Search results for: automatic classification of tremor types
6923 Contemporary Living Spaces – Exploring, Differentiating, and Defining the Terms and Requirements of “Micro” and “Small” Homes in Bulgaria
Authors: Evgenia Dimova-Aleksandrova, Elitsa Deianova
Abstract:
Dynamic changes in modern life and habitation due to demographic, urban, technology, and ecological factors affect the size of modern homes leading to a trend of decreasing their area. The current paper aims to investigate the differences between “micro” homes and “small” homes. In Bulgaria, these two types are not included in legal regulations, and therefore, a precise definition and special requirements are needed and sought in order to include their characteristic features in contemporary individual habitation. The purpose of the current study is to determine limits in built-up volume for the two types, to create a definition of the terms “micro” and “small” home, and to find methods to distinguish them. A comparative analysis will differentiate these types of habitation units, thus determining the boundaries for the built-up area for both concepts. The analysis is based on a case study from European practices and is focused on defining minimal requirements for “micro” and “small” home in the context of contemporary demands for high quality habitation in limited areas.Keywords: Bulgaria, differentiation, micro home, requirements, small home
Procedia PDF Downloads 1006922 Quantitative Evaluation of Mitral Regurgitation by Using Color Doppler Ultrasound
Authors: Shang-Yu Chiang, Yu-Shan Tsai, Shih-Hsien Sung, Chung-Ming Lo
Abstract:
Mitral regurgitation (MR) is a heart disorder which the mitral valve does not close properly when the heart pumps out blood. MR is the most common form of valvular heart disease in the adult population. The diagnostic echocardiographic finding of MR is straightforward due to the well-known clinical evidence. In the determination of MR severity, quantification of sonographic findings would be useful for clinical decision making. Clinically, the vena contracta is a standard for MR evaluation. Vena contracta is the point in a blood stream where the diameter of the stream is the least, and the velocity is the maximum. The quantification of vena contracta, i.e. the vena contracta width (VCW) at mitral valve, can be a numeric measurement for severity assessment. However, manually delineating the VCW may not accurate enough. The result highly depends on the operator experience. Therefore, this study proposed an automatic method to quantify VCW to evaluate MR severity. Based on color Doppler ultrasound, VCW can be observed from the blood flows to the probe as the appearance of red or yellow area. The corresponding brightness represents the value of the flow rate. In the experiment, colors were firstly transformed into HSV (hue, saturation and value) to be closely align with the way human vision perceives red and yellow. Using ellipse to fit the high flow rate area in left atrium, the angle between the mitral valve and the ultrasound probe was calculated to get the vertical shortest diameter as the VCW. Taking the manual measurement as the standard, the method achieved only 0.02 (0.38 vs. 0.36) to 0.03 (0.42 vs. 0.45) cm differences. The result showed that the proposed automatic VCW extraction can be efficient and accurate for clinical use. The process also has the potential to reduce intra- or inter-observer variability at measuring subtle distances.Keywords: mitral regurgitation, vena contracta, color doppler, image processing
Procedia PDF Downloads 3706921 A Comprehensive Review on Health Hazards and Challenges for Microbial Remediation of Persistent Organic Pollutants
Authors: Nisha Gaur, K.Narasimhulu, Pydi Setty Yelamarthy
Abstract:
Persistent organic pollutants (POPs) have become a great concern due to their toxicity, transformation and bioaccumulation property. Therefore, this review highlights the types, sources, classification health hazards and mobility of organochlorine pesticides, industrial chemicals and their by-products. Moreover, with the signing of Aarhus and Stockholm convention on POPs there is an increased demand to identify and characterise such chemicals from industries and environment which are toxic in nature or to existing biota. Due to long life, persistent nature they enter into body through food and transfer to all tropic levels of ecological unit. In addition, POPs are lipophilic in nature and accumulate in lipid-containing tissues and organs which further indicates the adverse symptoms after the threshold limit. Though, several potential enzymes are reported from various categories of microorganism and their interaction with POPs may break down the complex compounds either through biodegradation, biostimulation or bioaugmentation process, however technological advancement and human activities have also indicated to explore the possibilities for the role of genetically modified organisms and metagenomics and metabolomics. Though many studies have been done to develop low cost, effective and reliable method for detection, determination and removal of ultra-trace concentration of persistent organic pollutants (POPs) but due to insufficient knowledge and non-feasibility of technique, the safe management of POPs is still a global challenge.Keywords: persistent organic pollutants, bioaccumulation, biostimulation, microbial remediation
