Search results for: leaves and stem extracts
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2339

Search results for: leaves and stem extracts

1199 Comparison Study of 70% Ethanol Effect on Direct and Retrival Culture of Contaminated Umblical Cord Tissue for Expansion of Mesenchymal Stem Cells

Authors: Ganeshkumar, Ashika, Valavan, Ramesh, Thangam, Chirayu

Abstract:

MSCs are found in much higher concentration in the Wharton’s jelly compared to the umbilical cord blood, which is a rich source of hematopoietic stem cells. Umbilical cord tissue is collected at the time of birth; it is processed and stored in liquid nitrogen for future therapeutical purpose. The source of contamination might be either from vaginal tract of mother or from hospital environment or from personal handling during cord tissue sample collection. If the sample were contaminated, decontamination procedure will be done with 70% ethanol (1 minute) in order to avoid sample rejection. Ethanol is effective against a wide range of bacteria, protozoa and fungi and has low toxicity to humans. Among the 1954 samples taken for the study, 24 samples were found to be contaminated with microorganism. The organisms isolated from the positive samples were found to be E. coli, Stenotrophomonas maltophilia, Pseudomonas aueroginosa, Enterococcus fecalis, Acinetobacter bowmani, Staphylococcus epidermidis, Enterobacter cloacae, and Proteus mirabilis. Among these organisms 70% ethanol successfully eliminated E. coli, Enterococcus fecalis, Acinetobacter bowmani, Staphylococcus epidermidis, and Proteus mirabilis. 70% ethanol was unsuccessful in eliminating Stenotrophomonas maltophilia, Pseudomonas aueroginosa, and Enterobacter cloacae. Stenotrophomonas maltophilia and Pseudomonas aueroginosa have the ability to form biofilm that make them resistant to alcohol. Biofilm act as protective layer for bacteria and which protects them from host defense and antibiotic wash. Finally it was found 70% ethanol wash saved 58.3% cord tissue samples from rejection and it is ineffective against 41% of the samples. The contamination rate can be reduced by maintaining proper aseptic techniques during sample collection and processing.

Keywords: umblical cord tissue, decontamination, 70% ethanol effectiveness, contamination

Procedia PDF Downloads 342
1198 Advanced Electron Microscopy Study of Fission Products in a TRISO Coated Particle Neutron Irradiated to 3.6 X 1021 N/cm² Fast Fluence at 1040 ⁰C

Authors: Haiming Wen, Isabella J. Van Rooyen

Abstract:

Tristructural isotropic (TRISO)-coated fuel particles are designed as nuclear fuel for high-temperature gas reactors. TRISO coating consists of layers of carbon buffer, inner pyrolytic carbon (IPyC), SiC, and outer pyrolytic carbon. The TRISO coating, especially the SiC layer, acts as a containment system for fission products produced in the kernel. However, release of certain metallic fission products across intact TRISO coatings has been observed for decades. Despite numerous studies, mechanisms by which fission products migrate across the coating layers remain poorly understood. In this study, scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) were used to examine the distribution, composition and structure of fission products in a TRISO coated particle neutron irradiated to 3.6 x 1021 n/cm² fast fluence at 1040 ⁰C. Precession electron diffraction was used to investigate characters of grain boundaries where specific fission product precipitates are located. The retention fraction of 110mAg in the investigated TRISO particle was estimated to be 0.19. A high density of nanoscale fission product precipitates was observed in the SiC layer close to the SiC-IPyC interface, most of which are rich in Pd, while Ag was not identified. Some Pd-rich precipitates contain U. Precipitates tend to have complex structure and composition. Although a precipitate appears to have uniform contrast in STEM, EDS indicated that there may be composition variations throughout the precipitate, and HRTEM suggested that the precipitate may have several parts different in crystal structure or orientation. Attempts were made to measure charge states of precipitates using EELS and study their possible effect on precipitate transport.

Keywords: TRISO particle, fission product, nuclear fuel, electron microscopy, neutron irradiation

Procedia PDF Downloads 260
1197 Safety of Mesenchymal Stem Cells Therapy: Potential Risk of Spontaneous Transformations

Authors: Katarzyna Drela, Miroslaw Wielgos, Mikolaj Wrobel, Barbara Lukomska

Abstract:

Mesenchymal stem cells (MSCs) have a great potential in regenerative medicine. Since the initial number of isolated MSCs is limited, in vitro propagation is often required to reach sufficient numbers of cells for therapeutic applications. During long-term culture MSCs may undergo genetic or epigenetic alterations that subsequently increase the probability of spontaneous malignant transformation. Thus, factors that influence genomic stability of MSCs following long-term expansions need to be clarified before cultured MSCs are employed for clinical application. The aim of our study was to investigate the potential for spontaneous transformation of human neonatal cord blood (HUCB-MSCs) and adult bone marrow (BM-MSCs) derived MSCs. Materials and Methods: HUCB-MSCs and BM-MSCs were isolated by standard Ficoll gradient centrifugations method. Isolated cells were initially plated in high density 106 cells per cm2. After 48 h medium were changed and non-adherent cells were removed. The malignant transformation of MSCs in vitro was evaluated by morphological changes, proliferation rate, ability to enter cell senescence, the telomerase expression and chromosomal abnormality. Proliferation of MSCs was analyzed with WST-1 reduction method and population doubling time (PDT) was calculated at different culture stages. Then the expression pattern of genes characteristic for mesenchymal or epithelial cells, as well as transcriptions factors were examined by RT-PCR. Concomitantly, immunocytochemical analysis of gene-related proteins was employed. Results: Our studies showed that MSCs from all bone marrow isolations ultimately entered senescence and did not undergo spontaneous malignant transformation. However, HUCB-MSCs from one of the 15 donors displayed an increased proliferation rate, failed to enter senescence, and exhibited an altered cell morphology. In this sample we observed two different cell phenotypes: one mesenchymal-like exhibited spindle shaped morphology and express specific mesenchymal surface markers (CD73, CD90, CD105, CD166) with low proliferation rate, and the second one with round, densely package epithelial-like cells with significantly increased proliferation rate. The PDT of epithelial-like populations was around 1day and 100% of cells were positive for proliferation marker Ki-67. Moreover, HUCB-MSCs showed a positive expression of human telomerase reverse transcriptase (hTERT), cMYC and exhibit increased number of CFU during the long-term culture in vitro. Furthermore, karyotype analysis revealed chromosomal abnormalities including duplications. Conclusions: Our studies demonstrate that HUCB-MSCs are susceptible to spontaneous malignant transformation during long-term culture. Spontaneous malignant transformation process following in vitro culture has enormous effect on the biosafety issues of future cell-based therapies and regenerative medicine regimens.

Keywords: mesenchymal stem cells, spontaneous, transformation, long-term culture

Procedia PDF Downloads 255
1196 A Study of the Effects of Temperatures and Optimum pH on the Specific Methane Production of Perennial Ryegrass during Anaerobic Digestion Process under a Discontinuous Daily Feeding Condition

Authors: Uchenna Egwu, Paul Jonathan Sallis

Abstract:

Perennial ryegrass is an abundant renewable lignocellulosic biofuel feedstock for biomethane production through anaerobic digestion (AD). In this study, six anaerobic continuously stirred tank reactors (CSTRs) were set up in three pairs. Each pair of the CSTRs was then used to study the effects of operating temperatures – psychrophilic, mesophilic, and thermophilic, and optimum pH on the specific methane production (SMP) of the ryegrass during AD under discontinuous daily feeding conditions. The reactors were fed at an organic loading rate (OLR) ranging from 1-1.5 kgVS.L⁻¹d⁻¹ and hydraulic residence time, HRT=20 days for 140 days. The pH of the digesters was maintained at the range of 6.8-7.2 using 1 M NH₄HCO₃ solution, but this was replaced with biomass ash-extracts from day 105-140. The results obtained showed that the mean SMP of ryegrass measured between HRT 3 and 4 were 318.4, 425.4 and 335 N L CH₄ kg⁻¹VS.d⁻¹ for the psychrophilic (25 ± 2°C), mesophilic (40 ± 1°C) and thermophilic (60 ± 1°C) temperatures respectively. It was also observed that the buffering ability of the reactors increased with operating temperature, probably due to an increase in the solubility of ammonium bicarbonate (NH₄HCO₃) with temperature. The reactors also achieved a mean VS destruction of 61.9, 68.5 and 63.5%, respectively, which signifies that the mesophilic reactors achieved the highest specific methane production (SMP), while the psychrophilic reactors achieved the lowest. None of the reactors attained steady-state condition due to the discontinuous daily feeding times, and therefore, such feeding practice may not be the most effective for maximum biogas production over long periods of time. The addition of NH₄HCO₃ as supplement provided a good buffering condition in these AD digesters, but the digesters failed in the long run due to inhibition from the accumulation of free ammonia, which later led to decrease in pH, acidification, and souring of the digesters. However, the addition of biomass ash extracts was shown to potentially revive failed AD reactors by providing an adequate buffering and essential trace nutrient supplements necessary for optimal bacterial growth.

