Durable Iron Flow Battery
Authors: Anna Ivanovskaya, Alexandra E. L. Overland, Swetha Chandrasekaran, Buddhinie S. Jayathilake
Abstract:
Iron-based redox flow batteries (IRFB) are promising for grid-scale storage because of their low-cost and environmental safety. Earth-abundant iron can enable affordable grid-storage to meet DOE’s target material cost <$20/kWh and levelized cost for storage $0.05/kWh. In conventional redox flow batteries, energy is stored in external electrolyte tanks and electrolytes are circulated through the cell units to achieve electrochemical energy conversions. However, IRFBs are hybrid battery systems where metallic iron deposition at the negative side of the battery controls the storage capacity. This adds complexity to the design of a porous structure of 3D-electrodes to achieve a desired high storage capacity. In addition, there is a need to control parasitic hydrogen evolution reaction which accompanies the metal deposition process, increases the pH, lowers the energy efficiency, and limits the durability. To achieve sustainable operation of IRFBs, electrolyte pH, which affects the solubility of reactants and the rate of parasitic reactions, needs to be dynamically readjusted. In the present study we explore the impact of complexing agents on maintaining solubility of the reactants and find the optimal electrolyte conditions and battery operating regime, which are specific for IRFBs with additives, and demonstrate the robust operation.Keywords: flow battery, iron-based redox flow battery, IRFB, energy storage, electrochemistry
Procedia PDF Downloads 783327 Protection of Victims’ Rights in International Criminal Proceedings
Authors: Irina Belozerova
Abstract:
In the recent years, the number of crimes against peace and humanity has constantly been increasing. The development of the international community is inseparably connected to the compliance with the law which protects the rights and interests of citizens in all of their manifestations. The provisions of the law of criminal procedure are no exception. The rights of the victims of genocide, of the war crimes and the crimes against humanity, require particular attention. These crimes fall within the jurisdiction of the International Criminal Court governed by the Rome Statute of the International Criminal Court. These crimes have the following features. First, any such crime has a mass character and therefore requires specific regulation in the international criminal law and procedure and the national criminal law and procedure of different countries. Second, the victims of such crimes are usually children, women and old people; the entire national, ethnic, racial or religious groups are destroyed. These features influence the classification of victims by the age criterion. Article 68 of the Rome Statute provides for protection of the safety, physical and psychological well-being, dignity and privacy of victims and witnesses and thus determines the procedural status of these persons. However, not all the persons whose rights have been violated by the commission of these crimes acquire the status of victims. This is due to the fact that such crimes affect a huge number of persons and it is impossible to mention them all by name. It is also difficult to assess the entire damage suffered by the victims. While assessing the amount of damages it is essential to take into account physical and moral harm, as well as property damage. The procedural status of victims thus gains an exclusive character. In order to determine the full extent of the damage suffered by the victims it is necessary to collect sufficient evidence. However, it is extremely difficult to collect the evidence that would ensure the full and objective protection of the victims’ rights. While making requests for the collection of evidence, the International Criminal Court faces the problem of protection of national security information. Religious beliefs and the family life of victims are of great importance. In some Islamic countries, it is impossible to question a woman without her husband’s consent which affects the objectivity of her testimony. Finally, the number of victims is quantified by hundreds and thousands. The assessment of these elements demands time and highly qualified work. These factors justify the creation of a mechanism that would help to collect the evidence and establish the truth in the international criminal proceedings. This mechanism will help to impose a just and appropriate punishment for the persons accused of having committed a crime, since, committing the crime, criminals could not misunderstand the outcome of their criminal intent.Keywords: crimes against humanity, evidence in international criminal proceedings, international criminal proceedings, protection of victims
Procedia PDF Downloads 2493326 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs
Authors: Osamede Asowata, Christo Pienaar, Johan Bekker
Abstract:
Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter
Procedia PDF Downloads 1273325 Empirical Investigation into Climate Change and Climate-Smart Agriculture for Food Security in Nigeria
Authors: J. Julius Adebayo
Abstract:
The objective of this paper is to assess the agro-climatic condition of Ibadan in the rain forest ecological zone of Nigeria, using rainfall pattern and temperature between 1978-2018. Data on rainfall and temperature in Ibadan, Oyo State for a period of 40 years were obtained from Meteorological Section of Forestry Research Institute of Nigeria, Ibadan and Oyo State Meteorology Centre. Time series analysis was employed to analyze the data. The trend revealed that rainfall is decreasing slowly and temperature is averagely increasing year after year. The model for rainfall and temperature are Yₜ = 1454.11-8*t and Yₜ = 31.5995 + 2.54 E-02*t respectively, where t is the time. On this basis, a forecast of 20 years (2019-2038) was generated, and the results showed a further downward trend on rainfall and upward trend in temperature, this indicates persistence rainfall shortage and very hot weather for agricultural practices in the southwest rain forest ecological zone. Suggestions on possible solutions to avert climate change crisis and also promote climate-smart agriculture for sustainable food and nutrition security were also discussed.Keywords: climate change, rainfall pattern, temperature, time series analysis, food and nutrition security
Procedia PDF Downloads 1443324 Redefining Problems and Challenges of Natural Resource Management in Indonesia
Authors: Amalia Zuhra
Abstract:
Indonesia is very rich with its natural resources. Natural resource management becomes a challenge for Indonesia. Improper management will make the natural resources run out and future generations will not be able to enjoy the natural wealth. A good rule of law and proper implementation determines the success of the management of a country's natural resources. This paper examines the need to redefine problems and challenges in the management of natural resources in Indonesia in the context of law. The purpose of this article is to overview the latest issues and challenges in natural resource management and to redefine legal provisions related to environmental management and human rights protection so that the management of natural resources in the present and future will be more sustainable. This paper finds that sustainable management of natural resources is absolutely essential. The aspect of environmental protection and human rights must be elaborated more deeply so that the management of natural resources can be done maximally without harming not only people but also the environment.Keywords: international environmental law, human rights law, natural resource management, sustainable development
Procedia PDF Downloads 2753323 Climate Change Impact on Water Resources Management in Remote Islands Using Hybrid Renewable Energy Systems
Authors: Elissavet Feloni, Ioannis Kourtis, Konstantinos Kotsifakis, Evangelos Baltas
Abstract:
Water inadequacy in small dry islands scattered in the Aegean Sea (Greece) is a major problem regarding Water Resources Management (WRM), especially during the summer period due to tourism. In the present work, various WRM schemes are designed and presented. The WRM schemes take into account current infrastructure and include Rainwater Harvesting tanks and Reverse Osmosis Desalination Units. The energy requirements are covered mainly by wind turbines and/or a seawater pumped storage system. Sizing is based on the available data for population and tourism per island, after taking into account a slight increase in the population (up to 1.5% per year), and it guarantees at least 80% reliability for the energy supply and 99.9% for potable water. Evaluation of scenarios is carried out from a financial perspective, after calculating the Life Cycle Cost (LCC) of each investment for a lifespan of 30 years. The wind-powered desalination plant was found to be the most cost-effective practice, from an economic point of view. Finally, in order to estimate the Climate Change (CC) impact, six different CC scenarios were investigated. The corresponding rate of on-grid versus off-grid energy required for ensuring the targeted reliability for the zero and each climatic scenario was investigated per island. The results revealed that under CC the grid-on energy required would increase and as a result, the reduction in wind turbines and seawater pumped storage systems’ reliability will be in the range of 4 to 44%. However, the range of this percentage change does not exceed 22% per island for all examined CC scenarios. Overall, CC is proposed to be incorporated into the design process for WRM-related projects. Acknowledgements: This research is co-financed by Greece and the European Union (European Social Fund - ESF) through the Operational Program «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “Development of a combined rain harvesting and renewable energy-based system for covering domestic and agricultural water requirements in small dry Greek Islands” (MIS 5004775).Keywords: small dry islands, water resources management, climate change, desalination, RES, seawater pumped storage system, rainwater harvesting