Procedia PDF Downloads 2996920 Analysis of Big Data on Leisure Activities and Depression for the Disabled
Authors: Hee-Jung Seo, Yunjung Lee, Areum Han, Heeyoung Park, Se-Hyuk Park
Abstract:
The purpose of this study was to analyze the relationship between happiness and depression among people with disabilities and to analyze the social phenomenon of leisure activities among them to promote physical and leisure activities for people with disabilities. The research methods included analyzing differences in happiness according to depression classification. A total of 281 people with disabilities were analyzed using SPSS WIN Ver. 29.0. In addition, the SumTrend platform was used to analyze terms related to 'leisure activities for the disabled.' The findings can be summarized into two main points: First, there were significant differences in happiness according to depression classification. Second, there were 20 mentions before COVID-19, 34 mentions after COVID-19, and currently 43 mentions, with high positive rates observed in each period. Based on these results, the following conclusions were drawn: First, measures for people with disabilities include strengthening online resources and services, social distancing response policies, improving accessibility, and providing support and financial assistance. Second, measures for non-disabled individuals emphasize the need for education and information provision, promoting dialogue and interaction, ensuring accessibility, and promoting inclusive cultural awareness and attitude change.Keywords: leisure activities, individuals with disabilities, COVID-19 pandemic, depression
Procedia PDF Downloads 486919 Proteomic Analysis of Excretory Secretory Antigen (ESA) from Entamoeba histolytica HM1: IMSS
Authors: N. Othman, J. Ujang, M. N. Ismail, R. Noordin, B. H. Lim
Abstract:
Amoebiasis is caused by the Entamoeba histolytica and still endemic in many parts of the tropical region, worldwide. Currently, there is no available vaccine against amoebiasis. Hence, there is an urgent need to develop a vaccine. The excretory secretory antigen (ESA) of E. histolytica is a suitable biomarker for the vaccine candidate since it can modulate the host immune response. Hence, the objective of this study is to identify the proteome of the ESA towards finding suitable biomarker for the vaccine candidate. The non-gel based and gel-based proteomics analyses were performed to identify proteins. Two kinds of mass spectrometry with different ionization systems were utilized i.e. LC-MS/MS (ESI) and MALDI-TOF/TOF. Then, the functional proteins classification analysis was performed using PANTHER software. Combination of the LC -MS/MS for the non-gel based and MALDI-TOF/TOF for the gel-based approaches identified a total of 273 proteins from the ESA. Both systems identified 29 similar proteins whereby 239 and 5 more proteins were identified by LC-MS/MS and MALDI-TOF/TOF, respectively. Functional classification analysis showed the majority of proteins involved in the metabolic process (24%), primary metabolic process (19%) and protein metabolic process (10%). Thus, this study has revealed the proteome the E. histolytica ESA and the identified proteins merit further investigations as a vaccine candidate.Keywords: E. histolytica, ESA, proteomics, biomarker
Procedia PDF Downloads 3436918 Morphological Comparison of the Gustatory Papillae of New Zealand White Rabbits (Oryctolagus cuniculus) and Egyptian Fruit Bats (Rousettus aegyptiacus) Using Scanning Electron Microscopic Examinations
Authors: Mohamed Abumandour
Abstract:
This research presents a comparison of the morphological structure of the gustatory papillae in New Zealand white rabbits as domestic mammals and Egyptian fruit bats as wild mammals. In this study, the tongues of adult healthy New Zealand white rabbits and Egyptian fruit bats of both sexes were used. In the New Zealand white rabbits, there are three types of the gustatory papillae; fungiform, foliate and circumvallate papillae while the Egyptian fruit bats tongue contain only two types; fungiform and circumvallate papillae. In New Zealand white rabbits, there only one subtype is the round shape fungiform papillae while in Egyptian fruit bats, there are two subtypes; small rectangular fungiform papillae and large round fungiform papillae. In New Zealand white rabbits, there only two circumvallate papillae while in Egyptian fruit bats, there are three papillae. The shape, size, number, and distribution of the lingual papillae were varied according to their location within the tongue (region-specific) in relation to the feeding habits, strategies for obtaining food, climate conditions, and types of food particles.Keywords: morphology, circumvallate papillae, fungiform papillae, foliate papillae
Procedia PDF Downloads 2406917 Investigation of Irrigation Water Quality at Al-Wafra Agricultural Area, Kuwait