Keywords: anaerobic digestion, discontinuous feeding, perennial ryegrass, specific methane production, supplements, temperature

Procedia PDF Downloads 122
1195 Plasma Treatment in Conjunction with EGM-2 Medium Can Enhance Endothelial and Osteogenic Marker Expressions of Bone Marrow MSCs

Authors: Chih-Hsin Lin, Shyh-Yuan Lee, Yuan-Min Lin

Abstract:

For many tissue engineering applications, an important goal is to create functional tissues in-vitro, and such tissues to be viable, they have to be vascularized. Endothelial cells (EC) and endothelial progenitor cells (EPC) are promising candidates for vascularization. However, both of them have limited expansion capacity and autologous cells currently do not exist for either ECs or EPCs. Therefore, we use bone marrow mesenchymal stem cells (MSC) as a source material for ECs. Growth supplements are commonly used to induce MSC differentiation, and further improvements in differentiation conditions can be made by modifying the cell's growth environment. An example is pre-treatment of the growth dish with gas plasma, in order to modify the surface functional groups of the material that the cells are seeded on. In this work, we compare the effects of different gas plasmas on the growth and differentiation of MSCs. We treat the dish with different plasmas (CO2, N2, and O2) and then induce MSC differentiation with endothelial growth medium-2 (EGM-2). We find that EGM-2 by itself upregulates EC marker CD31 mRNA expression, but not VEGFR2, CD34, or vWF. However, these additional EC marker expressions were increased for cells seeded on plasma treated substrates. Specifically, for EC markers, we found that N2 plasma treatment upregulated CD31 and VEGFR-2 mRNA expressions; CO2 plasma treatment upregulated CD34 and vWF mRNA expressions. The osteogenic markers ALP and osteopontin mRNA expressions were markedly enhanced on all plasma-treated dishes. We also found that plasma treatment in conjunction with EGM-2 growth medium can enhance MSCs differentiation into endothelial-like cells and osteogenic-like cells. Our work shows that the effect of the growth medium (EGM-2) on MSCs differentiation is influenced by the plasma modified surface chemistry of the substrate. In conclusion, plasma surface modification can enhance EGM-2 effectiveness and induced both endothelial and osteogenic differentiation. Our findings provide a method to enhance EGM-2 based cell differentiation, with consequences for tissue engineering and stem cell biology applications.

Keywords: endothelial differentiation, EGM-2, osteogenesis, plasma treatment, surface modification

Procedia PDF Downloads 328
1194 Stability of Total Phenolic Concentration and Antioxidant Capacity of Extracts from Pomegranate Co-Products Subjected to In vitro Digestion

Authors: Olaniyi Fawole, Umezuruike Opara

Abstract:

Co-products obtained from pomegranate juice processing contain high levels of polyphenols with potential high added values. From value-addition viewpoint, the aim of this study was to evaluate the stability of polyphenolic concentrations in pomegranate fruit co-products in different solvent extracts and assess the effect on the total antioxidant capacity using the FRAP, DPPH˙ and ABTS˙+ assays during simulated in vitro digestion. Pomegranate juice, marc and peel were extracted in water, 50% ethanol (50%EtOH) and absolute ethanol (100%EtOH) and analysed for total phenolic concentration (TPC), total flavonoids concentration (TFC) and total antioxidant capacity in DPPH˙, ABST˙+ and FRAP assays before and after in vitro digestion. Total phenolic concentration (TPC) and total flavonoid concentration (TFC) were in the order of peel > marc > juice throughout the in vitro digestion irrespective of the extraction solvents used. However, 50% ethanol extracted 1.1 to 12-fold more polyphenols than water and ethanol solvents depending on co-products. TPC and TFC increased significantly in gastric digests. In contrast, after the duodenal, polyphenolic concentrations decreased significantly (p < 0.05) compared to those obtained in gastric digests. Undigested samples and gastric digests showed strong and positive relationships between polyphenols and the antioxidant activities measured in DPPH, ABTS and FRAP assays, with correlation coefficients (r2) ranging between 0.930 – 0.990 whereas, the correlation between polyphenols (TPC and TFC) and radical cation scavenging activity (in ABTS) were moderately positive in duodenal digests. Findings from this study also showed that the concentration of pomegranate polyphenols and antioxidant thereof during in vitro gastro-intestinal digestion may not reflect the pre-digested phenolic concentration. Thus, this study highlights the need to provide biologically relevant information on antioxidants by providing data reflecting their stability and activity after in vitro digestion.

Keywords: by-product, DPPH, polyphenols, value addition

Procedia PDF Downloads 322
1193 Phenolic Composition and Contribution of Individual Compounds to Antioxidant Activity of Malus domestica Borkh Fruit Cultivars

Authors: Raudone Lina, Raudonis Raimondas, Liaudanskas Mindaugas, Pukalskas Audrius, Viskelis Pranas, Janulis Valdimaras

Abstract:

Human health fortification, its protection and disease prophylaxis are the main problems of the health care systems. Plant origin materials and their preparations are applied for the prevention of the common diseases. Oxidative stress takes part in the pathogenesis of many autoimmune, neurodegenerative, tumor and ageing processes. The antioxidants are able to protect the human body from the free radicals and to stop the progression of numerous chronic diseases. The research of plant origin materials is relevant for the search of natural antioxidants. A group of compounds that gained scientific attention due to antioxidant properties and effects on human health are phenolic compounds. Phenolic compounds are widely abundant in various parts of plants, i.e. leaves, stems, roots, flowers and fruits. Most commonly consumed fruits all over the world are apples. It is very important to analyze the antioxidant activity of apples as they are extensively used in the prevention of various diseases. The aim of this study was to determine the antioxidant profiles of Malus domestica Borkh fruit cultivars (Aldas, Auksis, Connel Red, Ligol, Lodel, Rajka) and to identify the phenolic compounds with potent contribution to antioxidant activity. Nineteen constituents were identified in apple cultivars using ultra high performance liquid chromatography coupled to quadruple and time-of-flight mass spectrometers (UPLC–QTOF–MS). Phytochemical profile was constituted of phenolic acids, procyanidins, quercetin derivatives and dihydrochalcones. Reducing and radical scavenging activities of individual constituents were determined using high performance liquid chromatography (HPLC) coupled to post-column FRAP and ABTS assay, respectively. Significant differences of total radical scavenging and reducing activity (expressed as trolox equivalents, TE µmol/g) were determined between the investigated cultivars. Chlorogenic acid and complex of procyanidins were the main contributors to antioxidant activity determining up to 35 % and 55 % of total TE values, respectively. Determined phenolic composition and antioxidant activity significantly depend on apple cultivars. It is important to determine the individual compounds that are significant for antioxidant activity and that could be investigated in vivo systems. The identification of the antioxidants provides information for the further research of standardized extracts that could be used for pharmaceutical preparations with specific phenolic traits.

