Search results for: network diagnostic tool
9077 Multimodal Direct Neural Network Positron Emission Tomography Reconstruction
Authors: William Whiteley, Jens Gregor
Abstract:
In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity.Keywords: deep learning, image reconstruction, machine learning, neural network, positron emission tomography
Procedia PDF Downloads 1109076 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus
Authors: J. K. Alhassan, B. Attah, S. Misra
Abstract:
Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus
Procedia PDF Downloads 4089075 Central Palmar Necrosis Following Steroid Injections for the Treatment of Carpal Tunnel Syndrome: A Case Report
Authors: M. Ridwanul Hassan, Samuel George
Abstract:
Aims: Steroid injections are commonly used as a diagnostic tool or an alternative to surgical management of carpal tunnel syndrome (CTS) and are generally safe. Ischaemia is a rare complication with very few cases reported in the literature. Methods: We report a case of a 50-year-old female that presented with a necrotic wound to her left palm one month after a steroid injection into the carpal tunnel. She had a 2-year history of CTS in her left hand that was treated with six previous steroid injections in primary care during this period. The wound evolved from a blister to a necrotic ulcer which led to a painful, hollow defect in the centre of her palm. She did not report any history of trauma, nor did she have any co-morbidities. Clinical photographs were taken. Results: On examination, she had a 0.5 cmx1 cm defect in the palm of her left hand down to aponeurosis. There was purulent discharge in the wound with surrounding erythema but no spreading cellulitis. She had full function of her fingers but was very tender on movements and at rest. She was admitted for intravenous antibiotics and underwent a debridement, washout, and carpal tunnel release the next day. The defect was packed to heal by secondary intention and has now fully healed one month following her operation. Conclusions: This is an extremely rare complication of steroid injections to the carpal tunnel and may have been avoided by earlier referral for surgery rather than treatment using multiple steroid injections.Keywords: hand surgery, complication, rare, carpal tunnel syndrome
Procedia PDF Downloads 1129074 Estimation of Pressure Loss Coefficients in Combining Flows Using Artificial Neural Networks
Authors: Shahzad Yousaf, Imran Shafi
Abstract:
This paper presents a new method for calculation of pressure loss coefficients by use of the artificial neural network (ANN) in tee junctions. Geometry and flow parameters are feed into ANN as the inputs for purpose of training the network. Efficacy of the network is demonstrated by comparison of the experimental and ANN based calculated data of pressure loss coefficients for combining flows in a tee junction. Reynolds numbers ranging from 200 to 14000 and discharge ratios varying from minimum to maximum flow for calculation of pressure loss coefficients have been used. Pressure loss coefficients calculated using ANN are compared to the models from literature used in junction flows. The results achieved after the application of ANN agrees reasonably to the experimental values.Keywords: artificial neural networks, combining flow, pressure loss coefficients, solar collector tee junctions
Procedia PDF Downloads 3899073 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping
Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo
Abstract:
Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping
Procedia PDF Downloads 709072 HBTOnto: An Ontology Model for Analyzing Human Behavior Trajectories
Authors: Heba M. Wagih, Hoda M. O. Mokhtar
Abstract:
Social Network has recently played a significant role in both scientific and social communities. The growing adoption of social network applications has been a relevant source of information nowadays. Due to its popularity, several research trends are emerged to service the huge volume of users including, Location-Based Social Networks (LBSN), Recommendation Systems, Sentiment Analysis Applications, and many others. LBSNs applications are among the highly demanded applications that do not focus only on analyzing the spatiotemporal positions in a given raw trajectory but also on understanding the semantics behind the dynamics of the moving object. LBSNs are possible means of predicting human mobility based on users social ties as well as their spatial preferences. LBSNs rely on the efficient representation of users’ trajectories. Hence, traditional raw trajectory information is no longer convenient. In our research, we focus on studying human behavior trajectory which is the major pillar in location recommendation systems. In this paper, we propose an ontology design patterns with their underlying description logics to efficiently annotate human behavior trajectories.Keywords: human behavior trajectory, location-based social network, ontology, social network
Procedia PDF Downloads 4529071 Load-Enabled Deployment and Sensing Range Optimization for Lifetime Enhancement of WSNs
Authors: Krishan P. Sharma, T. P. Sharma
Abstract:
