Search results for: bivariate statistical techniques
9259 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram
Authors: Mehwish Asghar
Abstract:
Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence
Procedia PDF Downloads 2249258 Non-Invasive Techniques for Management of Carious Primary Dentition Using Silver Diamine Fluoride and Moringa Extract as a Modification of the Hall Technique
Authors: Rasha F. Sharaf
Abstract:
Treatment of dental caries in young children is considered a great challenge for all dentists, especially with uncooperative children. Recently non-invasive techniques have been highlighted as they alleviate the need for local anesthesia and other painful procedures during management of carious teeth and, at the same time, increase the success rate of the treatment done. Silver Diamine Fluoride (SDF) is one of the most effective cariostatic materials that arrest the progression of carious lesions and aid in remineralizing the demineralized tooth structure. Both fluoride and silver ions proved to have an antibacterial action and aid in the precipitation of an insoluble layer that prevents further decay. At the same time, Moringa proved to have an effective antibacterial action against different types of bacteria, therefore, it can be used as a non-invasive technique for the management of caries in children. One of the important theories for the control of caries is by depriving the cariogenic bacteria from nutrients causing their starvation and death, which can be achieved by applying stainless steel crown on primary molars with carious lesions which are not involving the pulp, and this technique is known as Hall technique. The success rate of the Hall technique can be increased by arresting the carious lesion using either SDF or Moringa and gaining the benefit of their antibacterial action. Multiple clinical cases with 1 year follow up will be presented, comparing different treatment options, and using various materials and techniques for non-invasive and non-painful management of carious primary teeth.Keywords: SDF, hall technique, carious primary teeth, moringa extract
Procedia PDF Downloads 959257 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms
Authors: Selim M. Khan
Abstract:
Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America
Procedia PDF Downloads 959256 Study of Education Learning Techniques and Game Genres
Authors: Khadija Al Farei, Prakash Kumar, Vikas Rao Naidu
Abstract:
Games are being developed with different genres for different age groups, for many decades. In many places, educational games are playing a vital role for active classroom environment and better learning among students. Currently, the educational games have assumed an important place in children and teenagers lives. The role of educational games is important for improving the learning capability among the students especially of this generation, who really live among electronic gadgets. Hence, it is now important to make sure that in our educational system, we are updated with all such advancement in technologies. Already much research is going on in this area of edutainment. This research paper will review around ten different research papers to find the relation between the education learning techniques and games. The result of this review provides guidelines for enhanced teaching and learning solutions in education. In-house developed educational games proved to be more effective, compared to the one which is readily available in the market.Keywords: education, education game, educational technology, edutainment, game genres, gaming in education
Procedia PDF Downloads 4139255 Level Set and Morphological Operation Techniques in Application of Dental Image Segmentation
Authors: Abdolvahab Ehsani Rad, Mohd Shafry Mohd Rahim, Alireza Norouzi
Abstract:
Medical image analysis is one of the great effects of computer image processing. There are several processes to analysis the medical images which the segmentation process is one of the challenging and most important step. In this paper the segmentation method proposed in order to segment the dental radiograph images. Thresholding method has been applied to simplify the images and to morphologically open binary image technique performed to eliminate the unnecessary regions on images. Furthermore, horizontal and vertical integral projection techniques used to extract the each individual tooth from radiograph images. Segmentation process has been done by applying the level set method on each extracted images. Nevertheless, the experiments results by 90% accuracy demonstrate that proposed method achieves high accuracy and promising result.Keywords: integral production, level set method, morphological operation, segmentation
Procedia PDF Downloads 3159254 Estimating Knowledge Flow Patterns of Business Method Patents with a Hidden Markov Model
Authors: Yoonjung An, Yongtae Park
Abstract:
Knowledge flows are a critical source of faster technological progress and stouter economic growth. Knowledge flows have been accelerated dramatically with the establishment of a patent system in which each patent is required by law to disclose sufficient technical information for the invention to be recreated. Patent analysis, thus, has been widely used to help investigate technological knowledge flows. However, the existing research is limited in terms of both subject and approach. Particularly, in most of the previous studies, business method (BM) patents were not covered although they are important drivers of knowledge flows as other patents. In addition, these studies usually focus on the static analysis of knowledge flows. Some use approaches that incorporate the time dimension, yet they still fail to trace a true dynamic process of knowledge flows. Therefore, we investigate dynamic patterns of knowledge flows driven by BM patents using a Hidden Markov Model (HMM). An HMM is a popular statistical tool for modeling a wide range of time series data, with no general theoretical limit in regard to statistical pattern classification. Accordingly, it enables characterizing knowledge patterns that may differ by patent, sector, country and so on. We run the model in sets of backward citations and forward citations to compare the patterns of knowledge utilization and knowledge dissemination.Keywords: business method patents, dynamic pattern, Hidden-Markov Model, knowledge flow
Procedia PDF Downloads 3279253 Effects of Process Parameter Variation on the Surface Roughness of Rapid Prototyped Samples Using Design of Experiments
Authors: R. Noorani, K. Peerless, J. Mandrell, A. Lopez, R. Dalberto, M. Alzebaq
Abstract:
Rapid prototyping (RP) is an additive manufacturing technology used in industry that works by systematically depositing layers of working material to construct larger, computer-modeled parts. A key challenge associated with this technology is that RP parts often feature undesirable levels of surface roughness for certain applications. To combat this phenomenon, an experimental technique called Design of Experiments (DOE) can be employed during the growth procedure to statistically analyze which RP growth parameters are most influential to part surface roughness. Utilizing DOE to identify such factors is important because it is a technique that can be used to optimize a manufacturing process, which saves time, money, and increases product quality. In this study, a four-factor/two level DOE experiment was performed to investigate the effect of temperature, layer thickness, infill percentage, and infill speed on the surface roughness of RP prototypes. Samples were grown using the sixteen different possible growth combinations associated with a four-factor/two level study, and then the surface roughness data was gathered for each set of factors. After applying DOE statistical analysis to these data, it was determined that layer thickness played the most significant role in the prototype surface roughness.Keywords: rapid prototyping, surface roughness, design of experiments, statistical analysis, factors and levels
Procedia PDF Downloads 2619252 A Spatial Autocorrelation Analysis of Women’s Mental Health and Walkability Index in Mashhad City, Iran, and Recommendations to Improve It
Authors: Mohammad Rahim Rahnama, Lia Shaddel
Abstract:
Today, along with the development of urbanism, its negative consequences on the health of citizens are emerging. Mental disorders are common in the big cities, while mental health enables individuals to become active citizens. Meanwhile, women have a larger share of mental problems. Depression and anxiety disorders have a higher prevalence rate among women and these disorders affect the health of future generations, too. Therefore, improving women’s mental health through the potentials offered by urban spaces are of paramount importance. The present study aims to first, evaluate the spatial autocorrelation of women’s mental health and walkable spaces and then present solutions, based on the findings, to improve the walkability index. To determine the spatial distribution of women’s mental health in Mashhad, Moran's I was used and 1000 questionnaire were handed out in various sub-districts of Mashhad. Moran's I was calculated to be 0.18 which indicates a cluster distribution pattern. The walkability index was calculated using the four variables pertaining to the length of walkable routes, mixed land use, retail floor area ratio, and household density. To determine spatial autocorrelation of mental health and the walkability index, bivariate Moran’s I was calculated. Moran's I was determined to be 0.37 which shows a direct spatial relationship between variables; 4 clusters in 9 sub-districts of Mashhad were created. In High-Low cluster, there was a negative spatial relationship and hence, to identify factors affecting walkability in urban spaces semi-structures interviews were conducted with 21 women in this cluster. The findings revealed that security is the major factor influencing women’s walking behavior in this cluster. In accordance with the findings, some suggestions are offered to improve the presence of women in this sub-district.Keywords: Mashhad, spatial autocorrelation, women’s mental health, walkability index