Keywords: FRAP, ABTS, antioxidant, phenolic, apples, chlorogenic acid

Procedia PDF Downloads 399
1192 Fermented Fruit and Vegetable Discard as a Source of Feeding Ingredients and Functional Additives

Authors: Jone Ibarruri, Mikel Manso, Marta Cebrián

Abstract:

A high amount of food is lost or discarded in the World every year. In addition, in the last decades, an increasing demand of new alternative and sustainable sources of proteins and other valuable compounds is being observed in the food and feeding sectors and, therefore, the use of food by-products as nutrients for these purposes sounds very interesting from the environmental and economical point of view. However, the direct use of discarded fruit and vegetables that present, in general, a low protein content is not interesting as feeding ingredient except if they are used as a source of fiber for ruminants. Especially in the case of aquaculture, several alternatives to the use of fish meal and other vegetable protein sources have been extensively explored due to the scarcity of fish stocks and the unsustainability of fishing for these purposes. Fish mortality is also of great concern in this sector as this problem highly reduces their economic feasibility. So, the development of new functional and natural ingredients that could reduce the need for vaccination is also of great interest. In this work, several fermentation tests were developed at lab scale using a selected mixture of fruit and vegetable discards from a wholesale market located in the Basque Country to increase their protein content and also to produce some bioactive extracts that could be used as additives in aquaculture. Fruit and vegetable mixtures (60/40 ww) were centrifugated for humidity reduction and crushed to 2-5 mm particle size. Samples were inoculated with a selected Rhizopus oryzae strain and fermented for 7 days in controlled conditions (humidity between 65 and 75% and 28ºC) in Petri plates (120 mm) by triplicate. Obtained results indicated that the final fermented product presented a twofold protein content (from 13 to 28% d.w). Fermented product was further processed to determine their possible functionality as a feed additive. Extraction tests were carried out to obtain an ethanolic extract (60:40 ethanol: water, v.v) and remaining biomass that also could present applications in food or feed sectors. The extract presented a polyphenol content of about 27 mg GAE/gr d.w with antioxidant activity of 8.4 mg TEAC/g d.w. Remining biomass is mainly composed of fiber (51%), protein (24%) and fat (10%). Extracts also presented antibacterial activity according to the results obtained in Agar Diffusion and to the Minimum Inhibitory Concentration (MIC) tests determined against several food and fish pathogen strains. In vitro, digestibility was also assessed to obtain preliminary information about the expected effect of extraction procedure on fermented product digestibility. First results indicated that remaining biomass after extraction doesn´t seem to improve digestibility in comparison to the initial fermented product. These preliminary results show that fermented fruit and vegetables can be a useful source of functional ingredients for aquaculture applications and a substitute of other protein sources in the feeding sector. Further validation will be also carried out through “in vivo” tests with trout and bass.

Keywords: fungal solid state fermentation, protein increase, functional extracts, feed ingredients

Procedia PDF Downloads 61
1191 Characterisation, Extraction of Secondary Metabolite from Perilla frutescens for Therapeutic Additives: A Phytogenic Approach

Authors: B. M. Vishal, Monamie Basu, Gopinath M., Rose Havilah Pulla

Abstract:

Though there are several methods of synthesizing silver nano particles, Green synthesis always has its own dignity. Ranging from the cost-effectiveness to the ease of synthesis, the process is simplified in the best possible way and is one of the most explored topics. This study of extracting secondary metabolites from Perilla frutescens and using them for therapeutic additives has its own significance. Unlike the other researches that have been done so far, this study aims to synthesize Silver nano particles from Perilla frutescens using three available forms of the plant: leaves, seed, and commercial leaf extract powder. Perilla frutescens, commonly known as 'Beefsteak Plant', is a perennial plant and belongs to the mint family. The plant has two varieties classed within itself. They are frutescens crispa and frutescens frutescens. The species, frutescens crispa (commonly known as 'Shisho' in Japanese), is generally used for edible purposes. Its leaves occur in two forms, varying on the colors. It is found in two different colors of red with purple streaks and green with crinkly pattern on it. This species is aromatic due to the presence of two major compounds: polyphenols and perillaldehyde. The red (purple streak) variety of this plant is due to the presence of a pigment, Perilla anthocyanin. The species, frutescens frutescens (commonly known as 'Egoma' in Japanese), is the main source for perilla oil. This species is also aromatic, but in this case, the major compound which gives the aroma is Perilla ketone or egoma ketone. Shisho grows short as compared with Wild Sesame and both produce seeds. The seeds of Wild Sesame are large and soft whereas that of Shisho is small and hard. The seeds have a large proportion of lipids, ranging about 38-45 percent. Excluding those, the seeds have a large quantity of Omega-3 fatty acids, linoleic acid, and an Omega-6 fatty acid. Other than these, Perilla leaf extract has gold and silver nano particles in it. The yield comparison in all the cases have been done, and the process’ optimal conditions were modified, keeping in mind the efficiencies. The characterization of secondary metabolites includes GC-MS and FTIR which can be used to identify the components of purpose that actually helps in synthesizing silver nano particles. The analysis of silver was done through a series of characterization tests that include XRD, UV-Vis, EDAX, and SEM. After the synthesis, for being used as therapeutic additives, the toxin analysis was done, and the results were tabulated. The synthesis of silver nano particles was done in a series of multiple cycles of extraction from leaves, seeds and commercially purchased leaf extract. The yield and efficiency comparison were done to bring out the best and the cheapest possible way of synthesizing silver nano particles using Perilla frutescens. The synthesized nano particles can be used in therapeutic drugs, which has a wide range of application from burn treatment to cancer treatment. This will, in turn, replace the traditional processes of synthesizing nano particles, as this method will prove effective in terms of cost and the environmental implications.

Keywords: nanoparticles, green synthesis, Perilla frutescens, characterisation, toxin analysis

Procedia PDF Downloads 227
1190 EDTA Assisted Phytoremediation of Cadmium by Enhancing Growth and Antioxidant Defense System in Brassica napus L.

Authors: Mujahid Farid, Shafaqat Ali, Muhammad Bilal Shakoor

Abstract:

Heavy metals pollution of soil is a prevalent global problem and oilseed rape (Brassica napus L.) are considered useful for the restoration of metal contaminated soils. Phytoextraction is an in-situ environment-friendly technique for the clean-up of contaminated soils. Response to cadmium (Cd) toxicity in combination with a chelator, Ethylenediamminetetraacetic acid (EDTA) was studied in oilseed rape grown hydroponically in greenhouse conditions under three levels of Cd (0, 10, and 50 µM) and two levels of EDTA (0 and 2.5 mM). Cd decreased plant growth, biomass and chlorophyll concentrations while the application of EDTA enhanced plant growth by reducing Cd-induced effects in Cd-stressed plants. Significant decrease in photosynthetic parameters was found by the Cd alone. Addition of EDTA improved the net photosynthetic and gas exchange capacity of plants under Cd stress. Cd at 10 and 50 μM significantly increased electrolyte leakage, the production of hydrogen peroxidase (H2O2) and malondialdehyde (MDA) and a significant reduction was observed in the activities of catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and superoxide dismutase under Cd stress plants. Application of EDTA at the rate of 2.5 mM alone and with combination of Cd increased the antioxidant enzymes activities and reduced the electrolyte leakage and production of H2O2 and MDA. Oilseed rape (Brassica napus L.) actively accumulated Cd in roots, stems and leaves and the addition of EDTA boosted the uptake and accumulation of Cd in oil seed rape by dissociating Cd in culture media. The present results suggest that under 8 weeks Cd-induced stress, application of EDTA significantly improve plant growth, chlorophyll content, photosynthetic, gas exchange capacity, improving enzymes activities and increased the metal uptake in roots, stems and leaves of oilseed rape (Brassica napus L.) respectively.

Keywords: antioxidant enzymes, cadmium, chelator, EDTA, growth, oilseed rape

Procedia PDF Downloads 388
1189 Identification of Bioactive Metabolites from Ficus carica and Their Neuroprotective Effects of Alzheimer's Disease

Authors: Hanan Khojah, RuAngelie Edrada-Ebel

Abstract:

Neurodegenerative disease including Alzheimer’s disease is a major cause of long-term disability. Oxidative stress is frequently implicated as one of the key contributing factors to neurodegenerative diseases. Protection against neuronal damage remains a great challenge for researchers. Ficus carica (commonly known as fig) is a species of great antioxidant nutritional value comprising a protective mechanism against innumerable health disorders related to oxidative stress as well as Alzheimer’s disease. The purpose of this work was to characterize the non-polar active metabolites in Ficus carica endocarp, mesocarp, and exocarp. Crude extracts were prepared using several extraction solvents, which included 1:1 water: ethylacetate, acetone and methanol. The dried extracts were then solvent partitioned between equivalent amounts of water and ethylacetate. Purification and fractionation were accomplished by high-throughput chromatography. The isolated metabolites were tested on their effect on human neuroblastoma cell line by cell viability test and cell cytotoxicity assay with acrolein. Molecular weights of the active metabolites were determined via LC–HRESIMS and GC-EIMS. Metabolomic profiling was performed to identify the active metabolites by using differential expression analysis software (Mzmine) and SIMCA for multivariate analysis. Structural elucidation and identification of the interested active metabolites were studied by 1-D and 2-D NMR. Significant differences in bioactivity against a concentration-dependent assay on acrolein radicals were observed between the three fruit parts. However, metabolites obtained from mesocarp and the endocarp demonstrated bioactivity to scavenge ROS radical. NMR profiling demonstrated that aliphatic compounds such as γ-sitosterol tend to induce neuronal bioactivity and exhibited bioactivity on the cell viability assay. γ-Sitosterol was found in higher concentrations in the mesocarp and was considered as one of the major phytosterol in Ficus carica.