Wireless sensor nodes are resource constrained battery powered devices usually deployed in hostile and ill-disposed areas to cooperatively monitor physical or environmental conditions. Due to their limited power supply, the major challenge for researchers is to utilize their battery power for enhancing the lifetime of whole network. Communication and sensing are two major sources of energy consumption in sensor networks. In this paper, we propose a deployment strategy for enhancing the average lifetime of a sensor network by effectively utilizing communication and sensing energy to provide full coverage. The proposed scheme is based on the fact that due to heavy relaying load, sensor nodes near to the sink drain energy at much faster rate than other nodes in the network and consequently die much earlier. To cover this imbalance, proposed scheme finds optimal communication and sensing ranges according to effective load at each node and uses a non-uniform deployment strategy where there is a comparatively high density of nodes near to the sink. Probable relaying load factor at particular node is calculated and accordingly optimal communication distance and sensing range for each sensor node is adjusted. Thus, sensor nodes are placed at locations that optimize energy during network operation. Formal mathematical analysis for calculating optimized locations is reported in present work.Keywords: load factor, network lifetime, non-uniform deployment, sensing range
Procedia PDF Downloads 3839070 An Innovative Auditory Impulsed EEG and Neural Network Based Biometric Identification System
Authors: Ritesh Kumar, Gitanjali Chhetri, Mandira Bhatia, Mohit Mishra, Abhijith Bailur, Abhinav
Abstract:
The prevalence of the internet and technology in our day to day lives is creating more security issues than ever. The need for protecting and providing a secure access to private and business data has led to the development of many security systems. One of the potential solutions is to employ the bio-metric authentication technique. In this paper we present an innovative biometric authentication method that utilizes a person’s EEG signal, which is acquired in response to an auditory stimulus,and transferred wirelessly to a computer that has the necessary ANN algorithm-Multi layer perceptrol neural network because of is its ability to differentiate between information which is not linearly separable.In order to determine the weights of the hidden layer we use Gaussian random weight initialization. MLP utilizes a supervised learning technique called Back propagation for training the network. The complex algorithm used for EEG classification reduces the chances of intrusion into the protected public or private data.Keywords: EEG signal, auditory evoked potential, biometrics, multilayer perceptron neural network, back propagation rule, Gaussian random weight initialization
Procedia PDF Downloads 4099069 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree
Authors: S. Ghorbani, N. I. Polushin
Abstract:
In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.Keywords: cutting condition, surface roughness, decision tree, CART algorithm
Procedia PDF Downloads 3759068 Automatic Early Breast Cancer Segmentation Enhancement by Image Analysis and Hough Transform
Authors: David Jurado, Carlos Ávila
Abstract:
Detection of early signs of breast cancer development is crucial to quickly diagnose the disease and to define adequate treatment to increase the survival probability of the patient. Computer Aided Detection systems (CADs), along with modern data techniques such as Machine Learning (ML) and Neural Networks (NN), have shown an overall improvement in digital mammography cancer diagnosis, reducing the false positive and false negative rates becoming important tools for the diagnostic evaluations performed by specialized radiologists. However, ML and NN-based algorithms rely on datasets that might bring issues to the segmentation tasks. In the present work, an automatic segmentation and detection algorithm is described. This algorithm uses image processing techniques along with the Hough transform to automatically identify microcalcifications that are highly correlated with breast cancer development in the early stages. Along with image processing, automatic segmentation of high-contrast objects is done using edge extraction and circle Hough transform. This provides the geometrical features needed for an automatic mask design which extracts statistical features of the regions of interest. The results shown in this study prove the potential of this tool for further diagnostics and classification of mammographic images due to the low sensitivity to noisy images and low contrast mammographies.Keywords: breast cancer, segmentation, X-ray imaging, hough transform, image analysis
Procedia PDF Downloads 839067 Artificial Neural Network-Based Bridge Weigh-In-Motion Technique Considering Environmental Conditions
Authors: Changgil Lee, Junkyeong Kim, Jihwan Park, Seunghee Park
Abstract:
In this study, bridge weigh-in-motion (BWIM) system was simulated under various environmental conditions such as temperature, humidity, wind and so on to improve the performance of the BWIM system. The environmental conditions can make difficult to analyze measured data and hence those factors should be compensated. Various conditions were considered as input parameters for ANN (Artificial Neural Network). The number of hidden layers for ANN was decided so that nonlinearity could be sufficiently reflected in the BWIM results. The weight of vehicles and axle weight were more accurately estimated by applying ANN approach. Additionally, the type of bridge which was a target structure was considered as an input parameter for the ANN.Keywords: bridge weigh-in-motion (BWIM) system, environmental conditions, artificial neural network, type of bridges
Procedia PDF Downloads 4429066 Tool for Metadata Extraction and Content Packaging as Endorsed in OAIS Framework
Authors: Payal Abichandani, Rishi Prakash, Paras Nath Barwal, B. K. Murthy
Abstract:
Information generated from various computerization processes is a potential rich source of knowledge for its designated community. To pass this information from generation to generation without modifying the meaning is a challenging activity. To preserve and archive the data for future generations it’s very essential to prove the authenticity of the data. It can be achieved by extracting the metadata from the data which can prove the authenticity and create trust on the archived data. Subsequent challenge is the technology obsolescence. Metadata extraction and standardization can be effectively used to resolve and tackle this problem. Metadata can be categorized at two levels i.e. Technical and Domain level broadly. Technical metadata will provide the information that can be used to understand and interpret the data record, but only this level of metadata isn’t sufficient to create trustworthiness. We have developed a tool which will extract and standardize the technical as well as domain level metadata. This paper is about the different features of the tool and how we have developed this.Keywords: digital preservation, metadata, OAIS, PDI, XML
Procedia PDF Downloads 3939065 Use of a New Multiplex Quantitative Polymerase Chain Reaction Based Assay for Simultaneous Detection of Neisseria Meningitidis, Escherichia Coli K1, Streptococcus agalactiae, and Streptococcus pneumoniae
Authors: Nastaran Hemmati, Farhad Nikkhahi, Amir Javadi, Sahar Eskandarion, Seyed Mahmuod Amin Marashi
Abstract:
Neisseria meningitidis, Escherichia coli K, Streptococcus agalactiae, and Streptococcus pneumoniae cause 90% of bacterial meningitis. Almost all infected people die or have irreversible neurological complications. Therefore, it is essential to have a diagnostic kit with the ability to quickly detect these fatal infections. The project involved 212 patients from whom cerebrospinal fluid samples were obtained. After total genome extraction and performing multiplex quantitative polymerase chain reaction (qPCR), the presence or absence of each infectious factor was determined by comparing with standard strains. The specificity, sensitivity, positive predictive value, and negative predictive value calculated were 100%, 92.9%, 50%, and 100%, respectively. So, due to the high specificity and sensitivity of the designed primers, they can be used instead of bacterial culture that takes at least 24 to 48 hours. The remarkable benefit of this method is associated with the speed (up to 3 hours) at which the procedure could be completed. It is also worth noting that this method can reduce the personnel unintentional errors which may occur in the laboratory. On the other hand, as this method simultaneously identifies four common factors that cause bacterial meningitis, it could be used as an auxiliary method diagnostic technique in laboratories particularly in cases of emergency medicine.Keywords: cerebrospinal fluid, meningitis, quantitative polymerase chain reaction, simultaneous detection, diagnosis testing
Procedia PDF Downloads 1169064 Hub Port Positioning and Route Planning of Feeder Lines for Regional Transportation Network
Authors: Huang Xiaoling, Liu Lufeng
Abstract:
In this paper, we seek to determine one reasonable local hub port and optimal routes for a containership fleet, performing pick-ups and deliveries, between the hub and spoke ports in a same region. The relationship between a hub port, and traffic in feeder lines is analyzed. A new network planning method is proposed, an integrated hub port location and route design, a capacitated vehicle routing problem with pick-ups, deliveries and time deadlines are formulated and solved using an improved genetic algorithm for positioning the hub port and establishing routes for a containership fleet. Results on the performance of the algorithm and the feasibility of the approach show that a relatively small fleet of containerships could provide efficient services within deadlines.Keywords: route planning, hub port location, container feeder service, regional transportation network
Procedia PDF Downloads 4479063 Effect of Pulse Duration and Current to the EDM Process on Allegheny Ludlum D2 Tool Steel
Authors: S. Sulaiman, M. A. Razak, M. R. Ibrahim, A. A. Khan
Abstract:
An experimental work on the effect of different current and pulse duration on performance of EDM process of Allegheny Ludlum D2 Tool Steel (UNS T30402). The effect of varying the machining parameters on the machining responses such as material removal rate (MRR), electrode wear rate (EWR), and surface roughness (Ra) have been investigated. In this study, triangular shape and circular shape of copper was used as an electrode with surface area of 100 mm². The experiments were repeated for three different values of pulse duration (100 µs, 200 µs and 400 µs) with combination of three different values of discharge current (12 A, 16 A and 24 A). It was found that the pulse duration and current have significant effect on MRR, EWR and Ra. An increase in the pulse durations causes an increase in the MRR and Ra, but a decrease in the EWR. Meanwhile, the effect of currents on EDM performance shows that the increasing currents lead to an increase in the MRR, EWR and Ra.Keywords: allegheny ludlum D2 tool steel, current, EDM, surface roughness, pulse duration
Procedia PDF Downloads 3799062 Health Education and Information: A Panacea to Tuberculosis Prevention and Eradication in Nigeria
Authors: Afolabi Joseph Fasoranti
Abstract:
Tuberculosis (TB) is an infectious disease caused by mycobacterium tuberculosis. Tuberculosis is a major public health problem in Nigeria, being one of the ten leading causes of hospital admissions and a leading cause of death in adults, especially among the economically productive age group. This paper critically examined the importance of health education towards the eradication and prevention of tuberculosis in Nigeria. It was reviewed and discussed under the following subheadings; Global burden of tuberculosis in Nigeria, concept, definition and etiology of tuberculosis, Signs and symptoms of tuberculosis, diagnosis of tuberculosis, causative agent, modes of infection and incubation period, risk factors of pulmonary tuberculosis Dots and stop TB programmes in Nigeria Treatment and prevention of tuberculosis TB treatment strategies, Dealing with treatment problems in Nigeria Stigmatization against Tuberculosis Patients Health education as a tool for achieving free tuberculosis country. Emphasis for Tb control has been placed on the development of improved vaccines, diagnostic and treatment courses but less on health education and awareness. Although the need for these tools is indisputable, the obstacle facing the spread of TB go beyond technological. The findings of this study may stimulate health system policy makers, Government and non- governmental organizations, donor agencies and other stakeholders in planning and designing health education intervention programs on the control and eradication of tuberculosis. It therefore recommended that Government should implement health education as part of the DOTs, this will thus empower the tuberculosis patients on ways to live healthy, lifestyle, in doing this, they will recover fast and prevent them from spreading the disease.Keywords: tuberculosis, health education, panacea, Nigeria, prevention
Procedia PDF Downloads 3309061 Applying the Global Trigger Tool in German Hospitals: A Retrospective Study in Surgery and Neurosurgery
Authors: Mareen Brosterhaus, Antje Hammer, Steffen Kalina, Stefan Grau, Anjali A. Roeth, Hany Ashmawy, Thomas Gross, Marcel Binnebosel, Wolfram T. Knoefel, Tanja Manser
Abstract:
Background: The identification of critical incidents in hospitals is an essential component of improving patient safety. To date, various methods have been used to measure and characterize such critical incidents. These methods are often viewed by physicians and nurses as external quality assurance, and this creates obstacles to the reporting events and the implementation of recommendations in practice. One way to overcome this problem is to use tools that directly involve staff in measuring indicators of quality and safety of care in the department. One such instrument is the global trigger tool (GTT), which helps physicians and nurses identify adverse events by systematically reviewing randomly selected patient records. Based on so-called ‘triggers’ (warning signals), indications of adverse events can be given. While the tool is already used internationally, its implementation in German hospitals has been very limited. Objectives: This study aimed to assess the feasibility and potential of the global trigger tool for identifying adverse events in German hospitals. Methods: A total of 120 patient records were randomly selected from two surgical, and one neurosurgery, departments of three university hospitals in Germany over a period of two months per department between January and July, 2017. The records were reviewed using an adaptation of the German version of the Institute for Healthcare Improvement Global Trigger Tool to identify triggers and adverse event rates per 1000 patient days and per 100 admissions. The severity of adverse events was classified using the National Coordinating Council for Medication Error Reporting and Prevention. Results: A total of 53 adverse events were detected in the three departments. This corresponded to adverse event rates of 25.5-72.1 per 1000 patient-days and from 25.0 to 60.0 per 100 admissions across the three departments. 98.1% of identified adverse events were associated with non-permanent harm without (Category E–71.7%) or with (Category F–26.4%) the need for prolonged hospitalization. One adverse event (1.9%) was associated with potentially permanent harm to the patient. We also identified practical challenges in the implementation of the tool, such as the need for adaptation of the global trigger tool to the respective department. Conclusions: The global trigger tool is feasible and an effective instrument for quality measurement when adapted to the departmental specifics. Based on our experience, we recommend a continuous use of the tool thereby directly involving clinicians in quality improvement.Keywords: adverse events, global trigger tool, patient safety, record review
Procedia PDF Downloads 2499060 Development of Lectin-Based Biosensor for Glycoprofiling of Clinical Samples: Focus on Prostate Cancer
Authors: Dominika Pihikova, Stefan Belicky, Tomas Bertok, Roman Sokol, Petra Kubanikova, Jan Tkac
Abstract:
Since aberrant glycosylation is frequently accompanied by both physiological and pathological processes in a human body (cancer, AIDS, inflammatory diseases, etc.), the analysis of tumor-associated glycan patterns have a great potential for the development of novel diagnostic approaches. Moreover, altered glycoforms may assist as a suitable tool for the specificity and sensitivity enhancement in early-stage prostate cancer diagnosis. In this paper we discuss the construction and optimization of ultrasensitive sandwich biosensor platform employing lectin as glycan-binding protein. We focus on the immunoassay development, reduction of non-specific interactions and final glycoprofiling of human serum samples including both prostate cancer (PCa) patients and healthy controls. The fabricated biosensor was measured by label-free electrochemical impedance spectroscopy (EIS) with further lectin microarray verification. Furthermore, we analyzed different biosensor interfaces with atomic force microscopy (AFM) in nanomechanical mapping mode showing a significant differences in the altitude. These preliminary results revealing an elevated content of α-2,3 linked sialic acid in PCa patients comparing with healthy controls. All these experiments are important step towards development of point-of-care devices and discovery of novel glyco-biomarkers applicable in cancer diagnosis.Keywords: biosensor, glycan, lectin, prostate cancer
Procedia PDF Downloads 3729059 Smart BIM Documents - the Development of the Ontology-Based Tool for Employer Information Requirements (OntEIR), and its Transformation into SmartEIR
