Search results for: Flow-3D numerical model
7064 Who Am I at Work: Work Identity Formation
Authors: Carol Belle-Hallsworth
Abstract:
Human interaction at work evolves over time and, with it, work identity. The social identity is built upon the development of its underpinning and preceding stages. Work identity can be viewed in the same way and will shift based on changes in the work environment and challenges to the work identity (threats to the four stages). This paper provides an analysis of how the stages of trust, autonomy, industry and initiative are related to the employee identity at work. Describing how they are related to each other and the development of identity. It has become common to notice changes in employee behavior during and after major operational changes in an organization. Previous studies suggest that there are emotional triggers that result in the new behaviors displayed. This study seeks to test a theoretical model by testing the relationship between the first four Erikson stages as constructs. A randomized sample of participants undertook a self-administered survey to capture information on trust, autonomy, initiative, and industry.Keywords: work identity, change management, organizational management, technology implementation
Procedia PDF Downloads 3117063 The Adaptive Role of Negative Emotions in Optimal Functioning
Authors: Brianne Nichols, John A. Parkinson
Abstract:
Positive Psychology has provided a rich understanding of the beneficial effects of positive emotions in relation to optimal functioning, and research has been devoted to promote states of positive feeling and thinking. While this is a worthwhile pursuit, positive emotions are not useful in all contexts - some situations may require the individual to make use of their negative emotions to reach a desired end state. To account for the potential value of a wider range of emotional experiences that are common to the human condition, Positive Psychology needs to expand its horizons and investigate how individuals achieve positive outcomes using varied means. The current research seeks to understand the positive psychology of fear of failure (FF), which is a commonly experienced negative emotion relevant to most life domains. On the one hand, this emotion has been linked with avoidance motivation and self-handicap behaviours, on the other; FF has been shown to act as a drive to move the individual forward. To fully capture the depth of this highly subjective emotional experience and understand the circumstances under which FF may be adaptive, this study adopted a mixed methods design using SenseMaker; a web-based tool that combines the richness of narratives with the objectivity of numerical data. Two hundred participants consisting mostly of undergraduate university students shared a story of a time in the recent past when they feared failure of achieving a valued goal. To avoid researcher bias in the interpretation of narratives, participants self-signified their stories in a tagging system that was based on researchers’ aim to explore the role of past failures, the cognitive, emotional and behavioural profile of individuals high and low in FF, and the relationship between these factors. In addition, the role of perceived personal control and self-esteem were investigated in relation to FF using self-report questionnaires. Results from quantitative analyses indicated that individuals with high levels of FF, compared to low, were strongly influenced by past failures and preoccupied with their thoughts and emotions relating to the fear. This group also reported an unwillingness to accept their internal experiences, which in turn was associated with withdrawal from goal pursuit. Furthermore, self-esteem was found to mediate the relationship between perceived control and FF, suggesting that self-esteem, with or without control beliefs, may have the potential to buffer against high FF. It is hoped that the insights provided by the current study will inspire future research to explore the ways in which ‘acceptance’ may help individuals keep moving towards a goal despite the presence of FF, and whether cultivating a non-contingent self-esteem is the key to resilience in the face of failures.Keywords: fear of failure, goal-pursuit, negative emotions, optimal functioning, resilience
Procedia PDF Downloads 1987062 The Effect of Microgrid on Power System Oscillatory Stability
Authors: Burak Yildirim, Muhsin Tunay Gencoglu
Abstract:
This publication shows the effects of Microgrid (MG) integration on the power systems oscillating stability. Generated MG model power systems were applied to the IEEE 14 bus test system which is widely used in stability studies. Stability studies were carried out with the help of eigenvalue analysis over linearized system models. In addition, Hopf bifurcation point detection was performed to show the effect of MGs on the system loadability margin. In the study results, it is seen that MGs affect system stability positively by increasing system loadability margin and has a damper effect on the critical modes of the system and the electromechanical local modes, but they make the damping amount of the electromechanical interarea modes reduce.Keywords: Eigenvalue analysis, microgrid, Hopf bifurcation, oscillatory stability
Procedia PDF Downloads 2957061 Modelling of Hydric Behaviour of Textiles
Authors: A. Marolleau, F. Salaun, D. Dupont, H. Gidik, S. Ducept.