Keywords: alzheimer, Ficus carica, γ-Sitosterol, metabolomics

Procedia PDF Downloads 341
1188 “Self” and “The Other” in Dunkirk (2017)

Authors: Ebtesam Dessouki, Yasaman Mousavi

Abstract:

Christopher Nolan’s Dunkirk (2017) is not a conventional war film. He invites the audience to see the war from within, from the characters’ experiences, through suspense and fear, with the help of talented sound designers and musicians such as Hans Zimmer for an extra dimension creating those feelings. This experience of being among the surviving soldiers makes room for an interpretation of this film using the concept of the Self and the Other. The Self is the soldiers and the audience who try to make sense of their reality given limited information about the enemy and their situation, and the Other is the faceless enemy. However, this film can be taken under an even more detailed analysis theorizing that the Other also exists on different occasions in the film. Overall, Nolan leaves a lot of cues for the audience to track the Other and sometimes breaks the rules for the Other.

Keywords: film, Dunkirk, other, self

Procedia PDF Downloads 65
1187 Rapid Proliferation of Tissue Culture Using of Olive (Olea Europea L.) cv.Zard

Authors: Majid Gharaipour Abbasabad

Abstract:

This research is studying the effects that various densities of Zeatin, and BA hormones may have on the scale of transformation of plant nodes to new shoots, among seedlings produced by seed germination, and also surveys the amount of produced shoots and their lengths, inside the specific Olive seed lab medium (OM). It is also concerned with the effects that various densities of IBA hormone, and inoculating the shoots with Agrobacterium Rhizogenez A4 can have on shoots' root production. This is a totally random research, and each attendance group has had three occurrences, and ten samples per a hectare. The average amounts have been compared using Duncan's test method, which was done in 5% level. The results indicated that the highest rate of transformation of micro samples to shoots happened in the seed germination environments, containing Zetain with 5 mg, and also 15 mg per a liter densities. (respectively, 95% and 94%), while the highest rate of plants' stem production ,in micro samples, happened in the lab medium environments with 5mg per a liter Zetain density (4.5). In lab medium environments with 15 mg Zetain per liter, a decrease was observed in the number of produced stems (3.88). According to the produced stems' lenght, the longest stem length was observed in environments with 5 mg and also 15 mg per a liter Zetain, and 25 mg per a liter BA densities (respectively, 8.45 cm, 45.66 cm, 8.53 cm). Meanwhile, the lowest amount of transformation of micro samples to shoots, the lowest number of produced shoots, and the shortest shoots were observed in the environments without any hormones (respectively, 3.32 cm, 1.13, 19.66%). The results of root production in Olive indicated that attendance groups which were exposed to different hormones did not vary, and Agrobacterium Rhizogenez A4 had no effect on them, as well. The lowest root's growth rate (22%) happened in environments without any hormones and also, in environment with Agrobacterium Rhizogenez A4 (19.66%). The largest number of roots was observed in the environments, containing Agrobacterium Rhizogenez A4 plus IBA (10 mg/l) and Agrobacterium Rhizogenez A4 plus IBA (10 mg/l), (respectively, 8.46 and 8.70), which had a significant difference with environments merely containing 10 mg and 20 mg of IBA per a litre (respectively, 3.06 and 3.2). So it can be concluded that even though Agrobacterium Rhizogenez A4 had no impact on root's growth among shoots, it had an impact on the number of produced roots. It should be noted that even when the environment contained merely Agrobacterium Rhizogenez A4 without any hormones, only (1.16) roots were produced, which is significantly different from the attendance group with hormones (1.06).

Keywords: olive-effect of hormones-germination of seed, densities of zeatin, BA hormones, agriculture

Procedia PDF Downloads 284
1186 The Evaluation of the Effect of a Weed-Killer Sulfonylurea on Durum Wheat (Triticum durum Desf)

Authors: Meksem Amara Leila, Ferfar Meriem, Meksem Nabila, Djebar Mohammed Reda

Abstract:

The wheat is the cereal the most consumed in the world. In Algeria, the production of this cereal covers only 20 in 25 % of the needs for the country, the rest being imported. To improve the efficiency and the productivity of the durum wheat, the farmers turn to the use of pesticides: weed-killers, fungicides and insecticides. However this use often entrains losses of products more at least important contaminating the environment and all the food chain. Weed-killers are substances developed to control or destroy plants considered unwanted. That they are natural or produced by the human being (molecule of synthesis), the absorption and the metabolization of weed-killers by plants cause the death of these plants.In this work, we set as goal the evaluation of the effect of a weed-killer sulfonylurea, the CossackOD with various concentrations (0, 2, 4 and 9 µg) on variety of Triticum durum: Cirta. We evaluated the plant growth by measuring the leaves and root length, compared with the witness as well as the content of proline and analyze the level of one of the antioxydative enzymes: catalse, after 14 days of treatment. Sulfonylurea is foliar and root weed-killers inhibiting the acetolactate synthase: a vegetable enzyme essential to the development of the plant. This inhibition causes the ruling of the growth then the death. The obtained results show a diminution of the average length of leaves and roots this can be explained by the fact that the ALS inhibitors are more active in the young and increasing regions of the plant, what inhibits the cellular division and talks a limitation of the foliar and root’s growth. We also recorded a highly significant increase in the proline levels and a stimulation of the catalase activity. As a response to increasing the herbicide concentrations a particular increases in antioxidative mechanisms in wheat cultivar Cirta suggest that the high sensitivity of Cirta to this sulfonylurea herbicide is related to the enhanced production and oxidative damage of reactive oxygen species.

Keywords: sulfonylurea, Triticum durum, oxydative stress, Toxicity

Procedia PDF Downloads 420
1185 Quality Assessment of the Essential Oil from Eucalyptus globulus Labill of Blida (Algeria) Origin

Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat

Abstract:

Eucalyptus essential oil is extracted from Eucalyptus globulus of the Myrtaceae family and is also known as Tasmanian blue gum or blue gum. Despite the reputation earned by aromatic and medicinal plants of Algeria. The objectives of this study were: (i) the extraction of the essential oil from the leaves of Eucalyptus globulus Labill., Myrtaceae grown in Algeria, and the quantification of the yield thereof, (ii) the identification and quantification of the compounds in the essential oil obtained, and (iii) the determination of physical and chemical properties of EGEO. The chemical constituents of Eucalyptus globulus essential oil (EGEO) of Blida origin has not previously been investigated. Thus, the present study has been conducted for the determination of chemical constituents and different physico-chemical properties of the EGEO. Chemical composition of the EGEO, grown in Algeria, was analysed by Gas Chromatography-Mass Spectrometry. The chemical components were identified on the basis of Retention Time and comparing with mass spectral database of standard compounds. Relative amounts of detected compounds were calculated on the basis of GC peak areas. Fresh leaves of E. globulus on steam distillation yielded 0.96% (v/w) of essential oil whereas the analysis resulted in the identification of a total of 11 constituents, 1.8 cineole (85.8%), α-pinene (7.2%), and β-myrcene (1.5%) being the main components. Other notable compounds identified in the oil were β-pinene, limonene, α-phellandrene, γ-terpinene, linalool, pinocarveol, terpinen-4-ol, and α-terpineol. The physical properties such as specific gravity, refractive index and optical rotation and the chemical properties such as saponification value, acid number and iodine number of the EGEO were examined. The oil extracted has been analyzed to have 1.4602-1.4623 refractive index value, 0.918-0.919 specific gravity (sp.gr.), +9 - +10 optical rotation that satisfy the standards stipulated by European Pharmacopeia. All the physical and chemical parameters were in the range indicated by the ISO standards. Our findings will help to access the quality of the Eucalyptus oil which is important in the production of high value essential oils that will help to improve the economic condition of the community as well as the nation.