Procedia PDF Downloads 1163322 Evaluation of Occupational Doses in Interventional Radiology
Authors: Fernando Antonio Bacchim Neto, Allan Felipe Fattori Alves, Maria Eugênia Dela Rosa, Regina Moura, Diana Rodrigues De Pina
Abstract:
Interventional Radiology is the radiology modality that provides the highest dose values to medical staff. Recent researches show that personal dosimeters may underestimate dose values in interventional physicians, especially in extremities (hands and feet) and eye lens. The aim of this work was to study radiation exposure levels of medical staff in different interventional radiology procedures and estimate the annual maximum numbers of procedures (AMN) that each physician could perform without exceed the annual limits of dose established by normative. For this purpose LiF:Mg,Ti (TLD-100) dosimeters were positioned in different body regions of the interventional physician (eye lens, thyroid, chest, gonads, hand and foot) above the radiological protection vests as lead apron and thyroid shield. Attenuation values for lead protection vests were based on international guidelines. Based on these data were chosen as 90% attenuation of the lead vests and 60% attenuation of the protective glasses. 25 procedures were evaluated: 10 diagnostics, 10 angioplasty, and 5-aneurysm treatment. The AMN of diagnostic procedures was 641 for the primary interventional radiologist and 930 for the assisting interventional radiologist. For the angioplasty procedures, the AMN for primary interventional radiologist was 445 and for assisting interventional radiologist was 1202. As for the procedures of aneurism treatment, the AMN for the primary interventional radiologist was 113 and for the assisting interventional radiologist were 215. All AMN were limited by the eye lens doses already considering the use of protective glasses. In all categories evaluated, the higher dose values are found in gonads and in the lower regions of professionals, both for the primary interventionist and for the assisting, but the eyes lens dose limits are smaller than these regions. Additional protections as mobile barriers, which can be positioned between the interventionist and the patient, can decrease the exposures in the eye lens, providing a greater protection for the medical staff. The alternation of professionals to perform each type of procedure can reduce the dose values received by them over a period. The analysis of dose profiles proposed in this work showed that personal dosimeters positioned in chest might underestimate dose values in other body parts of the interventional physician, especially in extremities and eye lens. As each body region of the interventionist is subject to different levels of exposure, dose distribution in each region provides a better approach to what actions are necessary to ensure the radiological protection of medical staff.Keywords: interventional radiology, radiation protection, occupationally exposed individual, hemodynamic
Procedia PDF Downloads 3933321 Payments for Forest Environmental Services: Advantages and Disadvantages in the Different Mechanisms in Vietnam North Central Area
Authors: Huong Nguyen Thi Thanh, Van Mai Thi Khanh
Abstract:
For around the world, payments for environmental services have been implemented since the late 1970s in Europe and North America; then, it was spread to Latin America, Asia, Africa, and finally Oceania in 2008. In Vietnam, payments for environmental services are an interesting issue recently with the forest as the main focus and therefore known as the program on payment for forest environmental services (PFES). PFES was piloted in Lam Dong and Son La in 2008 and has been widely applied in many provinces after 2010. PFES is in the orientation for the socialization of national forest protection in Vietnam and has made great strides in the last decade. By using the primary data and secondary data simultaneously, the paper clarifies two cases of implementing PFES in the Vietnam North Central area with the different mechanisms of payment. In the first case at Phu Loc district (Thua Thien Hue province), PFES is an indirect method by a water supply company via the Forest Protection and Development Fund. In the second one at Phong Nha – Ke Bang National Park (Quang Binh Province), tourism companies are the direct payers to forest owners. The paper describes the PFES implementation process at each site, clarifies the payment mechanism, and models the relationship between stakeholders in PFES implementation. Based on the current status of PFES sites, the paper compares and analyzes the advantages and disadvantages of the two payment methods. Finally, the paper proposes recommendations to improve the existing shortcomings in each payment mechanism.Keywords: advantages and disadvantages, forest environmental services, forest protection, payment mechanism