Authors: Mosab Aljeri, Ali Abdulraheem
Abstract:
The water quality of five water types at Al-Wuhaib farm, Al-Wafra area, was studies through onsite field measurements, including pH, temperature, electrical conductivity (EC), and dissolved oxygen (DO), for four different water types. Biweekly samples were collected and analyzed for two months to obtain data of chemicals, nutrients, organics, and heavy metals. The field and laboratory results were compared with irrigation standards of Kuwait Environmental Public Authority (KEPA). The pH values of the five samples sites were within the maximum and minimum limits of KEPA standards. Based on EC values, two groups of water types were observed. The first group represents freshwater quality originated from freshwater Ministry of Electricity & Water & Renewable Energy (MEWRE) line or from freshwater tanks or treated wastewater. The second group represents brackish water type originated from groundwater or treated water mixed with groundwater. The study indicated that all nitrogen forms (ammonia, Total Kjeldahl nitrogen (TKN), Total nitrogen (TN)), total phosphate concentrations and all tested heavy metals for the five water types were below KEPA standards. These macro and micro nutrients are essential for plant growth and can be used as fertilizers. The study suggest that the groundwater should be treated and disinfected in the farming area. Also, these type of studies shall be carried out routinely to all farm areas to ensure safe water use and safe agricultural produce.Keywords: salinity, heavy metals, ammonia, phosphate
Procedia PDF Downloads 876916 Influence of Moss Cover and Seasonality on Soil Microbial Biomass and Enzymatic Activity in Different Central Himalayan Temperate Forest Types
Authors: Anshu Siwach, Qianlai Zhuang, Ratul Baishya
Abstract:
Context: This study focuses on the influence of moss cover and seasonality on soil microbial biomass and enzymatic activity in different Central Himalayan temperate forest types. Soil microbial biomass and enzymes are key indicators of microbial communities in soil and provide information on soil properties, microbial status, and organic matter dynamics. The activity of microorganisms in the soil varies depending on the vegetation type and environmental conditions. Therefore, this study aims to assess the effects of moss cover, seasons, and different forest types on soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), and soil enzymatic activity in the Central Himalayas, Uttarakhand, India. Research Aim: The aim of this study is to evaluate the levels of SMBC, SMBN, and soil enzymatic activity in different temperate forest types under the influence of two ground covers (soil with and without moss cover) during the rainy and winter seasons. Question Addressed: This study addresses the following questions: 1. How does the presence of moss cover and seasonality affect soil microbial biomass and enzymatic activity? 2. What is the influence of different forest types on SMBC, SMBN, and enzymatic activity? Methodology: Soil samples were collected from different forest types during the rainy and winter seasons. The study utilizes the chloroform-fumigation extraction method to determine SMBC and SMBN. Standard methodologies are followed to measure enzymatic activities, including dehydrogenase, acid phosphatase, aryl sulfatase, β-glucosidase, phenol oxidase, and urease. Findings: The study reveals significant variations in SMBC, SMBN, and enzymatic activity under different ground covers, within the rainy and winter seasons, and among the forest types. Moss cover positively influences SMBC and enzymatic activity during the rainy season, while soil without moss cover shows higher values during the winter season. Quercus-dominated forests, as well as Cupressus torulosa forests, exhibit higher levels of SMBC and enzymatic activity, while Pinus roxburghii forests show lower levels. Theoretical Importance: The findings highlight the importance of considering mosses in forest management plans to improve soil microbial diversity, enzymatic activity, soil quality, and health. Additionally, this research contributes to understanding the role of lower plants, such as mosses, in influencing ecosystem dynamics. Conclusion: The study concludes that moss cover during the rainy season significantly influences soil microbial biomass and enzymatic activity. Quercus and Cupressus torulosa dominated forests demonstrate higher levels of SMBC and enzymatic activity, indicating the importance of these forest types in sustaining soil microbial diversity and soil health. Including mosses in forest management plans can improve soil quality and overall ecosystem dynamics.Keywords: moss cover, seasons, soil enzymes, soil microbial biomass, temperate forest types
Procedia PDF Downloads 676915 Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations
Authors: Kuei-Ling Sun, Emily Chia-Yu Su
Abstract:
Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence.Keywords: allergy, classification, decision tree, logistic regression, machine learning