Keywords: chemical composition, essential oil, eucalyptol, gas chromatography

Procedia PDF Downloads 321
1184 Animations for Teaching Food Chemistry: A Design Approach for Linking Chemistry Theory to Everyday Food

Authors: Paulomi (Polly) Burey, Zoe Lynch

Abstract:

In STEM education, students often have difficulty linking static images and words from textbooks or online resources, to the underlying mechanisms of the topic of study. This can often dissuade some students from pursuing study in the physical and chemical sciences. A growing movement in current day students demonstrates that the YouTube generation feel they learn best from video or dynamic, interactive learning tools, and will seek these out as alternatives to their textbooks and the classroom learning environment. Chemistry, and in particular visualization of molecular structures in everyday materials, can prove difficult to comprehend without significant interaction with the teacher of the content and concepts, beyond the timeframe of a typical class. This can cause a learning hurdle for distance education students, and so it is necessary to provide strong electronic tools and resources to aid their learning. As one of the electronic resources, an animation design approach to link everyday materials to their underlying chemistry would be beneficial for student learning, with the focus here being on food. These animations were designed and storyboarded with a scaling approach and commence with a focus on the food material itself and its component parts. This is followed by animated transitions to its underlying microstructure and identifying features, and finally showing the molecules responsible for these microstructural features. The animation ends with a reverse transition back through the molecular structure, microstructure, all the way back to the original food material, and also animates some reactions that may occur during food processing to demonstrate the purpose of the underlying chemistry and how it affects the food we eat. Using this cyclical approach of linking students’ existing knowledge of food to help guide them to understanding more complex knowledge, and then reinforcing their learning by linking back to their prior knowledge again, enhances student understanding. Food is also an ideal material system for students to interact with, in a hands-on manner to further reinforce their learning. These animations were launched this year in a 2nd year University Food Chemistry course with improved learning outcomes for the cohort.

Keywords: chemistry, food science, future pedagogy, STEM Education

Procedia PDF Downloads 150
1183 Legislator’s Liability – Sovereign Immunity and Rule of Law

Authors: Isabel Mousinho de Figueiredo

Abstract:

Traditionally it was held that the king can do no wrong. History has proved otherwise, and both the rule of law and the open society call for a diversification of checks and balances, including civil liability in tort. Most jurisdictions are right to fear the excessive cost of such liability for the innocent taxpayer. There are notwithstanding extreme instances where refusing compensation is perceived to be outrageous. Many public bodies end up handing out on a voluntary basis, which leaves room to question its legality and merit. Instead, some criteria can shed light on the fairness of an underlying rationale of such compensation and cordon it off within reasonable limits.

Keywords: comparative law, liability of legislators, public bodies, tort law

Procedia PDF Downloads 93
1182 Non Chemical-Based Natural Products in the Treatment and Control of Disease in Fish

Authors: Albert P. Ekanem, Austin I. Obiekezie, Elizabeth X. Ntia

Abstract:

Introduction: Some African plants and bile from animals have shown efficacies in the treatment and control of diseases in farmed fish. The background of the study is based on the fact the African rain forest is blessed with the abundance of medicinal plants that should be investigated for their use in the treatment of diseases. The significance of the study is informed by the fact that chemical-based substances accumulate in the tissues of food fish, thereby reducing the food values of such products and moreover, the continuous use of chemotherapeutics in the aquatic environments tends to degrade the affected environment. Methodology: Plants and animal products were extracted, purified and applied under in vitro and in vivo conditions to the affected organisms. Effective plants and bills were analyzed for biologically active substances responsible for the activities by both qualitative and HPLC methods. Results: Extracts of Carica papaya and Mucuna pruriens were effective in the treatment of Ichthyophthiriasis in goldfish (Carassius auratus auratus) with high host tolerance. Similarly, ectoparasitic monogeneans were effectively dislodged from the gills and skin of goldfish by the application of extracts of Piper guineense at therapeutic concentrations. Artemesia annua with known antimalarial activities in human was also effective against fish monogenean parasites of Clarias gariepinus in a concentration-related manner without detriments to the host. Effective antibacterial activities against Aeromonas and Pseudomonas diseases of the African catfish (Heterobranchus longifilis) were demonstrated in some plants such as Phylanthus amarus, Allium sativum, A. annua, and Citrus lemon. Bile from some animals (fish, goat, chicken, cow, and pig) showed great antibacterial activities against some gastrointestinal bacterial pathogens of fish. Conclusions: African plants and some animal bile have shown potential promise in the treatment of diseases in fish and other aquatic animals. The use of chemical-based substances for control of diseases in the aquatic environments should be restricted.

Keywords: control, diseases, fish, treatment

Procedia PDF Downloads 447
1181 Collagen Gel in Hip Cartilage Repair: in vivo Preliminary Study

Authors: A. Bajek, J. Skopinska-Wisniewska, A. Rynkiewicz, A. Jundzill, M. Bodnar, A. Marszalek, T. Drewa

Abstract:

Traumatic injury and age-related degenerative diseases associated with cartilage are major health problems worldwide. The articular cartilage is comprised of a relatively small number of cells, which have a relatively slow rate of turnover. Therefore, damaged articular cartilage has a limited capacity for self-repair. New clinical methods have been designed to achieve better repair of injured cartilage. However, there is no treatment that enables full restoration of it. The aim of this study was to evaluate how collagen gel with bone marrow mesenchymal stem cells (MSCs) and collagen gel alone will influence on the hip cartilage repair after injury. Collagen type I was isolated from rats’ tails and cross-linked with N-hydroxysuccinimide in 24-hour process. MSCs were isolated from rats’ bone marrow. The experiments were conducted according to the guidelines for animal experiments of Ethics Committee. Fifteen 8-week-old Wistar rats were used in this study. All animals received hip joint surgery with a total of 30 created cartilage defects. Then, animals were randomly divided into three groups and filled, respectively, with collagen gel (group 1), collagen gel cultured with MSCs (group II) or left untreated as a control (control group). Immunohistochemy and radiological evaluation was carried out 11 weeks post implantation. It has been proved that the surface of the matrix is non-toxic, and its porosity promotes cell adhesion and growth. However, the in vivo regeneration process was poor. We observed the low integration rate of biomaterial. Immunohistochemical evaluation of cartilage after 11 weeks of treatment showed low II and high X collagen expression in two tested groups in comparison to the control one, in which we observed the high II collagen expression. What is more, after radiological analysis, we observed the best regeneration process in control group. The biomaterial construct and mesenchymal stem cells, as well as the use of the biomaterial itself was not sufficient to regenerate the hip cartilage surfaces. These results suggest that the collagen gel based biomaterials, even with MSCs, are not satisfactory in repar of hip cartilage defect. However, additional evaluation is needed to confirm these results.

Keywords: collafen gel, MSCs, cartilage repair, hip cartilage

Procedia PDF Downloads 450
1180 Sustainable Agriculture Practices Using Bacterial-mediated Alleviation of Salinity Stress in Crop Plants

Authors: Mohamed Trigui, Fatma Masmoudi, Imen Zouari

Abstract:

Massive utilizations of chemical fertilizer and chemical pesticides in agriculture sector to improve the farming productivity have created increasing environmental damages. Then, agriculture must become sustainable, focusing on production systems that respect the environment and help to reduce climate change. Isolation and microbial identification of new bacterial strains from naturally saline habitats and compost extracts could be a prominent way in pest management and crop production under saline conditions. In this study, potential mechanisms involved in plant growth promotion and suppressive activity against fungal diseases of a compost extract produced from poultry manure/olive husk compost and halotolerant and halophilic bacterial strains under saline stress were investigated. On the basis of the antimicrobial tests, different strains isolated from Sfax solar saltern (Tunisia) and from compost extracts were selected and tested for their plant growth promoting traits, such as siderophores production, nitrogen fixation, phosphate solubilization and the production of extracellular hydrolytic enzymes (protease and lipase) under in-vitro conditions. Among 450 isolated bacterial strains, 16 isolates showed potent antifungal activity against the tested plant pathogenic fungi. Their identification based on 16S rRNA gene sequence revealed they belonged to different species. Some of these strains were also characterized for their plant growth promoting capacities. Obtained results showed the ability of four strains belonging to Bacillus genesis to ameliorate germination rate and root elongation compared to the untreated positive controls. Combinatorial capacity of halotolerant bacteria with antimicrobial activity and plant growth promoting traits could be promising sources of interesting bioactive substances under saline stress.