Procedia PDF Downloads 1293320 Green Intellectual Capital and Green Supply Chain Performance
Authors: Mohammed Ibrahim Bu Haya, Abdelmoneim Bahyeldin Mohamed Metwally
Abstract:
This paper examines the impact of Green Intellectual Capital (GIC) on Green Supply Chain Performance (GSCP). Further, the study examines the moderating role of external pressures (EP) on the relationship between GIC and GSCP. Data were collected from employees working in Egyptian hotels and tourism companies (N= 366). The collected data were analyzed using smart partial least squares (Smart-PLS) software. The current research indicated that there is a positive and significant impact of all GIC components on GSCP. The results also revealed that EP were found to moderate the relationship between GIC and GSCP. The study model was able to explain 63.1% of the variance in GSCP. The findings of this study serve as a pivotal yardstick for guiding corporate policy formulation, offering valuable insights to drive continuous improvements in supply chain management and performance. Furthermore, the research holds substantial implications for managerial strategies by shedding light on the potential of GIC and EP to elevate GSCP. Positioned as one of the initial studies to delve into the moderating role of EP in the relationship between GIC and GSCP, this research offers insights within an emerging market context.Keywords: green intellectual capital, green supply chain, supply chain performance, external pressures, emerging economy, Egypt
Procedia PDF Downloads 563319 Fire Protection Performance of Different Industrial Intumescent Coatings for Steel Beams
Authors: Serkan Kocapinar, Gülay Altay
Abstract:
This study investigates the efficiency of two different industrial intumescent coatings which have different types of certifications, in the fire protection performance in steel beams in the case of ISO 834 fire for 2 hours. A better understanding of industrial intumescent coatings, which assure structural integrity and prevent a collapse of steel structures, is needed to minimize the fire risks in steel structures. A comparison and understanding of different fire protective intumescent coatings, which are Product A and Product B, are used as a thermal barrier between the steel components and the fire. Product A is tested according to EN 13381-8 and BS 476-20,22 and is certificated by ISO Standards. Product B is tested according to EN 13381-8 and ASTM UL-94 and is certificated by the Turkish Standards Institute (TSE). Generally, fire tests to evaluate the fire performance of steel components are done numerically with commercial software instead of experiments due to the high cost of an ISO 834 fire test in a furnace. Hence, there is a gap in the literature about the comparisons of different certificated intumescent coatings for fire protection in the case of ISO 834 fire in a furnace experiment for 2 hours. The experiment was carried out by using two 1-meter UPN 200 steel sections. Each one was coated by different industrial intumescent coatings. A furnace was used by the Turkish Standards Institute (TSE) for the experiment. The temperature of the protected steels and the inside of the furnace was measured with the help of 24 thermocouples which were applied before the intumescent coatings during the two hours for the performance of intumescent coatings by getting a temperature-time curve of steel components. FIN EC software was used to determine the critical temperatures of protected steels, and Abaqus was used for thermal analysis to get theoretical results to compare with the experimental results.Keywords: fire safety, structural steel, ABAQUS, thermal analysis, FIN EC, intumescent coatings
Procedia PDF Downloads 1033318 Electrochemical and Microstructure Properties of Chromium-Graphene and SnZn-Graphene Oxide Composite Coatings
Authors: Rekha M. Y., Punith Kumar, Anshul Kamboj, Chandan Srivastava
Abstract:
Coatings plays an important role in providing protection for a substrate and in improving the surface quality. Graphene/graphene oxide (GO) using in coating systems provides an environmental friendly solution towards protection against corrosion. Issues such as, lack of scale, high cost, low quality limits the practical application of graphene/GO as corrosion resistant coating material. One other way to employ these materials for corrosion protection is to incorporate them into coatings that are conventionally used for corrosion protection. Due to the extraordinary properties of graphene/GO, it has been demonstrated that the coatings containing graphene/GO are more corrosion resistant than pure metal/alloy coatings. In the present work, Cr-graphene and SnZn-GO composite coatings were investigated in enhancing the corrosion resistant property when compared to pure Cr coating and pure SnZn coating respectively. All the coatings were electrodeposited over