Procedia PDF Downloads 1319251 Multisensory Science, Technology, Engineering and Mathematics Learning: Combined Hands-on and Virtual Science for Distance Learners of Food Chemistry
Authors: Paulomi Polly Burey, Mark Lynch
Abstract:
It has been shown that laboratory activities can help cement understanding of theoretical concepts, but it is difficult to deliver such an activity to an online cohort and issues such as occupational health and safety in the students’ learning environment need to be considered. Chemistry, in particular, is one of the sciences where practical experience is beneficial for learning, however typical university experiments may not be suitable for the learning environment of a distance learner. Food provides an ideal medium for demonstrating chemical concepts, and along with a few simple physical and virtual tools provided by educators, analytical chemistry can be experienced by distance learners. Food chemistry experiments were designed to be carried out in a home-based environment that 1) Had sufficient scientific rigour and skill-building to reinforce theoretical concepts; 2) Were safe for use at home by university students and 3) Had the potential to enhance student learning by linking simple hands-on laboratory activities with high-level virtual science. Two main components of the resources were developed, a home laboratory experiment component, and a virtual laboratory component. For the home laboratory component, students were provided with laboratory kits, as well as a list of supplementary inexpensive chemical items that they could purchase from hardware stores and supermarkets. The experiments used were typical proximate analyses of food, as well as experiments focused on techniques such as spectrophotometry and chromatography. Written instructions for each experiment coupled with video laboratory demonstrations were used to train students on appropriate laboratory technique. Data that students collected in their home laboratory environment was collated across the class through shared documents, so that the group could carry out statistical analysis and experience a full laboratory experience from their own home. For the virtual laboratory component, students were able to view a laboratory safety induction and advised on good characteristics of a home laboratory space prior to carrying out their experiments. Following on from this activity, students observed laboratory demonstrations of the experimental series they would carry out in their learning environment. Finally, students were embedded in a virtual laboratory environment to experience complex chemical analyses with equipment that would be too costly and sensitive to be housed in their learning environment. To investigate the impact of the intervention, students were surveyed before and after the laboratory series to evaluate engagement and satisfaction with the course. Students were also assessed on their understanding of theoretical chemical concepts before and after the laboratory series to determine the impact on their learning. At the end of the intervention, focus groups were run to determine which aspects helped and hindered learning. It was found that the physical experiments helped students to understand laboratory technique, as well as methodology interpretation, particularly if they had not been in such a laboratory environment before. The virtual learning environment aided learning as it could be utilized for longer than a typical physical laboratory class, thus allowing further time on understanding techniques.Keywords: chemistry, food science, future pedagogy, STEM education
Procedia PDF Downloads 1679250 Performance Evaluation of One and Two Dimensional Prime Codes for Optical Code Division Multiple Access Systems
Authors: Gurjit Kaur, Neena Gupta
Abstract:
In this paper, we have analyzed and compared the performance of various coding schemes. The basic ID prime sequence codes are unique in only dimension, i.e. time slots, whereas 2D coding techniques are not unique by their time slots but with their wavelengths also. In this research, we have evaluated and compared the performance of 1D and 2D coding techniques constructed using prime sequence coding pattern for Optical Code Division Multiple Access (OCDMA) system on a single platform. Analysis shows that 2D prime code supports lesser number of active users than 1D codes, but they are having large code family and are the most secure codes compared to other codes. The performance of all these codes is analyzed on basis of number of active users supported at a Bit Error Rate (BER) of 10-9.Keywords: CDMA, OCDMA, BER, OOC, PC, EPC, MPC, 2-D PC/PC, λc, λa
Procedia PDF Downloads 3369249 Premalignant and Malignant Lesions of Uterine Polyps: Analysis at a University Hospital
Authors: Manjunath A. P., Al-Ajmi G. M., Al Shukri M., Girija S
Abstract:
Introduction: This study aimed to compare the ability of hysteroscopy and ultrasonography to diagnose uterine polyps. To correlate the ultrasonography and hystroscopic findings with various clinical factors and histopathology of uterine polyps. Methods: This is a retrospective study conducted at the Department of Obstetrics and Gynaecology at Sultan Qaboos University Hospital from 2014 to 2019. All women undergoing hysteroscopy for suspected uterine polyps were included. All relevant data were obtained from the electronic patient record and analysed using SPSS. Results: A total of 77 eligible women were analysed. The mean age of the patients was 40 years. The clinical risk factors; obesity, hypertension, and diabetes mellitus, showed no significant statistical association with the presence of uterine polyps (p-value>0.005). Although 20 women (52.6%) with uterine polyps had thickened endometrium (>11 mm), however, there is no statistical association (p-value>0.005). The sensitivity and specificity of ultrasonography in the detection of uterine polyp were 39% and 65%, respectively. Whereas for hysteroscopy, it was 89% and 20%, respectively. The prevalence of malignant and premalignant lesions were 1.85% and 7.4%, respectively. Conclusion: This study found that obesity, hypertension, and diabetes mellitus were not associated with the presence of uterine polyps. There was no association between thick endometrium and uterine polyps. The sensitivity is higher for hysteroscopy, whereas the specificity is higher for sonography in detecting uterine polyps. The prevalence of malignancy was very low in uterine polyps.Keywords: endometrial polyps, hysteroscopy, ultrasonography, premalignant, malignant
Procedia PDF Downloads 1289248 On Pooling Different Levels of Data in Estimating Parameters of Continuous Meta-Analysis
Authors: N. R. N. Idris, S. Baharom
Abstract:
A meta-analysis may be performed using aggregate data (AD) or an individual patient data (IPD). In practice, studies may be available at both IPD and AD level. In this situation, both the IPD and AD should be utilised in order to maximize the available information. Statistical advantages of combining the studies from different level have not been fully explored. This study aims to quantify the statistical benefits of including available IPD when conducting a conventional summary-level meta-analysis. Simulated meta-analysis were used to assess the influence of the levels of data on overall meta-analysis estimates based on IPD-only, AD-only and the combination of IPD and AD (mixed data, MD), under different study scenario. The percentage relative bias (PRB), root mean-square-error (RMSE) and coverage probability were used to assess the efficiency of the overall estimates. The results demonstrate that available IPD should always be included in a conventional meta-analysis using summary level data as they would significantly increased the accuracy of the estimates. On the other hand, if more than 80% of the available data are at IPD level, including the AD does not provide significant differences in terms of accuracy of the estimates. Additionally, combining the IPD and AD has moderating effects on the biasness of the estimates of the treatment effects as the IPD tends to overestimate the treatment effects, while the AD has the tendency to produce underestimated effect estimates. These results may provide some guide in deciding if significant benefit is gained by pooling the two levels of data when conducting meta-analysis.Keywords: aggregate data, combined-level data, individual patient data, meta-analysis
Procedia PDF Downloads 3739247 Systematic and Meta-Analysis of Navigation in Oral and Maxillofacial Trauma and Impact of Machine Learning and AI in Management
Authors: Shohreh Ghasemi
Abstract:
Introduction: Managing oral and maxillofacial trauma is a multifaceted challenge, as it can have life-threatening consequences and significant functional and aesthetic impact. Navigation techniques have been introduced to improve surgical precision to meet this challenge. A machine learning algorithm was also developed to support clinical decision-making regarding treating oral and maxillofacial trauma. Given these advances, this systematic meta-analysis aims to assess the efficacy of navigational techniques in treating oral and maxillofacial trauma and explore the impact of machine learning on their management. Methods: A detailed and comprehensive analysis of studies published between January 2010 and September 2021 was conducted through a systematic meta-analysis. This included performing a thorough search of Web of Science, Embase, and PubMed databases to identify studies evaluating the efficacy of navigational techniques and the impact of machine learning in managing oral and maxillofacial trauma. Studies that did not meet established entry criteria were excluded. In addition, the overall quality of studies included was evaluated using Cochrane risk of bias tool and the Newcastle-Ottawa scale. Results: Total of 12 studies, including 869 patients with oral and maxillofacial trauma, met the inclusion criteria. An analysis of studies revealed that navigation techniques effectively improve surgical accuracy and minimize the risk of complications. Additionally, machine learning algorithms have proven effective in predicting treatment outcomes and identifying patients at high risk for complications. Conclusion: The introduction of navigational technology has great potential to improve surgical precision in oral and maxillofacial trauma treatment. Furthermore, developing machine learning algorithms offers opportunities to improve clinical decision-making and patient outcomes. Still, further studies are necessary to corroborate these results and establish the optimal use of these technologies in managing oral and maxillofacial traumaKeywords: trauma, machine learning, navigation, maxillofacial, management