Keywords: abiotic stress, biofertilizer, biotic stress, compost extract, halobacteria, plant growth promoting (PGP), soil fertility

Procedia PDF Downloads 85
1179 Non Chemical-Based Natural Products in the Treatment and Control of Fish Diseases

Authors: Albert P. Ekanem, Austin I. Obiekezie, Elizabeth X. Ntia

Abstract:

Introduction: Some African plants and bile from animals have shown efficacies in the treatment and control of diseases in farmed fish. The background of the study is based on the fact the African rain forest is blessed with abundance of medicinal plants that should be investigated for their use in the treatment of diseases. The significance of the study is informed by the fact that chemical-based substances accumulates in the tissues of food fish, thereby reducing the food values of such products and moreover, the continuous use of chemotherapeutants in the aquatic environments tends to degrades the affected environment. Methodology: Plants and animal products were extracted, purified and applied under in vitro and in vivo conditions to the affected organisms. Effective plants and biles were analyzed for active biological substances responsible for the activities by both qualitative and HPLC methods. Results: Extracts of Carica papaya and Mucuna pruriens were effective in the treatment of Ichthyophthiriasis in goldfish (Carassius auratus auratus) with high host tolerance. Similarly, ectoparasitic monogeneans were effectively dislodged from the gills and skin of goldfish by the application of extracts of Piper guineense at therapeutic concentrations. Artemesia annua with known antimalarial activities in human was also effective against fish monogenean parasites of Clarias gariepinus in a concentration related manner without detriments to the host. Effective antibacterial activities against Aeromonas and Pseudomonas diseases of the African catfish (Heterobranchus longifilis) were demonstrated in some plants such as Phylanthus amarus, Allium sativum, A. annua, and Citrus lemon. Bile from some animals (fish, goat, chicken, cow, and pig) showed great antibacterial activities against some gastrointestinal bacterial pathogens of fish. Conclusions: African plants and some animal bile have shown potential promise in the treatment of diseases in fish and other aquatic animals. The use of chemical-based substances for control of diseases in the aquatic environments should be restricted.

Keywords: control, diseases, fish, natural products, treatment

Procedia PDF Downloads 517
1178 The Effects of Fungicide and Genetics on Fungal Diseases on Wheat in Nebraska With Emphasis on Stem Rust

Authors: Javed Sidiqi, Stephen Baezinger, Stephen Wegulo

Abstract:

Wheat (Triticum aestivum L.) production continues to be challenged by foliar fungal diseases although significant improvement has been made to manage the diseases through developing resistant varieties and the fungicide use to ensure sufficient wheat is produced to meet the growing population’s need. Significant crop losses have been recorded in the history of grain production and yield losses due to fungal diseases, and the trend continues to threat food security in the world and particularly in the less developed countries. The impact of individual fungal diseases on grain yield has been studied extensively to determine crop losses. However, there is limited research available to find out the combined effects of fungal diseases on grain yield and the ways to effectively manage the diseases. Therefore, the objectives of this research were to study the effect of fungal pathogens on grain yield of pre-released winter wheat genotypes in fungicide treated and untreated plots, and to determine whether S7b gene was present in ‘Gage’ wheat as previously hypothesized. Sixty winter wheat genotypes in fungicide treated and untreated plots were studied across four environments. There was a significant effect of fungicide on grain yield consistently across four environments in three years. Fungicide treated wheat lines demonstrated (4,496 kg/ ha-1) grain yield compared to (3,147 kg/ ha-1) grain yield in untreated wheat lines indicating 43% increased grain yield due to severity of foliar fungal diseases. Furthermore, fungicide application also caused an increase in protein concentration from 153 (g kg-1) to 164 (g kg-1) in treated plots in along with test weight from 73 to 77 (kg hL-1) respectively. Gage wheat variety and ISr7b-Ra were crossed to determine presence of Sr7b in Gage. The F2 and F2:3 segregating families were screened and evaluated for stem rust resistance. The segregation of families fell within 15:1 ratio for two separate resistance genes suggesting that Sr7b segregates independently from an unknown resistance gene in Gage that needs to be characterized for its use in the future wheat breeding program to develop resistant wheat varieties.

Keywords: funicide, genetics, foliar diseases, grain

Procedia PDF Downloads 121
1177 In Vitro and in Vivo Evaluation of Nano Collagen Molecules to Enhance Mesenchymal Stem Cells Differentiate into Insulin Producing Cells

Authors: Chin-Tsu Ma, Yi-Jhen Wu, Hsia Ying Cheng, Han Hsiang Huang, Shyh Ming Kuo

Abstract:

The use of specific molecules including nutrients and pharmacological agents has been tried in modulation of stem cells differentiation (MSCs) to insulin producing cells. The aim of this study is to investigate the ability of nano collagen molecules (nutrient or scaffold) to enhance the MSCs differentiation into insulin-producing cells in combination with nicotinamide and exendin-4 (pharmacological agents) in vitro and in vivo. The results demonstrated that the cells exhibit morphologically islet-like clusters after treatment with nano collagen molecules, nicotinamide and exendin-4. MSCs extra treated with nano collagen molecules showed significant increases in Nkx6.1 and insulin mRNA expression at 14-d and 21-d culture compared with those merely treated with nicotinamide and exendin-4. Early 7-day elevation in PDX-1 mRNA expression was observed. Furthermore, the MSCs exposed to nano collagen molecules produced the highest secretion of insulin (p < 0.05). Type-2 diabetes induced by high-fat diet and low dose of streptozotocin in rat model was built in this study. This rat exhibited higher food intake, water intake, lower glucose tolerance, lower-insulin tolerance, and higher HbA1C (significant increases, p < 0.01) as compared with the normal rat that demonstrated the model of type-2 diabetes was successfully built. Biopsy examinations also showed that obvious destruction of islet. After injection of differentiated MSCs into the destructed pancreas of diabetes rat, more regenerated islet were observed at the rats that treated with nano collagen molecules and exhibited much lower HbA1C as compared with the normal rat and diabetes rat after 4 weeks (significant deceases, p < 0.001). These results indicate that the culturing MSCs with nano collagen molecules, nicotinamide, and exendin-4 are beneficial for MSCs differentiation into islet-like cells. These nano collagen molecules may lead to alternations or up-regulation of gene expression and influence the differentiated outcomes induced by nicotinamide and exendin-4.

Keywords: nano collagen molecules, nicotinamide, MSCs, diabetes

Procedia PDF Downloads 405
1176 Study of Secondary Metabolites of Sargassum Algae: Anticorrosive and Antibacterial Activities

Authors: Prescilla Lambert, Christophe Roos, Mounim Lebrini

Abstract:

For several years, the Caribbean islands and West Africa have had to deal with the massive arrival of the brown seaweed Sargassum. Overall, this macroalgae, which constitutes a habitat for a great diversity of marine organisms, is also an additional stress factor for the marine environment (e.g., coral reefs). In addition, the accumulation followed by the significant decomposition of the Sargassum spp. biomass on the coast leads to the release of toxic gases (H₂S and NH₃), which calls into question the functioning of the economic, health and tourist life of the island and the other interested territories. Originally, these algae are formed by the eutrophication of the oceans accentuated by global warming. Unfortunately, scientists predict a significant recurrence of these Sargassum strandings for years to come. It is therefore more than necessary to find solutions by putting in place a sustainable management plan for this phenomenon. Martinique, a small island in the Caribbean arc, is one of the many areas impacted by Sargassum seaweed strandings. Since 2011, there has been a constant increase in the degradation of the materials present in this region, largely due to toxic/corrosive gases released by the algae decomposition. In order to protect the structures and the vulnerable building materials while limiting the use of synthetic/petroleum based molecules as much as possible, research is being conducted on molecules of natural origin. Thus, thanks to the chemical composition, which comprise molecules with interesting properties, algae such as Sargassum could potentially help to solve many issues. Therefore, this study focuses on the green extraction and characterization of molecules from the species Sargassum fluitans and Sargassum natans present in Martinique. The secondary metabolites found in these extracts showed variability in yield rates due to local climatic conditions. The tests carried out shed light on the anticorrosive and antibacterial potential of the algae. These extracts can thus be described as natural inhibitors. The effect of variation in inhibitor concentrations was tested in electrochemistry using electrochemical impedance spectroscopy and polarization curves. The analysis of electrochemical results obtained by direct immersion in the extracts and self-assembled molecular layers (SAMs) for Sargassum fluitans III, Sargassum natans I and VIII species was conclusive in acid and alkaline environments. The excellent results obtained reveal an inhibitory efficacy of 88% at 50mg/L for the crude extract of Sargassum fluitans III and efficacies greater than 97% for the chemical families of Sargassum fluitans III. Similarly, microbiological tests also suggest a bactericidal character. Results for Sargassum fluitans III crude extract show a minimum inhibitory concentration (MIC) of 0.005 mg/mL on Gram-negative bacteria and a MIC greater than 0.6 mg/mL on Gram-positive bacteria. These results make it possible to consider the management of local and international issues while valuing a biomass rich in biodegradable molecules. The next step in this study will therefore be the evaluation of the toxicity of Sargassum spp..

Keywords: Sargassum, secondary metabolites, anticorrosive, antibacterial, natural inhibitors

Procedia PDF Downloads 64
1175 Atomic Scale Storage Mechanism Study of the Advanced Anode Materials for Lithium-Ion Batteries

Authors: Xi Wang, Yoshio Bando

Abstract:

Lithium-ion batteries (LIBs) can deliver high levels of energy storage density and offer long operating lifetimes, but their power density is too low for many important applications. Therefore, we developed some new strategies and fabricated novel electrodes for fast Li transport and its facile synthesis including N-doped graphene-SnO2 sandwich papers, bicontinuous nanoporous Cu/Li4Ti5O12 electrode, and binder-free N-doped graphene papers. In addition, by using advanced in-TEM, STEM techniques and the theoretical simulations, we systematically studied and understood their storage mechanisms at the atomic scale, which shed a new light on the reasons of the ultrafast lithium storage property and high capacity for these advanced anodes. For example, by using advanced in-situ TEM, we directly investigated these processes using an individual CuO nanowire anode and constructed a LIB prototype within a TEM. Being promising candidates for anodes in lithium-ion batteries (LIBs), transition metal oxide anodes utilizing the so-called conversion mechanism principle typically suffer from the severe capacity fading during the 1st cycle of lithiation–delithiation. Also we report on the atomistic insights of the GN energy storage as revealed by in situ TEM. The lithiation process on edges and basal planes is directly visualized, the pyrrolic N "hole" defect and the perturbed solid-electrolyte-interface (SEI) configurations are observed, and charge transfer states for three N-existing forms are also investigated. In situ HRTEM experiments together with theoretical calculations provide a solid evidence that enlarged edge {0001} spacings and surface "hole" defects result in improved surface capacitive effects and thus high rate capability and the high capacity is owing to short-distance orderings at the edges during discharging and numerous surface defects; the phenomena cannot be understood previously by standard electron or X-ray diffraction analyses.

Keywords: in-situ TEM, STEM, advanced anode, lithium-ion batteries, storage mechanism

Procedia PDF Downloads 348
1174 Nephroprotective Effect of Aqueous Extract of Plectranthus amboinicus (Roxb.) Leaves in Adriamycin Induced Acute Renal Failure in Wistar Rats: A Biochemical and Histopathological Assessment

Authors: Ampe Mohottige Sachinthi Sandaruwani Amarasiri, Anoja Priyadarshani Attanayake, Kamani Ayoma Perera Wijewardana Jayatilaka, Lakmini Kumari Boralugoda Mudduwa

Abstract:

The search for alternative pharmacological therapies based on natural extracts for renal failure has become an urgent need, due to paucity of effective pharmacotherapy. The current study was undertaken to evaluate the acute nephroprotective effect of aqueous leaf extract of Plectranthus amboinicus (Roxb.) (Family: Lamiaceae), a medicinal plant used in traditional Ayurvedic medicine for the management of renal diseases in Sri Lanka. The study was performed in adriamycin (ADR) induced nephrotoxic in Wistar rats. Wistar rats were randomly divided into four groups each with six rats. A single dose of ADR (20 mg/kg body wt., ip) was used for the induction of nephrotoxicity in all groups of rats except group one. The treatments were started 24 hours after induction of nephrotoxicity and continued for three days. Group one and two served as healthy and nephrotoxic control rats and were administered equivalent volumes of normal saline (0.9% NaCl) orally. Group three and four nephrotoxic rats were administered the lyophilized powder of the aqueous extract of P. amboinicus (400 mg/ kg body wt.; equivalent human therapeutic dose) and the standard drug, fosinopril sodium (0.09 mg/ kg body wt.) respectively. Urine and blood samples were collected from rats in each group at the end of the period of intervention for the estimation of selected renal parameters. H and E stained sections of the kidney tissues were examined for histopathological changes. Rats treated with the plant extract showed significant improvement in biochemical parameters and histopathological changes compared to ADR induced nephrotoxic group. The elevation of serum concentrations of creatinine and β2-microglobulin were decreased by 38%, and 66% in plant extract treated nephrotoxic rats respectively (p < 0.05). In addition, serum concentrations of total protein and albumin were significantly increased by 25% and 14% in rats treated with P. amboinicus respectively (p < 0.05). The results of β2 –microglobulin and serum total protein demonstrated a significant reduction in the elevated values in rats administered with the plant extract (400 mg/kg) compared to that of fosinopril (0.09 mg/kg). Urinary protein loss in 24hr urine samples was significantly decreased in rats treated with both fosinopril (86%) and P. ambonicus (56%) at the end of the intervention (p < 0.01). Accordingly, an attenuation of morphological destruction was observed in the H and E stained sections of the kidney with the treatments of plant extract and fosinopril. The results of the present study revealed that the aqueous leaf extract of P. amboinicus possesses significant nephroprotective activity at the equivalent therapeutic dose of 400 mg/ kg against adriamycin induced acute nephrotoxicity.

Keywords: biochemical assessment, histopathological assessment, nephroprotective activity, Plectranthus amboinicus

Procedia PDF Downloads 139
1173 Expression of Fibrogenesis Markers after Mesenchymal Stem Cells Therapy for Experimental Liver Cirrhosis

Authors: Tatsiana Ihnatovich, Darya Nizheharodava, Mikalai Halabarodzka, Tatsiana Savitskaya, Marina Zafranskaya

Abstract:

Liver fibrosis is a complex of histological changes resulting from chronic liver disease accompanied by an excessive production and deposition of extracellular matrix components in the hepatic parenchyma. Liver fibrosis is a serious medical and social problem. Hepatic stellate cells (HSCs) make a significant contribution to the extracellular matrix deposition due to liver injury. Mesenchymal stem cells (MSCs) have a pronounced anti-inflammatory, regenerative and immunomodulatory effect; they are able to differentiate into hepatocytes and induce apoptosis of activated HSCs that opens the prospect of their use for preventing the excessive fibro-formation and the development of liver cirrhosis. The aim of the study is to evaluate the effect of MSCs therapy on the expression of fibrogenesis markers genes in liver tissue and HSCs cultures of rats with experimental liver cirrhosis (ELC). Materials and methods: ELC was induced by the common bile duct ligation (CBDL) in female Wistar rats (n = 19) with an average body weight of 250 (220 ÷ 270) g. Animals from the control group (n = 10) were sham-operated. On the 56th day after the CBDL, the rats of the experimental (n = 12) and the control (n = 5) groups received intraportal MSCs in concentration of 1×106 cells/animal (previously obtained from rat’s bone marrow) or saline, respectively. The animals were taken out of the experiment on the 21st day. HSCs were isolated by sequential liver perfusion in situ with following disaggregation, enzymatic treatment and centrifugation of cell suspension on a two-stage density gradient. The expression of collagen type I (Col1a1) and type III (Col3a1), matrix metalloproteinase type 2 (MMP2) and type 9 (MMP9), tissue inhibitor of matrix metalloproteinases type 1 (TIMP1), transforming growth factor β type 1 (TGFβ1) and type 3 (TGFβ3) was determined by real-time polymerase chain reaction. Statistical analysis was performed using Statistica 10.0. Results: In ELC rats compared to sham-operated animals, a significant increase of all studied markers expression was observed. The administration of MSCs led to a significant decrease of all detectable markers in the experimental group compared to rats without cell therapy. In ELC rats, an increased MMP9/TIMP1 ratio after cell therapy was also detected. The infusion of MSCs in the sham-operated animals did not lead to any changes. In the HSCs from ELC animals, the expression of Col1a1 and Col3a1 exceeded the similar parameters of the control group (p <0.05) and statistically decreased after the MSCs administration. The correlation between Col3a1 (Rs = 0.51, p <0.05), TGFβ1 (Rs = 0.6, p <0.01), and TGFβ3 (Rs = 0.75, p <0.001) expression in HSCs cultures and liver tissue has been found. Conclusion: Intraportal administration of MSCs to rats with ELC leads to a decreased Col1a1 and Col3a1, MMP2 and MMP9, TIMP1, TGFβ1 and TGFβ3 expression. The correlation between the expression of Col3a1, TGFβ1 and TGFβ3 in liver tissue and in HSCs cultures indicates the involvement of activated HSCs in the fibrogenesis that allows considering HSCs to be the main cell therapy target in ELC.