Authors: Shadan Dwairi
Abstract:
Defining proper requirements is one of the key factors for a successful construction projects. Although there have been many attempts put forward in assist in identifying requirements, but still this area is under developed. In Buildings Information Modelling (BIM) projects. The Employer Information Requirements (EIR) is the fundamental requirements document and a necessary ingredient in achieving a successful BIM project. The provision on full and clear EIR is essential to achieving BIM Level-2. As Defined by PAS 1192-2, EIR is a “pre-tender document that sets out the information to be delivered and the standards and processes to be adopted by the supplier as part of the project delivery process”. It also notes that “EIR should be incorporated into tender documentation to enable suppliers to produce an initial BIM Execution Plan (BEP)”. The importance of effective definition of EIR lies in its contribution to a better productivity during the construction process in terms of cost and time, in addition to improving the quality of the built asset. Proper and clear information is a key aspect of the EIR, in terms of the information it contains and more importantly the information the client receives at the end of the project that will enable the effective management and operation of the asset, where typically about 60%-80% of the cost is spent. This paper reports on the research done in developing the Ontology-based tool for Employer Information Requirements (OntEIR). OntEIR has proven the ability to produce a full and complete set of EIRs, which ensures that the clients’ information needs for the final model delivered by BIM is clearly defined from the beginning of the process. It also reports on the work being done into transforming OntEIR into a smart tool for Defining Employer Information Requirements (smartEIR). smartEIR transforms the OntEIR tool into enabling it to develop custom EIR- tailored for the: Project Type, Project Requirements, and the Client Capabilities. The initial idea behind smartEIR is moving away from the notion “One EIR fits All”. smartEIR utilizes the links made in OntEIR and creating a 3D matrix that transforms it into a smart tool. The OntEIR tool is based on the OntEIR framework that utilizes both Ontology and the Decomposition of Goals to elicit and extract the complete set of requirements needed for a full and comprehensive EIR. A new ctaegorisation system for requirements is also introduced in the framework and tool, which facilitates the understanding and enhances the clarification of the requirements especially for novice clients. Findings of the evaluation of the tool that was done with experts in the industry, showed that the OntEIR tool contributes towards effective and efficient development of EIRs that provide a better understanding of the information requirements as requested by BIM, and support the production of a complete BIM Execution Plan (BEP) and a Master Information Delivery Plan (MIDP).Keywords: building information modelling, employer information requirements, ontology, web-based, tool
Procedia PDF Downloads 1279058 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network
Authors: Ziying Wu, Danfeng Yan
Abstract:
Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network
Procedia PDF Downloads 1189057 The Use of Correlation Difference for the Prediction of Leakage in Pipeline Networks
Authors: Mabel Usunobun Olanipekun, Henry Ogbemudia Omoregbee
Abstract:
Anomalies such as water pipeline and hydraulic or petrochemical pipeline network leakages and bursts have significant implications for economic conditions and the environment. In order to ensure pipeline systems are reliable, they must be efficiently controlled. Wireless Sensor Networks (WSNs) have become a powerful network with critical infrastructure monitoring systems for water, oil and gas pipelines. The loss of water, oil and gas is inevitable and is strongly linked to financial costs and environmental problems, and its avoidance often leads to saving of economic resources. Substantial repair costs and the loss of precious natural resources are part of the financial impact of leaking pipes. Pipeline systems experts have implemented various methodologies in recent decades to identify and locate leakages in water, oil and gas supply networks. These methodologies include, among others, the use of acoustic sensors, measurements, abrupt statistical analysis etc. The issue of leak quantification is to estimate, given some observations about that network, the size and location of one or more leaks in a water pipeline network. In detecting background leakage, however, there is a greater uncertainty in using these methodologies since their output is not so reliable. In this work, we are presenting a scalable concept and simulation where a pressure-driven model (PDM) was used to determine water pipeline leakage in a system network. These pressure data were collected with the use of acoustic sensors located at various node points after a predetermined distance apart. We were able to determine with the use of correlation difference to determine the leakage point locally introduced at a predetermined point between two consecutive nodes, causing a substantial pressure difference between in a pipeline network. After de-noising the signal from the sensors at the nodes, we successfully obtained the exact point where we introduced the local leakage using the correlation difference model we developed.Keywords: leakage detection, acoustic signals, pipeline network, correlation, wireless sensor networks (WSNs)
Procedia PDF Downloads 1099056 IoT Based Agriculture Monitoring Framework for Sustainable Rice Production
Authors: Armanul Hoque Shaon, Md Baizid Mahmud, Askander Nobi, Md. Raju Ahmed, Md. Jiabul Hoque