Abstract:
The goal of this study is to analyze the hydric behaviour of textiles which can impact significantly the comfort of the wearer. Indeed, fabrics can be adapted for different climate if hydric and thermal behaviors are known. In this study, fabrics are only submitted to hydric variations. Sorption and desorption isotherms obtained from the dynamic vapour sorption apparatus (DVS) are fitted with the parallel exponential kinetics (PEK), the Hailwood-Horrobin (HH) and the Brunauer-Emmett-Teller (BET) models. One of the major finding is the relationship existing between PEK and HH models. During slow and fast processes, the sorption of water molecules on the polymer can be in monolayer and multilayer form. According to the BET model, moisture regain, a physical property of textiles, show a linear correlation with the total amount of water taken in monolayer. This study provides potential information of the end uses of these fabrics according to the selected activity level.Keywords: comfort, hydric properties, modelling, underwears
Procedia PDF Downloads 1537060 X-Ray and DFT Electrostatics Parameters Determination of a Coumarin Derivative Compound C17H13NO3
Authors: Y. Megrous, A. Chouaih, F. Hamzaoui
Abstract:
The crystal structure of 4-Methyl-7-(salicylideneamino)coumarin C17H13NO3has been determined using X-ray diffraction to establish the configuration and stereochemistry of the molecule. This crystal is characterized by its nolinear activity. The molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the molecular dipole moment in-crystal have been determined in order to understand the nature of inter-and intramolecular charge transfer. The study present the thermal motion and the structural analysis obtained from the least-square refinement on F2,this study has also allowed us to determine the electrostatic potential and therefore locate the electropositive part and the electronegative part in molecular scale of the title compound.Keywords: electron charge density, net atomic charge, molecular dipole moment, X-ray diffraction
Procedia PDF Downloads 4637059 Policy Implications of Demographic Impacts on COVID-19, Pneumonia, and Influenza Mortality: A Multivariable Regression Approach to Death Toll Reduction
Authors: Saiakhil Chilaka
Abstract:
Understanding the demographic factors that influence mortality from respiratory diseases like COVID-19, pneumonia, and influenza is crucial for informing public health policy. This study utilizes multivariable regression models to assess the relationship between state, sex, and age group on deaths from these diseases using U.S. data from 2020 to 2023. The analysis reveals that age and sex play significant roles in mortality, while state-level variations are minimal. Although the model’s low R-squared values indicate that additional factors are at play, this paper discusses how these findings, in light of recent research, can inform future public health policy, resource allocation, and intervention strategies.Keywords: COVID-19, multivariable regression, public policy, data science
Procedia PDF Downloads 277058 Fractal-Wavelet Based Techniques for Improving the Artificial Neural Network Models
Authors: Reza Bazargan lari, Mohammad H. Fattahi
Abstract:
Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for pre-processing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based pre-processing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.Keywords: wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN
Procedia PDF Downloads 3757057 Air Access Liberalisation and Tourism Trade Evidence from a Sids
Authors: Seetanah Boopen, R. V. Sannassee
Abstract:
The objective of the present study is two-fold. Firstly, to assess the impact of air access liberalization on tourism demand for Mauritius and secondly to analyses the dual impact of the interplay between air access liberalization and marketing promotion efforts on tourism demand. Using an Autoregressive Distributed Lag model, the results suggest that air access liberalization is an important ingredient, albeit to a lesser extent as compared to other classical explanatory variables, of tourism demand. The results also highlight the fact that Mauritius is perceived as a luxurious destination and tourists are deemed price sensitive. Moreover, our dynamic approach interestingly confirms the presence of repeat tourism in the island. Finally, the findings also uncover the positive impact of the interplay between air access liberalization and marketing promotion efforts on fostering tourism demand.Keywords: air access liberalization, ARDL, SIDS, time series
Procedia PDF Downloads 3127056 Heat Distribution Simulation on Transformer Using FEMM Software
Authors: N. K. Mohd Affendi, T. A. R. Tuan Abdullah, S. A. Syed Mustaffa
Abstract:
In power industry transformer is an important component and most of us familiar by the functioning principle of a transformer electrically. There are many losses occur during the operation of a transformer that causes heat generation. This heat, if not dissipated properly will reduce the lifetime and effectiveness of the transformer. Transformer cooling helps in maintaining the temperature rise of various paths. This paper proposed to minimize the ambient temperature of the transformer room in order to lower down the temperature of the transformer. A simulation has been made using finite element methods programs called FEMM (Finite Elements Method Magnetics) to create a virtual model based on actual measurement of a transformer. The generalization of the two-dimensional (2D) FEMM results proves that by minimizing the ambient temperature, the heat of the transformer is decreased. The modeling process and of the transformer heat flow has been presented.Keywords: heat generation, temperature rise, ambient temperature, FEMM