Procedia PDF Downloads 579246 Thermal Behavior of a Ventilated Façade Using Perforated Ceramic Bricks
Authors: Helena López-Moreno, Antoni Rodríguez-Sánchez, Carmen Viñas-Arrebola, Cesar Porras-Amores
Abstract:
The ventilated façade has great advantages when compared to traditional façades as it reduces the air conditioning thermal loads due to the stack effect induced by solar radiation in the air chamber. Optimizing energy consumption by using a ventilated façade can be used not only in newly built buildings but also it can be implemented in existing buildings, opening the field of implementation to energy building retrofitting works. In this sense, the following three prototypes of façade where designed, built and further analyzed in this research: non-ventilated façade (NVF); slightly ventilated façade (SLVF) and strongly ventilated façade (STVF). The construction characteristics of the three facades are based on the Spanish regulation of building construction “Technical Building Code”. The façades have been monitored by type-k thermocouples in a representative day of the summer season in Madrid (Spain). Moreover, an analysis of variance (ANOVA) with repeated measures, studying the thermal lag in the ventilated and no-ventilated façades has been designed. Results show that STVF façade presents higher levels of thermal inertia as the thermal lag reduces up to 100% (daily mean) compared to the non-ventilated façade. In addition, the statistical analysis proves that an increase of the ventilation holes size in STVF façades does not improve the thermal lag significantly (p > 0.05) when compared to the SLVF façade.Keywords: ventilated façade, energy efficiency, thermal behavior, statistical analysis
Procedia PDF Downloads 4869245 Group Sequential Covariate-Adjusted Response Adaptive Designs for Survival Outcomes
Authors: Yaxian Chen, Yeonhee Park
Abstract:
Driven by evolving FDA recommendations, modern clinical trials demand innovative designs that strike a balance between statistical rigor and ethical considerations. Covariate-adjusted response-adaptive (CARA) designs bridge this gap by utilizing patient attributes and responses to skew treatment allocation in favor of the treatment that is best for an individual patient’s profile. However, existing CARA designs for survival outcomes often hinge on specific parametric models, constraining their applicability in clinical practice. In this article, we address this limitation by introducing a CARA design for survival outcomes (CARAS) based on the Cox model and a variance estimator. This method addresses issues of model misspecification and enhances the flexibility of the design. We also propose a group sequential overlapweighted log-rank test to preserve type I error rate in the context of group sequential trials using extensive simulation studies to demonstrate the clinical benefit, statistical efficiency, and robustness to model misspecification of the proposed method compared to traditional randomized controlled trial designs and response-adaptive randomization designs.Keywords: cox model, log-rank test, optimal allocation ratio, overlap weight, survival outcome
Procedia PDF Downloads 639244 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes
Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini
Abstract:
Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.Keywords: modelling, Monte Carlo simulations, probabilistic models, data clustering, reinforced concrete members, structural design
Procedia PDF Downloads 4719243 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique
Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu
Abstract:
Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing
Procedia PDF Downloads 999242 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records
Authors: Sara ElElimy, Samir Moustafa
Abstract:
Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).Keywords: big data analytics, machine learning, CDRs, 5G
Procedia PDF Downloads 1389241 Flood Devastation Assessment Through Mapping in Nigeria-2022 using Geospatial Techniques
Authors: Hafiz Muhammad Tayyab Bhatti, Munazza Usmani
Abstract:
One of nature's most destructive occurrences, floods do immense damage to communities and economic losses. Nigeria country, specifically southern Nigeria, is known for being prone to flooding. Even though periodic flooding occurs in Nigeria frequently, the floods of 2022 were the worst since those in 2012. Flood vulnerability analysis and mapping are still lacking in this region due to the very limited historical hydrological measurements and surveys on the effects of floods, which makes it difficult to develop and put into practice efficient flood protection measures. Remote sensing and Geographic Information Systems (GIS) are useful approaches to detecting, determining, and estimating the flood extent and its impacts. In this study, NOAA VIIR has been used to extract the flood extent using the flood water fraction data and afterward fused with GIS data for some zonal statistical analysis. The estimated possible flooding areas are validated using satellite imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS). The goal is to map and studied flood extent, flood hazards, and their effects on the population, schools, and health facilities for each state of Nigeria. The resulting flood hazard maps show areas with high-risk levels clearly and serve as an important reference for planning and implementing future flood mitigation and control strategies. Overall, the study demonstrated the viability of using the chosen GIS and remote sensing approaches to detect possible risk regions to secure local populations and enhance disaster response capabilities during natural disasters.Keywords: flood hazards, remote sensing, damage assessment, GIS, geospatial analysis
Procedia PDF Downloads 1369240 Artificial Intelligence in Melanoma Prognosis: A Narrative Review
Authors: Shohreh Ghasemi
Abstract:
Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine
Procedia PDF Downloads 789239 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems
Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano
Abstract:
The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.Keywords: environmental internet of things, EIoT, machine learning, anomaly detection, environment monitoring
Procedia PDF Downloads 1489238 Discrete Breeding Swarm for Cost Minimization of Parallel Job Shop Scheduling Problem
Authors: Tarek Aboueldahab, Hanan Farag
Abstract:
Parallel Job Shop Scheduling Problem (JSP) is a multi-objective and multi constrains NP- optimization problem. Traditional Artificial Intelligence techniques have been widely used; however, they could be trapped into the local minimum without reaching the optimum solution, so we propose a hybrid Artificial Intelligence model (AI) with Discrete Breeding Swarm (DBS) added to traditional Artificial Intelligence to avoid this trapping. This model is applied in the cost minimization of the Car Sequencing and Operator Allocation (CSOA) problem. The practical experiment shows that our model outperforms other techniques in cost minimization.Keywords: parallel job shop scheduling problem, artificial intelligence, discrete breeding swarm, car sequencing and operator allocation, cost minimization
Procedia PDF Downloads 1859237 Study of Bima Tembe and Its Relation to Rimpu as a Cultural Women Clothes in Bima
Authors: Morinta Rosandini
Abstract:
Bima Tembe is an excellent sample of cultural artifact that many people regard it as: (1) manufactured by a traditional techniques, (2) contained with variety forms and great philosophical motifs, and (3) having valued functions related to women status in the society. This research examined elements of Bima Tembe and their relations and one of the usage of tembe, named Rimpus. The elements include: (1) the traditional techniques of making Bima Tembe, (2) the variety forms (3) and philosophical motifs of Bima Tembe. Rimpu, is a cultural women clothes in Bima, which use Bima Tembe as a main part. From this reseacrh found that the Bima Tembe made by weaving technique using a traditional loom, and has two types of Tembe; Tembe Istana and Tembe Rakyat, with various motif each type. The The usage of Rimpu is as a symbol of the obedience to God and the type of Rimpu indicate the women status in the society.Keywords: bima, tembe, rimpu, clothes
Procedia PDF Downloads 4209236 Modified Clusterwise Regression for Pavement Management
Authors: Mukesh Khadka, Alexander Paz, Hanns de la Fuente-Mella
Abstract:
Typically, pavement performance models are developed in two steps: (i) pavement segments with similar characteristics are grouped together to form a cluster, and (ii) the corresponding performance models are developed using statistical techniques. A challenge is to select the characteristics that define clusters and the segments associated with them. If inappropriate characteristics are used, clusters may include homogeneous segments with different performance behavior or heterogeneous segments with similar performance behavior. Prediction accuracy of performance models can be improved by grouping the pavement segments into more uniform clusters by including both characteristics and a performance measure. This grouping is not always possible due to limited information. It is impractical to include all the potential significant factors because some of them are potentially unobserved or difficult to measure. Historical performance of pavement segments could be used as a proxy to incorporate the effect of the missing potential significant factors in clustering process. The current state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine the pavement clusters and the