Abstract:
In the Internet of Things (IoT), devices are linked to the internet through a wireless network, allowing them to collect and transmit data without the need for a human operator. Agriculture relies heavily on wireless sensors, which are a vital component of the Internet of Things (IoT). This kind of wireless sensor network monitors physical or environmental variables like temperatures, sound, vibration, pressure, or motion without relying on a central location or sink and collaboratively passes its data across the network to be analyzed. As the primary source of plant nutrients, the soil is critical to the agricultural industry's continued growth. We're excited about the prospect of developing an Internet of Things (IoT) solution. To arrange the network, the sink node collects groundwater levels and sends them to the Gateway, which centralizes the data and forwards it to the sensor nodes. The sink node gathers soil moisture data, transmits the mean to the Gateways, and then forwards it to the website for dissemination. The web server is in charge of storing and presenting the moisture in the soil data to the web application's users. Soil characteristics may be collected using a networked method that we developed to improve rice production. Paddy land is running out as the population of our nation grows. The success of this project will be dependent on the appropriate use of the existing land base.Keywords: IoT based agriculture monitoring, intelligent irrigation, communicating network, rice production
Procedia PDF Downloads 1549055 Loss of Control Eating as a Key Factor of the Psychological Symptomatology Related to Childhood Obesity
Authors: L. Beltran, S. Solano, T. Lacruz, M. Blanco, M. Rojo, M. Graell, A. R. Sepulveda
Abstract:
Introduction and Objective: Given the difficulties of assessing Binge Eating Disorder during childhood, episodes of Loss of Control (LOC) eating can be a key symptom. The objective is to know the prevalence of food psychopathology depending on the type of evaluation and find out which psychological characteristics differentiate overweight or obese children who present LOC from those who do not. Material and Methods: 170 children from 8 to 12 years of age with overweight or obesity (P > 85) were evaluated through the Primary Care Centers of Madrid. Sociodemographic data and psychological measures were collected through the Kiddie-Schedule for Affective Disorders & Schizophrenia, Present & Lifetime Version (K-SADS-PL) diagnostic interview and self-applied questionnaires: Children's eating attitudes (ChEAT), depressive symptomatology (CDI), anxiety (STAIC), general self-esteem (LAWSEQ), body self-esteem (BES), perceived teasing (POTS) and perfectionism (CAPS). Results: 15.2% of the sample exceeded the ChEAT cut-off point, presenting a risk of pathological eating; 5.88% presented an Eating Disorder through the diagnostic interview (2.35% Binge Eating disorder), and 33.53% had LOC episodes. No relationship was found between the presence of LOC and clinical diagnosis of eating disorders according to DSM-V; however, the group with LOC presented a higher risk of eating psychopathology using the ChEAT (p < .02). Significant differences were found in the group with LOC (p < .02): higher z-BMI, lower body self-esteem, greater anxious symptomatology, greater frequency of teasing towards weight, and greater effect of teasing both towards weight and competitions; compared to their peers without LOC. Conclusion: According to previous studies in samples with overweight children, in this Spanish sample of children with obesity, we found a prevalence of moderate eating disorder and a high presence of LOC episodes, which is related to both eating and general psychopathology. These findings confirm that the exclusion of LOC episodes as a diagnostic criterion can underestimate the presence of eating psychopathology during this developmental stage. According to these results, it is highly recommended to promote school context programs that approach LOC episodes in order to reduce associated symptoms. This study is included in a Project funded by the Ministry of Innovation and Science (PSI2011-23127).Keywords: childhood obesity, eating psychopathology, loss-of-control eating, psychological symptomatology
Procedia PDF Downloads 1069054 Impact of PV Distributed Generation on Loop Distribution Network at Saudi Electricity Company Substation in Riyadh City
Authors: Mohammed Alruwaili
Abstract:
Nowadays, renewable energy resources are playing an important role in replacing traditional energy resources such as fossil fuels by integrating solar energy with conventional energy. Concerns about the environment led to an intensive search for a renewable energy source. The Rapid growth of distributed energy resources will have prompted increasing interest in the integrated distributing network in the Kingdom of Saudi Arabia next few years, especially after the adoption of new laws and regulations in this regard. Photovoltaic energy is one of the promising renewable energy sources that has grown rapidly worldwide in the past few years and can be used to produce electrical energy through the photovoltaic process. The main objective of the research is to study the impact of PV in distribution networks based on real data and details. In this research, site survey and computer simulation will be dealt with using the well-known computer program software ETAB to simulate the input of electrical distribution lines with other variable inputs such as the levels of solar radiation and the field study that represent the prevailing conditions and conditions in Diriah, Riyadh region, Saudi Arabia. In addition, the impact of adding distributed generation units (DGs) to the distribution network, including solar photovoltaic (PV), will be studied and assessed for the impact of adding different power capacities. The result has been achieved with less power loss in the loop distribution network from the current condition by more than 69% increase in network power loss. However, the studied network contains 78 buses. It is hoped from this research that the efficiency, performance, quality and reliability by having an enhancement in power loss and voltage profile of the distribution networks in Riyadh City. Simulation results prove that the applied method can illustrate the positive impact of PV in loop distribution generation.Keywords: renewable energy, smart grid, efficiency, distribution network