Keywords: cell therapy, experimental liver cirrhosis, hepatic stellate cells, mesenchymal stem cells

Procedia PDF Downloads 161
1172 Hepatoprotective Effect of Ethyl Acetate Fraction of Ficus carica L. Leaves against Carbon Tetrachloride-Induced Toxicity in vitro and in vivo

Authors: Syeda Hira, Muhammad Gulfraz

Abstract:

Background: Liver diseases cause serious health issues. Plants contain active compounds that significantly help in the treatment of various diseases. Ficus carica is traditionally used for the treatment of liver diseases. The purpose of the present study was the isolation and identification of active components from F.carica leaves which are responsible for hepatoprotective activity. Methods: The study was designed to identify the most active hepatoprotective sub-fraction from ethyl acetate fraction of Ficus carica by in vitro study and evaluation of its in vivo hepatoprotective effect in animal models. Ethyl acetate fraction was subjected to column, and a total of eight sub-fractions were obtained. In vitro, the hepatoprotective effect of all sub-fractions was determined on HepG2 cell lines. Toxicity was induced by CCl₄ (Carbon tetrachloride), and silymarin was used as a positive control. On the basis of the results, the most active sub-fraction was subjected to LC-MS and FT-IR analysis for the identification of bioactive compounds. In vivo, the hepatoprotective effect was determined in mice. Toxicity was induced by CCl₄; at the end of the experiment, biochemical parameters such as ALT, AST, ALP, bilirubin, and total protein were estimated in serum. Histopathology of liver tissues was also done. Results: Sub-fraction FVI exhibited significant (P<0.05) hepatoprotective activity as compared to other sub-fractions, which was almost similar to the standard drug silymarin. Six known bioactive compounds were identified from this sub-fraction after LC-MS analysis. In vivo, the hepatoprotective activity of sub-fraction FVI was evaluated in CCl₄-induced toxicated mice. Administration of CCl₄ significantly increased level of ALT (Alanine transaminase), AST (Aspartate aminotransferase), ALP (Alkaline phosphatase), and bilirubin and decreased the total protein. Treatment with sub-fraction FVI significantly (p<0.05) reversed the level of these biomarkers toward normal at both doses of 25 mg/kg and 50 mg/kg. Conclusion: Our findings confirmed the hepatoprotective effect of ethyl acetate fraction of F.carica. It could be a good candidate for the development of a natural hepatoprotective drug; pre-clinical investigation on ethyl acetate fraction is recommended.

Keywords: Ficus carica, hepatoprotective, CCl₄, bioactive compounds, liver markers

Procedia PDF Downloads 55
1171 Ethnobotanical and Laboratory Investigations of Plants Used for the Treatment of Typhoid Fever in Gombe State, North-Eastern Nigeria

Authors: Abubakar Bello Usman, Alhassan Muhammad Gani, Kolo Ibrahim

Abstract:

The use of botanical raw materials to produce pharmaceuticals, herbal remedies, teas, spirits, cosmetics, sweets, dietary supplements, special industrial compounds and crude materials constitute an important global resource in terms of healthcare and economy. In Nigeria and other developing countries, the indigenous knowledge on the uses of plants lies with the older generation and the traditional healers. However, these custodians are decreasing in number due to death and other unforeseen occurrences. An Ethno-botanical survey was carried out to obtain information on the ethno medical values of wide range of plants used by the people of Gombe State, North-Eastern Nigeria, in the practice of healing and cure of typhoid (enteric) fever. Oral interviews were conducted so as to consider those with low literacy level who are involved in the practice of traditional medicine and thirty four (34) informants availed themselves for the interview and were consulted. All relevant information obtained from the respondents was recorded. A recent and valid nomenclature, along with local names, family names, part of the plant(s) used, methods of preparation and administration and fifty four (54) plant species belonging to 27 families as well as 7 unidentified species that are commonly used by the people of the state in ethnomedical treatment of the ailment were tabulated. Those interviewed included traditional practitioners, local herb sellers, traditional rulers, hunters, farmers and patients. Specific questions were asked and information supplied by informants was promptly documented. Results showed that the people of Gombe State are knowledgeable on herbal medicine in the treatment of diseases and ailments. Furthermore, the aqueous leaf extracts of Senna siamea, the plant species with the highest PPK (percentage of people who have knowledge about the use of a species for treating typhoid fever) in this ethnobotanical survey, was tested for its activity against clinical isolates of Salmonella typhi using the agar well diffusion method. The aqueous extracts showed some activity (zones of inhibition 11, 9, 7.5, 3.5, 1.3 mm) at 2000, 1800, 1600, 1400, 1200 µg/ml concentrations respectively. Preliminary phytochemical studies of the aqueous leaf extracts of the plant revealed the presence of secondary metabolites such as alkaloids, saponins, tannins, flavonoids and cardiac glycosides. Though a large number of traditionally used plants for the treatment of enteric fever were identified, further scientific validation of the traditional claims of anti-typhoid properties is imperative. This would establish their candidature for any possible future research for active principles and the possible development of new cheaper and more effective anti-typhoid drugs, as well as in the conservation of this rich diversity of medicinal plants.

Keywords: antimicrobial activities, ethnobotany, gombe state, north-eastern Nigeria, phytochemical screening, senna siamea, typhoid fever

Procedia PDF Downloads 326
1170 Gamification Teacher Professional Development: Engaging Language Learners in STEMS through Game-Based Learning

Authors: Karen Guerrero

Abstract:

Kindergarten-12th grade teachers engaged in teacher professional development (PD) on game-based learning techniques and strategies to support teaching STEMSS (STEM + Social Studies with an emphasis on geography across the curriculum) to language learners. Ten effective strategies have supported teaching content and language in tandem. To provide exiting teacher PD on summer and spring breaks, gamification has integrated these strategies to engage linguistically diverse student populations to provide informal language practice while students engage in the content. Teachers brought a STEMSS lesson to the PD, engaged in a wide variety of games (dice, cards, board, physical, digital, etc.), critiqued the games based on gaming elements, then developed, brainstormed, presented, piloted, and published their game-based STEMSS lessons to share with their colleagues. Pre and post-surveys and focus groups were conducted to demonstrate an increase in knowledge, skills, and self-efficacy in using gamification to teach content in the classroom. Provide an engaging strategy (gamification) to support teaching content and language to linguistically diverse students in the K-12 classroom. Game-based learning supports informal language practice while developing academic vocabulary utilized in the game elements/content focus, building both content knowledge through play and language development through practice. The study also investigated teacher's increase in knowledge, skills, and self-efficacy in using games to teach language learners. Mixed methods were used to investigate knowledge, skills, and self-efficacy prior to and after the gamification teacher training (pre/post) and to understand the content and application of developing and utilizing game-based learning to teach. This study will contribute to the body of knowledge in applying game-based learning theories to the K-12 classroom to support English learners in developing English skills and STEMSS content knowledge.

Keywords: gamification, teacher professional development, STEM, English learners, game-based learning

Procedia PDF Downloads 78