associated performance models simultaneously. CLR incorporates the effect of significant factors as well as a performance measure. In this study, a mathematical program was formulated for CLR models including multiple explanatory variables. Pavement data collected recently over the entire state of Nevada were used. International Roughness Index (IRI) was used as a pavement performance measure because it serves as a unified standard that is widely accepted for evaluating pavement performance, especially in terms of riding quality. Results illustrate the advantage of the using CLR. Previous studies have used CLR along with experimental data. This study uses actual field data collected across a variety of environmental, traffic, design, and construction and maintenance conditions.Keywords: clusterwise regression, pavement management system, performance model, optimization
Procedia PDF Downloads 2499235 Cognitions of Physical Education Supervisors and Teachers for Conceptions of Effective Teaching Related to the Concerns Theory
Authors: Ali M. Alsagheir
Abstract:
Effective teaching is concerned to be one of the research fields of teaching, and its fundamental case is to reach the most successful ways that makes teaching fruitful. Undoubtedly, these methods are common factors between all parties who are concerned with the educational process such as instructors, directors, parents, and others. This study had aimed to recognize the cognitions of physical education supervisors and teachers for conceptions of effective teaching according to the interests theory. A questionnaire was used to collect data of the study; the sample contained 230 teachers and supervisors.The results were ended in: that the average of conceptions of effective teaching expressions for the sample of the study decreases at the progress through stages of teaching development in general. The study showed the absence of statistical indicator between teachers and supervisors at the core of both teaching principals and teaching tasks although the results showed that there are statistical indicators at the core of teaching achievements between supervisors and teachers in favor of supervisors. The study ended in to recommendations which can share in increasing the effectiveness of teaching such as: putting clear and specific standards for the effectiveness of teaching in which teacher's performance is based, constructing practical courses that focus on bringing on both supervisors and teachers with skills and strategies of effectiveness teaching, taking care of children achievement as an important factor and a strong indicator on effectiveness of teaching and learning.Keywords: concerns theory, effective teaching, physical education, supervisors, teachers
Procedia PDF Downloads 4109234 A Time since of Injection Model for Hepatitis C Amongst People Who Inject Drugs
Authors: Nader Al-Rashidi, David Greenhalgh
Abstract:
Mathematical modelling techniques are now being used by health organizations worldwide to help understand the likely impact that intervention strategies treatment options and combinations of these have on the prevalence and incidence of hepatitis C virus (HCV) in the people who inject drugs (PWID) population. In this poster, we develop a deterministic, compartmental mathematical model to approximate the spread of the HCV in a PWID population that has been divided into two groups by time since onset of injection. The model assumes that after injection needles adopt the most infectious state of their previous state or that of the PWID who last injected with them. Using analytical techniques, we find that the model behaviour is determined by the basic reproductive number R₀, where R₀ = 1 is a critical threshold separating two different outcomes. The disease-free equilibrium is globally stable if R₀ ≤ 1 and unstable if R₀ > 1. Additionally, we make some simulations where have confirmed that the model tends to this endemic equilibrium value with realistic parameter values giving an HCV prevalence.Keywords: hepatitis C, people who inject drugs, HCV, PWID
Procedia PDF Downloads 1439233 Whole Body Vibration and Low Back Disorder among Saskatchewan Farmers: A Prospective Cohort Study
Authors: Samuel Kwaku Essien, Catherine Trask, Niels Koehncke, Brenna Bath
Abstract:
Background: Low back disorder (LBD) is the most common musculoskeletal problem among farmers, with higher prevalence than other occupations. Operators of tractors and other farm machinery such as combines or all-terrain vehicles (ATV) can have considerable cumulative exposure to whole body vibration (WBV). Although there appears to be an association between LBD and WBV, lack of prospective studies makes the relationship between LBD and WBV unclear. Purpose: This study investigates the association between WBV and LBD among Saskatchewan farmers using a prospective cohort study Methods: The Saskatchewan Farm Injury Cohort Study Phase I (2007) and II (2013) data were used. Baseline data were collected via postal questionnaire on accumulated yearly tractor, combine, and ATV use as well as several covariates to support a biopsychosocial