Procedia PDF Downloads 1409053 Online-Scaffolding-Learning Tools to Improve First-Year Undergraduate Engineering Students’ Self-Regulated Learning Abilities
Authors: Chen Wang, Gerard Rowe
Abstract:
The number of undergraduate engineering students enrolled in university has been increasing rapidly recently, leading to challenges associated with increased student-instructor ratios and increased diversity in academic preparedness of the entrants. An increased student-instructor ratio makes the interaction between teachers and students more difficult, with the resulting student ‘anonymity’ known to be a risk to academic success. With increasing student numbers, there is also an increasing diversity in the academic preparedness of the students at entry to university. Conceptual understanding of the entrants has been quantified via diagnostic testing, with the results for the first-year course in electrical engineering showing significant conceptual misunderstandings amongst the entry cohort. The solution is clearly multi-faceted, but part of the solution likely involves greater demands being placed on students to be masters of their own learning. In consequence, it is highly desirable that instructors help students to develop better self-regulated learning skills. A self-regulated learner is one who is capable of setting up their own learning goals, monitoring their study processes, adopting and adjusting learning strategies, and reflecting on their own study achievements. The methods by which instructors might cultivate students’ self-regulated learning abilities is receiving increasing attention from instructors and researchers. The aim of this study was to help students understand fully their self-regulated learning skill levels and provide targeted instructions to help them improve particular learning abilities in order to meet the curriculum requirements. As a survey tool, this research applied the questionnaire ‘Motivated Strategies for Learning Questionnaire’ (MSLQ) to collect first year engineering student’s self-reported data of their cognitive abilities, motivational orientations and learning strategies. MSLQ is a widely-used questionnaire for assessment of university student’s self-regulated learning skills. The questionnaire was offered online as a part of the online-scaffolding-learning tools to develop student understanding of self-regulated learning theories and learning strategies. The online tools, which have been under development since 2015, are designed to help first-year students understand their self-regulated learning skill levels by providing prompt feedback after they complete the questionnaire. In addition, the online tool also supplies corresponding learning strategies to students if they want to improve specific learning skills. A total of 866 first year engineering students who enrolled in the first-year electrical engineering course were invited to participate in this research project. By the end of the course 857 students responded and 738 of their questionnaires were considered as valid questionnaires. Analysis of these surveys showed that 66% of the students thought the online-scaffolding-learning tools helped significantly to improve their self-regulated learning abilities. It was particularly pleasing that 16.4% of the respondents thought the online-scaffolding-learning tools were extremely effective. A current thrust of our research is to investigate the relationships between students’ self-regulated learning abilities and their academic performance. Our results are being used by the course instructors as they revise the curriculum and pedagogy for this fundamental first-year engineering course, but the general principles we have identified are applicable to most first-year STEM courses.Keywords: academic preparedness, online-scaffolding-learning tool, self-regulated learning, STEM education
Procedia PDF Downloads 1109052 An Optimization of Machine Parameters for Modified Horizontal Boring Tool Using Taguchi Method
Authors: Thirasak Panyaphirawat, Pairoj Sapsmarnwong, Teeratas Pornyungyuen
Abstract:
This paper presents the findings of an experimental investigation of important machining parameters for the horizontal boring tool modified to mouth with a horizontal lathe machine to bore an overlength workpiece. In order to verify a usability of a modified tool, design of experiment based on Taguchi method is performed. The parameters investigated are spindle speed, feed rate, depth of cut and length of workpiece. Taguchi L9 orthogonal array is selected for four factors three level parameters in order to minimize surface roughness (Ra and Rz) of S45C steel tubes. Signal to noise ratio analysis and analysis of variance (ANOVA) is performed to study an effect of said parameters and to optimize the machine setting for best surface finish. The controlled factors with most effect are depth of cut, spindle speed, length of workpiece, and feed rate in order. The confirmation test is performed to test the optimal setting obtained from Taguchi method and the result is satisfactory.Keywords: design of experiment, Taguchi design, optimization, analysis of variance, machining parameters, horizontal boring tool