Procedia PDF Downloads 3036914 A Coordination of Supply Chain Disruption in Different Types of Manufacturing Environments: A Case Study of Sugar Manufacturing Company
Authors: Max Moleke, Gilbert Mbonde
Abstract:
Coordinating supply chain process within a manufacturing environment is a very critical aspect of any organization. Nowadays, most manufacturing industries turn to look at only the financial indicator which in real life situation on the shop floor, there are a number of supply chain disruptions that are been ignored. In this work, we had to look at different types of supply chain disruption and their various impact within the organization. A number of Industrial engineering tools are employed which includes, Multifactor productivity, activity on arrow and rescheduling plans. The final result shows that supply chain disruption various with different geographical area where the production plant is operating.Keywords: supply chain, disruptions, flow shop scheduling, uncertainty
Procedia PDF Downloads 4296913 Building Bridges on Roads With Major Constructions
Authors: Mohamed Zaidour
Abstract:
In this summary, we are going to look in brief at the bridges and their building and construction on most roads and we have followed a simple method to explain each field clearly because the geographical and climatic diversity of an area leads to different methods and types of roads and installation engineering in other areas In mountain areas we need to build retaining walls in areas of rain. It needs to construct ferries to discharge water from roads in areas of temporary or permanent rivers. There is a need to build bridges and construct road installations in the process of collecting the necessary information, such as soil type. This information needs it, engineer, when designing the constructor and in this section, we will identify the types and methods of calculation bridge columns rules phrases the walls are chock.Keywords: bridges, buildings, concrete, constructions, roads
Procedia PDF Downloads 1196912 Represent Light and Shade of Old Beijing: Construction of Historical Picture Display Platform Based on Geographic Information System (GIS)
Authors: Li Niu, Jihong Liang, Lichao Liu, Huidi Chen
Abstract:
With the drawing of ancient palace painter, the layout of Beijing famous architect and the lens under photographers, a series of pictures which described whether emperors or ordinary people, whether gardens or Hutongs, whether historical events or life scenarios has emerged into our society. These precious resources are scattered around and preserved in different places Such as organizations like archives and libraries, along with individuals. The research combined decentralized photographic resources with Geographic Information System (GIS), focusing on the figure, event, time and location of the pictures to map them with geographic information in webpage and to display them productively. In order to meet the demand of reality, we designed a metadata description proposal, which is referred to DC and VRA standards. Another essential procedure is to formulate a four-tier classification system to correspond with the metadata proposals. As for visualization, we used Photo Waterfall and Time Line to display our resources in front end. Last but not the least, leading the Web 2.0 trend, the research developed an artistic, friendly, expandable, universal and user involvement platform to show the historical and culture precipitation of Beijing.Keywords: historical picture, geographic information system, display platform, four-tier classification system
Procedia PDF Downloads 2706911 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis
Authors: Tawfik Thelaidjia, Salah Chenikher
Abstract:
Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approachKeywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement
Procedia PDF Downloads 4376910 TutorBot+: Automatic Programming Assistant with Positive Feedback based on LLMs
Authors: Claudia Martínez-Araneda, Mariella Gutiérrez, Pedro Gómez, Diego Maldonado, Alejandra Segura, Christian Vidal-Castro
Abstract:
The purpose of this document is to showcase the preliminary work in developing an EduChatbot-type tool and measuring the effects of its use aimed at providing effective feedback to students in programming courses. This bot, hereinafter referred to as tutorBot+, was constructed based on chatGPT and is tasked with assisting and delivering timely positive feedback to students in the field of computer science at the Universidad Católica de Concepción. The proposed working method consists of four stages: (1) Immersion in the domain of Large Language Models (LLMs), (2) Development of the tutorBot+ prototype and integration, (3) Experiment design, and (4) Intervention. The first stage involves a literature review on the use of artificial intelligence in education and the evaluation of intelligent tutors, as well as research on types of feedback for learning and the domain of chatGPT. The second stage encompasses the development of tutorBot+, and the final stage involves a quasi-experimental study with students from the Programming and Database labs, where the learning outcome involves the development of computational thinking skills, enabling the use and measurement of the tool's effects. The preliminary results of this work are promising, as a functional chatBot prototype has been developed in both conversational and non-conversational versions integrated into an open-source online judge and programming contest platform system. There is also an exploration of the possibility of generating a custom model based on a pre-trained one tailored to the domain of programming. This includes the integration of the created tool and the design of the experiment to measure its utility.Keywords: assessment, chatGPT, learning strategies, LLMs, timely feedback