mild-steel substrate. Graphene and GO were synthesized by electrochemical exfoliation method and modified Hummers’ method respectively. In Cr coatings, the microstructural study revealed that the addition of formic acid in the coatings reduced the number of cracks in the coatings. Further addition of graphene in Cr coating enhanced the Cr coating’s morphology. Chemically synthesized ZnO nanoparticles were also embedded in the as-deposited Cr and Cr-graphene coatings to enhance the adhesion of the coating, to improve the surface finish and to increase the corrosion resistant property of the coatings. Diffraction analysis revealed that the addition of graphene also altered the texture of the Cr coatings. In SnZn alloy coatings, the morphological and topographical characterization revealed that the relative smoothness and compactness of the coatings increased with increase in the addition of GO in the coatings. The microstructural investigation revealed large-scale segregation of Zn-rich and Sn-rich phases in the pure SnZn coating. However, in SnZn-GO composite coating the uniform distribution of Zn phase in the Sn-rich matrix was observed. This distribution caused the early and uniform formation of ZnO, which is the corrosion product, yielding better corrosion resistance for the SnZn-GO composite coatings as compared to pure SnZn coating. A significant improvement in corrosion resistance in terms of reduction in corrosion current and corrosion rate and increase in the polarization resistance was observed in Cr coating containing graphene and in SnZn coatings containing GO.Keywords: coatings, corrosion, electrodeposition, graphene, graphene-oxide
Procedia PDF Downloads 1813317 Design of Smart Catheter for Vascular Applications Using Optical Fiber Sensor
Authors: Lamiek Abraham, Xinli Du, Yohan Noh, Polin Hsu, Tingting Wu, Tom Logan, Ifan Yen
Abstract:
In the field of minimally invasive, smart medical instruments such as catheters and guidewires are typically used at a remote distance to gain access to the diseased artery, often negotiating tortuous, complex, and diseased vessels in the process. Three optical fiber sensors with a diameter of 1.5mm each that are 120° apart from each other is proposed to be mounted into a catheter-based pump device with a diameter of 10mm. These sensors are configured to solve the challenges surgeons face during insertion through curvy major vessels such as the aortic arch. Moreover, these sensors deal with providing information on rubbing the walls and shape sensing. This study presents an experimental and mathematical models of the optical fiber sensors with 2 degrees of freedom. There are two eight gear-shaped tubes made up of 3D printed thermoplastic Polyurethane (TPU) material that are connected. The optical fiber sensors are mounted inside the first tube for protection from external light and used TPU material as a prototype for a catheter. The second tube is used as a flat reflection for the light intensity modulation-based optical fiber sensors. The first tube is attached to the linear guide for insertion and withdrawal purposes and can manually turn it 45° by manipulating the tube gear. A 3D hard material phantom was developed that mimics the aortic arch anatomy structure in which the test was carried out. During the insertion of the sensors into the 3D phantom, datasets are obtained in terms of voltage, distance, and position of the sensors. These datasets reflect the characteristics of light intensity modulation of the optical fiber sensors with a plane project of the aortic arch structure shape. Mathematical modeling of the light intensity was carried out based on the projection plane and experiment set-up. The performance of the system was evaluated in terms of its accuracy in navigating through the curvature and information on the position of the sensors by investigating 40 single insertions of the sensors into the 3D phantom. The experiment demonstrated that the sensors were effectively steered through the 3D phantom curvature and to desired target references in all 2 degrees of freedom. The performance of the sensors echoes the reflectance of light theory, where the smaller the radius of curvature, the more of the shining LED lights are reflected and received by the photodiode. A mathematical model results are in good agreement with the experiment result and the operation principle of the light intensity modulation of the optical fiber sensors. A prototype of a catheter using TPU material with three optical fiber sensors mounted inside has been developed that is capable of navigating through the different radius of curvature with 2 degrees of freedom. The proposed system supports operators with pre-scan data to make maneuverability and bendability through curvy major vessels easier, accurate, and safe. The mathematical modelling accurately fits the experiment result.Keywords: Intensity modulated optical fiber sensor, mathematical model, plane projection, shape sensing.
Procedia PDF Downloads 252