Procedia PDF Downloads 4399051 Information Technology Service Management System Measurement Using ISO20000-1 and ISO15504-8
Authors: Imam Asrowardi, Septafiansyah Dwi Putra, Eko Subyantoro
Abstract:
Process assessments can improve IT service management system (IT SMS) processes but the assessment method is not always transparent. This paper outlines a project to develop a solution- mediated process assessment tool to enable transparent and objective SMS process assessment. Using the international standards for SMS and process assessment, the tool is being developed following the International standard approach in collaboration and evaluate by expert judgment from committee members and ITSM practitioners.Keywords: SMS, tools evaluation, ITIL, ISO service
Procedia PDF Downloads 4809050 Taxonomy of Threats and Vulnerabilities in Smart Grid Networks
Authors: Faisal Al Yahmadi, Muhammad R. Ahmed
Abstract:
Electric power is a fundamental necessity in the 21st century. Consequently, any break in electric power is probably going to affect the general activity. To make the power supply smooth and efficient, a smart grid network is introduced which uses communication technology. In any communication network, security is essential. It has been observed from several recent incidents that adversary causes an interruption to the operation of networks. In order to resolve the issues, it is vital to understand the threats and vulnerabilities associated with the smart grid networks. In this paper, we have investigated the threats and vulnerabilities in Smart Grid Networks (SGN) and the few solutions in the literature. Proposed solutions showed developments in electricity theft countermeasures, Denial of services attacks (DoS) and malicious injection attacks detection model, as well as malicious nodes detection using watchdog like techniques and other solutions.Keywords: smart grid network, security, threats, vulnerabilities
Procedia PDF Downloads 1399049 Role of Special Training Centers (STC) in Right to Education Act Challenges And Remedies
Authors: Anshu Radha Aggarwal
Abstract:
As per the Right to Education Act (RTE), 2009, every child in the age group of 6-14 years shall be admitted in a neighborhood school. All the Out of School Children identified have to be enrolled / mainstreamed in to age appropriate class and there-after be provided special training. This paper addresses issues emerging from provisions in the RTE Act that specifically refer to the enrolment of out-of school children into age appropriate classes and the requirement to provide special trainings that will enable this to take place. In the context of RTE Act, the Out-of-School Children are first enrolled in the formal school and then they are provided with Special Training through NRSTCs (Long Term / Short term basis). These centers are functioning in formal school campus itself. This paper specifies the role of special training centers (STC). It presents a re-envisioning of assessment that recognizes two principal functions of assessment, assessment for learning and assessment of learning, instead of the more familiar categories of formative, diagnostic, summative, and evaluative assessment. The use of these two functions of assessment highlights and emphasizes the role of special training centers (STC) to assess their level for giving them appropriate special training and to evaluate their improvement in learning level. Challenge of problem faced by teachers to do diagnostic assessment, including its place in the sequence of assessment procedures appropriate in identifying and addressing individual children’s learning difficulties are solved by special training centers (STC). It is important that assessment is used to identify children with learning difficulties at the earliest possible stage so that appropriate support and intervention can be put in place. So appropriate challenges with tools are presented here for their assessment at entry level and at completion level of primary children by special training centers (STC).Keywords: right to education, assessment, challenges, out of school children
Procedia PDF Downloads 4619048 Clinical and Sleep Features in an Australian Population Diagnosed with Mild Cognitive Impairment
Authors: Sadie Khorramnia, Asha Bonney, Kate Galloway, Andrew Kyoong
Abstract:
Sleep plays a pivotal role in the registration and consolidation of memory. Multiple observational studies have demonstrated that self-reported sleep duration and sleep quality are associated with cognitive performance. Montreal Cognitive Assessment questionnaire is a screening tool to assess mild cognitive (MCI) impairment with a 90% diagnostic sensitivity. In our current study, we used MOCA to identify MCI in patients who underwent sleep study in our sleep department. We then looked at the clinical risk factors and sleep-related parameters in subjects found to have mild cognitive impairment but without a diagnosis of sleep-disordered breathing. Clinical risk factors, including physician, diagnosed hypertension, diabetes, and depression and sleep-related parameters, measured during sleep study, including percentage time of each sleep stage, total sleep time, awakenings, sleep efficiency, apnoea hypopnoea index, and oxygen saturation, were evaluated. A total of 90 subjects who underwent sleep study between March 2019 and October 2019 were included. Currently, there is no pharmacotherapy available for MCI; therefore, identifying the risk factors and attempting to reverse or mitigate their effect is pivotal in slowing down the rate of cognitive deterioration. Further characterization of sleep parameters in this group of patients could open up opportunities for potentially beneficial interventions.Keywords: apnoea hypopnea index, mild cognitive impairment, sleep architecture, sleep study
Procedia PDF Downloads 144