Procedia PDF Downloads 686909 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method
Authors: Dangut Maren David, Skaf Zakwan
Abstract:
Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.Keywords: prognostics, data-driven, imbalance classification, deep learning
Procedia PDF Downloads 1746908 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction
Authors: Ling Qi, Matloob Khushi, Josiah Poon
Abstract:
This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning
Procedia PDF Downloads 1276907 An Analysis of Illocutioary Act in Martin Luther King Jr.'s Propaganda Speech Entitled 'I Have a Dream'
Authors: Mahgfirah Firdaus Soberatta
Abstract:
Language cannot be separated from human life. Humans use language to convey ideas, thoughts, and feelings. We can use words for different things for example like asserted, advising, promise, give opinions, hopes, etc. Propaganda is an attempt which seeks to obtain stable behavior to adopt everyone to his everyday life. It also controls the thoughts and attitudes of individuals in social settings permanent. In this research, the writer will discuss about the speech act in a propaganda speech delivered by Martin Luther King Jr. in Washington at Lincoln Memorial on August 28, 1963. 'I Have a Dream' is a public speech delivered by American civil rights activist MLK, he calls from an end to racism in USA. In this research, the writer uses Searle theory to analyze the types of illocutionary speech act that used by Martin Luther King Jr. in his propaganda speech. In this research, the writer uses a qualitative method described in descriptive, because the research wants to describe and explain the types of illocutionary speech acts used by Martin Luther King Jr. in his propaganda speech. The findings indicate that there are five types of speech acts in Martin Luther King Jr. speech. MLK also used direct speech and indirect speech in his propaganda speech. However, direct speech is the dominant speech act that MLK used in his propaganda speech. It is hoped that this research is useful for the readers to enrich their knowledge in a particular field of pragmatic speech acts.Keywords: speech act, propaganda, Martin Luther King Jr., speech
Procedia PDF Downloads 4416906 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home
Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.Keywords: situation-awareness, smart home, IoT, machine learning, classifier
Procedia PDF Downloads 4226905 Application of Principle Component Analysis for Classification of Random Doppler-Radar Targets during the Surveillance Operations
Authors: G. C. Tikkiwal, Mukesh Upadhyay
Abstract:
During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving army, moving convoys etc. The Radar operator selects one of the promising targets into Single Target Tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper we present a technique using mathematical and statistical methods like Fast Fourier Transformation (FFT) and Principal Component Analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.Keywords: radar target, fft, principal component analysis, eigenvector, octave-notes, dsp
Procedia PDF Downloads 3466904 Accidents Involving Pedestrians Walking along with/against Traffic: An Evaluation of Crash Characteristics and Injuries
Authors: Chih-Wei Pai, Rong-Chang Jou
Abstract:
Using A1 A2 police-reported accident data for years 2003–2010 in Taiwan, the paper examines anatomic injuries and crash characteristics specific to pedestrians in “facing traffic” and “back to traffic” crashes. There were 2768 and 7558 accidents involving pedestrians walking along with/against traffic respectively. Injuries sustained by pedestrians and crash characteristics in these two crash types were compared with those in other crash types (nearside crash, nearside dart-out crash, offside crash, offside dart-out crash). Main findings include that “back to traffic” crashes resulted in more severe injuries, and pedestrians in “back to traffic” crashes had increased head, neck, and spine injuries than those in other crash types; and there was an elevated risk of head injuries in unlit darkness and NBU (non-built-up) roadways. Several crash features (e.g. unlit darkness, overtaking maneuvers, phone use by pedestrians and drivers, intoxicated drivers) appear to be over-involved in “back to traffic” crashes. The implications of the research findings regarding pedestrian/driver education, enforcement, and remedial engineering design are discussed.Keywords: pedestrian accident, crash characteristics, injury, facing traffic, back to traffic