model of LBD. Follow-up data on musculoskeletal symptoms were collected for the 6-year with sample size of 1149. Questions on ‘low back trouble’ (ache, pain, discomfort) experienced in the last 12 months answered by farmer participants as ‘yes’ or ‘no’. A GEE-modified Poisson approach was performed using SPSS 22 and SAS 9.4. Results: Twelve-month Prevalence of LBD was 59.8%. In multivariate analysis of the 6-year follow-up, LBD was associated with ATV operation and tractor operation, with a dose-response relationship for annual accumulated tractor operation. Although combine operation ≥ 61 hrs/year was related to LBD in bivariate analysis, this difference did not persist after adjustment for confounder. Age was found to be a confounder in relationship between WBV and LBD and no interactions were found. Conclusion: Longer annual tractor operation and older age are important predictors of LBD symptoms in farmers. Future research involving direct measurement can help identify appropriate prevention strategies.Keywords: agriculture, low back disorder, low back pain, occupational health
Procedia PDF Downloads 3249232 Feeding Practices and Malnutrition among under Five Children in Communities of Kuje Area Council, Federal Capital Territory Abuja, Nigeria
Authors: Clementina Ebere Okoro, Olumuyiwa Adeyemi Owolabi, Doris Bola James, Aloysius Nwabugo Maduforo, Andrew Lingililani Mbewe, Christopher Osaruwanmwen Isokpunwu
Abstract:
Poor dietary practices and malnutrition, including severe acute malnutrition among under-five children in Nigeria has remained a great public health concern. This study assessed infant and young child feeding practices and nutritional status of under-five children to determine the prevalence of malnutrition of under-five children in Kuje area council, Abuja. The study was a cross-sectional study. Multi-stage sampling techniques was used in selecting the population that was studied. Probability proportion by size was applied in choosing 30 clusters for the survey using ENA for SMART software 2011 version. Questionnaires were used to obtain information from the population, while appropriate equipment was used for measurements of anthropometric parameters. The data was also subjected to statistical analysis. Results were presented in tables and figures. The result showed that 96.7% of the children were breastfed, 30.6% had early initiation to breastfeeding within first hour of birth and 22.4% were breastfed exclusively up to 6 months, 69.8% fed infants’ colostrum, while 30.2% discarded colostrum. About half of the respondents (49.1%) introduced complementary feeding before six months and 23.2% introduced it after six months while 27.7% had age appropriate timely introduction of complementary feeding. The anthropometric result showed that the prevalence of global acute malnutrition (GAM) was 12.8%, severe wasting prevalence was 5.4%, moderate wasting was 7.4%, underweight was 24.4%, stunting was 40.3% and overweight was 7.0%. The result showed that there is a high prevalence of malnutrition among under-five children in KujeKeywords: malnutrition, under five children, breastfeeding, complementary feeding
Procedia PDF Downloads 2649231 Exploring Fertility Dynamics in the MENA Region: Distribution, Determinants, and Temporal Trends
Authors: Dena Alhaloul
Abstract:
The Middle East and North Africa (MENA) region is characterized by diverse cultures, economies, and social structures. Fertility rates in MENA have seen significant changes over time, with variations among countries and subregions. Understanding fertility patterns in this region is essential due to its impact on demographic dynamics, healthcare, labor markets, and social policies. Rising or declining fertility rates have far-reaching consequences for the region's socioeconomic development. The main thrust of this study is to comprehensively examine fertility rates in the Middle East and North Africa (MENA) region. It aims to understand the distribution, determinants, and temporal trends of fertility rates in MENA countries. The study seeks to provide insights into the factors influencing fertility decisions, assess how fertility rates have evolved over time, and potentially develop statistical models to characterize these trends. As for the methodology of the study, the study uses descriptive statistics to summarize and visualize fertility rate data. It also uses regression analyses to identify determinants of fertility rates as well as statistical modeling to characterize temporal trends in fertility rates. The conclusion of this study The research will contribute to a deeper understanding of fertility dynamics in the MENA region, shedding light on the distribution of fertility rates, their determinants, and historical trends.Keywords: fertility, distribution, modeling, regression
Procedia PDF Downloads 789230 Stochastic Control of Decentralized Singularly Perturbed Systems
Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan
Abstract:
Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.Keywords: decentralized, optimal control, output, singular perturb
Procedia PDF Downloads 367