Procedia PDF Downloads 3776903 Investigation of Vibration in Diesel-Fueled Motoblocks in the Case of Supplying Different Types of Fuel Mixture
Authors: Merab Mamuladze, Mixeil Lejava, Fadiko Abuselidze
Abstract:
At present, where most of the soils of Georgia have a small contour, the demand for small-capacity technical means, in particular motoblocks, has increased. Motoblocks perform agricultural work for various purposes, where the work process is performed by the operator, who experiences various magnitudes of vibration, impact, noise, and in general, as a result of long-term work production, causes body damage, dynamic load, and respiratory diseases in people. In the scientific paper, the dependence on the vibration of different types of diesel fuel is investigated in the case of five different revolutions in the internal combustion engine. Studies have shown that fuel and engine speed are the only risk factors that contradict the ISO 5349-2(2004) international standard. The experience of four years of work studies showed that 10% of operators received various types of injuries as a result of working with motoblocks. Experiments also showed that the amount of vibration decreases when the number of revolutions of the engine increases, and in the case of using biodiesel fuel, the damage risk factor is 5-10%, and in the case of using conventional diesel, this indicator has gone up to 20%.Keywords: engine, vibration, biodiesel, high risk factor, working conditions
Procedia PDF Downloads 806902 Factors Influencing the Adoption of Interpersonal Communication Media to Maximize Business Competitiveness among Small and Medium Enterprises in Hong Kong: Industry Types and Entrepreneur Characteristics
Authors: Olivine Lo
Abstract:
Small- and Medium-Sized Enterprises (SMEs) consist of a broad variety of businesses, ranging from small grocery shops to manufacturing concerns. Some are dynamic and innovative, while others are more traditional. The definition of SMEs varies by country but is most determined by the number of employees, though business assets and sales revenues are alternative measures. There are eight main types of SME industries in Hong Kong: garment, electronics, plastics, metal and machinery, trading and logistics, building, manufacturing, and service industries. Information exchange is a key goal of human communication, and communicators have used a variety of media to maintain relationships through traditional face-to-face interactions and written forms like letters and faxes. With the advancement of mediated-interpersonal communication media from telephone to synchronic online tools like email, instant messaging, voice messaging, and video conferencing for sustaining relationships, particularly enabling geographically distanced relationships. Although these synchronous tools are gaining popularity, they are facilitating relationship maintenance in everyday life and complementing rather than replacing the more conventional face-to-face interactions. This study will test if there are any variances in effects by industry type among Hong Kong SMEs. The competitiveness of the business environment refers to the competition faced by a business within its particular industry. The more intense the competition in a given sector, the greater the potential for strategic uses of specific needs in a business. Both internal organization characteristics and external environments may affect firm performance and financial resources. The level of competitiveness within an industry will be a more reliable indicator to show how Hong Kong SMEs are striving to achieve their business goals using different techniques in their communication media preferences, rather than mere classification by industry type. This study thus divides the competitiveness of the business environment into internal and external: (1) the internal environment competition is the inherent competitiveness of the products or services provided by the SMEs, whereas (2) the external environment competition includes the economic and political realities and competitors joining the market. This study will test various organizational characteristics and competitiveness of the business environment to predict entrepreneurs’ communication media preferences.Keywords: competitiveness of business environment, small- and medium-sized enterprises, organizational characteristics, communication media preference
Procedia PDF Downloads 306901 Principle Component Analysis on Colon Cancer Detection
Authors: N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Rita Magdalena, R. D. Atmaja, Sofia Saidah, Ocky Tiaramukti
Abstract:
Colon cancer or colorectal cancer is a type of cancer that attacks the last part of the human digestive system. Lymphoma and carcinoma are types of cancer that attack human’s colon. Colon cancer causes deaths about half a million people every year. In Indonesia, colon cancer is the third largest cancer case for women and second in men. Unhealthy lifestyles such as minimum consumption of fiber, rarely exercising and lack of awareness for early detection are factors that cause high cases of colon cancer. The aim of this project is to produce a system that can detect and classify images into type of colon cancer lymphoma, carcinoma, or normal. The designed system used 198 data colon cancer tissue pathology, consist of 66 images for Lymphoma cancer, 66 images for carcinoma cancer and 66 for normal / healthy colon condition. This system will classify colon cancer starting from image preprocessing, feature extraction using Principal Component Analysis (PCA) and classification using K-Nearest Neighbor (K-NN) method. Several stages in preprocessing are resize, convert RGB image to grayscale, edge detection and last, histogram equalization. Tests will be done by trying some K-NN input parameter setting. The result of this project is an image processing system that can detect and classify the type of colon cancer with high accuracy and low computation time.Keywords: carcinoma, colorectal cancer, k-nearest neighbor, lymphoma, principle component analysis
Procedia PDF Downloads 2056900 Cultural Transformation in Interior Design in Commercial Space in India
Authors: Siddhi Pedamkar, Reenu Singh
Abstract:
This report is based on how a culture transforms from one era to another era in commercial space. This transformation is observed in commercial as well as residential spaces. The spaces have specific color concepts, surface detailing furniture, and function-specific layouts. But the cultural impact is very rarely seen in commercial spaces, mostly because the interior is divine by function to a large extent. Information was collected from books and research papers. A quantitative survey was conducted to understand people's perceptions about the impact of culture on design entities and how culture dictates the different types of space and their character. The survey also highlights the impact of types of interior lighting, colour schemes, and furniture types on the interior environment. The questionnaire survey helped in framing design parameters for contemporary interior design. The design parameters are used to propose design options for new-age furniture that can be used in co-working spaces. For the new and contemporary working spaces, new age design furniture, interior elements such as visual partition, semi-visual partition, lighting, and layout can be transformed by cultural changes in the working style of people and organization.Keywords: commercial space, culture, environment, furniture, interior
Procedia PDF Downloads 1176899 Explainable Graph Attention Networks
Authors: David Pham, Yongfeng Zhang
Abstract:
Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.Keywords: explainable AI, graph attention network, graph neural network, node classification
Procedia PDF Downloads 1996898 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques
Authors: Joseph Wolff, Jeffrey Eilbott
Abstract:
Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences
Procedia PDF Downloads 2096897 Influence of Metakaolin and Cements Types on Compressive Strength and Transport Properties of Self-Consolidating Concrete
Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi
Abstract:
The self-consolidating concrete (SCC) performance over ordinary concrete is generally related to the ingredients used. The metakaolin can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three types of Portland cement and metakaolin on compressive strength and transport properties of SCC at early ages and up to 90 days. Six concrete mixtures were prepared with three types of different cements and substitution of 15% metakaolin. The results show that the highest value of compressive strength was achieved for Portland Slag Cement (PSC) and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for Pozzolanic Portland Cement (PPC) and containing 15% metakaolin. As can be seen in the results, compressive strength in SCC containing Portland cement type II with metakaolin is higher compared to that relative to SCC without metakaolin from 28 days of age. On the other hand, the samples containing PSC and PPC with metakaolin had a lower compressive strength than the plain samples. Therefore, it can be concluded that metakaolin has a negative effect on the compressive strength of SCC containing PSC and PPC. In addition, results show that metakaolin has enhanced chloride durability of SCCs and reduced capillary water absorption at 28, 90 days.Keywords: SCC, metakaolin, cement type, compressive strength, chloride diffusion
Procedia PDF Downloads 2206896 ICT Training Programs in Tourism and Hospitality Institutes: An Analytical Study of Types, Effectiveness, and Graduate Perceived Importance
Authors: Magdy Abdel-Aleem Abdel-Ati Mayouf, Islam Al Sayed Hussein Al Sayed
Abstract:
Development of tourism and hospitality faculties' graduates is a key to the future health of hospitality and tourism sectors. Meanwhile information and communication technologies (ICTs) increasingly become the driving engine for productivity improvement and business opportunities in tourism and hospitality industry. Tourism and hospitality education and training must address these developments to enhance the ability of future managers to adopt a variety of ICT tools and strategies to increase their organization's efficiency and competitiveness. Therefore, this study aims to explore the types and effectiveness of ICT training offered by faculties of tourism and hotels in Egypt, and evaluating the importance of that training from the graduate's point of view. The study targets the graduates who graduated in the present ten years from three different faculties of tourism and hotels. Results argued the types, levels and effectiveness of ICT training offered in these faculties and the extent to which training programs were appreciated by graduates working in different fields, and finally, it recommended particular practices to enhance the training efficiency and raising the perceived benefits of it for workers in tourism and hospitality fields.Keywords: training, IT, graduated, tourism and hospitality, education
Procedia PDF Downloads 3626895 Object Detection in Digital Images under Non-Standardized Conditions Using Illumination and Shadow Filtering
Authors: Waqqas-ur-Rehman Butt, Martin Servin, Marion Pause
Abstract:
In recent years, object detection has gained much attention and very encouraging research area in the field of computer vision. The robust object boundaries detection in an image is demanded in numerous applications of human computer interaction and automated surveillance systems. Many methods and approaches have been developed for automatic object detection in various fields, such as automotive, quality control management and environmental services. Inappropriately, to the best of our knowledge, object detection under illumination with shadow consideration has not been well solved yet. Furthermore, this problem is also one of the major hurdles to keeping an object detection method from the practical applications. This paper presents an approach to automatic object detection in images under non-standardized environmental conditions. A key challenge is how to detect the object, particularly under uneven illumination conditions. Image capturing conditions the algorithms need to consider a variety of possible environmental factors as the colour information, lightening and shadows varies from image to image. Existing methods mostly failed to produce the appropriate result due to variation in colour information, lightening effects, threshold specifications, histogram dependencies and colour ranges. To overcome these limitations we propose an object detection algorithm, with pre-processing methods, to reduce the interference caused by shadow and illumination effects without fixed parameters. We use the Y CrCb colour model without any specific colour ranges and predefined threshold values. The segmented object regions are further classified using morphological operations (Erosion and Dilation) and contours. Proposed approach applied on a large image data set acquired under various environmental conditions for wood stack detection. Experiments show the promising result of the proposed approach in comparison with existing methods.Keywords: image processing, illumination equalization, shadow filtering, object detection
Procedia PDF Downloads 2166894 Performance Analysis of New Types of Reference Targets Based on Spaceborne and Airborne SAR Data
Authors: Y. S. Zhou, C. R. Li, L. L. Tang, C. X. Gao, D. J. Wang, Y. Y. Guo
Abstract:
Triangular trihedral corner reflector (CR) has been widely used as point target for synthetic aperture radar (SAR) calibration and image quality assessment. The additional “tip” of the triangular plate does not contribute to the reflector’s theoretical RCS and if it interacts with a perfectly reflecting ground plane, it will yield an increase of RCS at the radar bore-sight and decrease the accuracy of SAR calibration and image quality assessment. Regarding this problem, two types of CRs were manufactured. One was the hexagonal trihedral CR. It is a self-illuminating CR with relatively small plate edge length, while large edge length usually introduces unexpected edge diffraction error. The other was the triangular trihedral CR with extended bottom plate which considers the effect of ‘tip’ into the total RCS. In order to assess the performance of the two types of new CRs, flight campaign over the National Calibration and Validation Site for High Resolution Remote Sensors was carried out. Six hexagonal trihedral CRs and two bottom-extended trihedral CRs, as well as several traditional triangular trihedral CRs, were deployed. KOMPSAT-5 X-band SAR image was acquired for the performance analysis of the hexagonal trihedral CRs. C-band airborne SAR images were acquired for the performance analysis of the bottom-extended trihedral CRs. The analysis results showed that the impulse response function of both the hexagonal trihedral CRs and bottom-extended trihedral CRs were much closer to the ideal sinc-function than the traditional triangular trihedral CRs. The flight campaign results validated the advantages of new types of CRs and they might be useful in the future SAR calibration mission.Keywords: synthetic aperture radar, calibration, corner reflector, KOMPSAT-5
Procedia PDF Downloads 272