Procedia PDF Downloads 4087055 To Study the Performance of FMS under Different Manufacturing Strategies
Authors: Mohammed Ali
Abstract:
A flexible manufacturing system has been studied under different manufacturing strategies. The aim of this paper is to test the impact of number of pallets and routing flexibility (design strategy) on system performance operating at different sequencing and dispatching rules (control strategies) at unbalanced load condition (planning strategies). A computer simulation model is developed to evaluate the effects of aforementioned strategies on the make-span time, which is taken as the system performance measure. The impact of number of pallets is shown with the different levels of routing flexibility. In this paper, the same manufacturing system is modeled under different combination of sequencing and dispatching rules. The result of the simulation shows that there is definite range of pallets for each level of routing flexibility at which the systems performs satisfactorily.Keywords: flexible manufacturing system, manufacturing, strategy, makespan
Procedia PDF Downloads 6697054 A Green Analytical Curriculum for Renewable STEM Education
Authors: Mian Jiang, Zhenyi Wu
Abstract:
We have incorporated green components into existing analytical chemistry curriculum with the aims to present a more environment benign approach in both teaching laboratory and undergraduate research. These include the use of cheap, sustainable, and market-available material; minimized waste disposal, replacement of non-aqueous media; and scale-down in sample/reagent consumption. Model incorporations have covered topics in quantitative chemistry as well as instrumental analysis, lower division as well as upper level, and research in traditional titration, spectroscopy, electrochemical analysis, and chromatography. The green embedding has made chemistry more daily life relevance, and application focus. Our approach has the potential to expand into all STEM fields to make renewable, high-impact education experience for undergraduate students.Keywords: green analytical chemistry, pencil lead, mercury, renewable
Procedia PDF Downloads 3437053 Binary Programming for Manufacturing Material and Manufacturing Process Selection Using Genetic Algorithms
Authors: Saleem Z. Ramadan
Abstract:
The material selection problem is concerned with the determination of the right material for a certain product to optimize certain performance indices in that product such as mass, energy density, and power-to-weight ratio. This paper is concerned about optimizing the selection of the manufacturing process along with the material used in the product under performance indices and availability constraints. In this paper, the material selection problem is formulated using binary programming and solved by genetic algorithm. The objective function of the model is to minimize the total manufacturing cost under performance indices and material and manufacturing process availability constraints.Keywords: optimization, material selection, process selection, genetic algorithm
Procedia PDF Downloads 4237052 Simulation of Low Cycle Fatigue Behaviour of Nickel-Based Alloy at Elevated Temperatures
Authors: Harish Ramesh Babu, Marco Böcker, Mario Raddatz, Sebastian Henkel, Horst Biermann, Uwe Gampe
Abstract:
Thermal power machines are subjected to cyclic loading conditions under elevated temperatures. At these extreme conditions, the durability of the components has a significant influence. The material mechanical behaviour has to be known in detail for a failsafe construction. For this study a nickel-based alloy is considered, the deformation and fatigue behaviour of the material is analysed under cyclic loading. A viscoplastic model is used for calculating the deformation behaviour as well as to simulate the rate-dependent and cyclic plasticity effects. Finally, the cyclic deformation results of the finite element simulations are compared with low cycle fatigue (LCF) experiments.Keywords: complex low cycle fatigue, elevated temperature, fe-simulation, viscoplastic
Procedia PDF Downloads 2407051 Modern and Postmodern Marketing Approaches to Consumer Loyalty in Case of Indonesia Real Estate Developer
Authors: Lincoln Panjaitan, Antonius Sumarlin
Abstract:
The development of property businesses in the metropolitan area is growing rapidly forcing big real estate developers to come up with various strategies in winning the heart of consumers. This empirical research is focusing on how the two schools of marketing thoughts; namely, Modern and postmodern marketing employed by the preceding developers to retain consumers’ commitment toward their prospective brands. The data was collected from three different properties of PT. Intiland Tbk using accidental sampling technique. The data of 600 respondents was then put into Structural Equation Model (SEM). The result of the study suggests that both schools of thought can equally produce commitment and loyalty of consumers; however, the difference lays where the loyalty belongs to. The first is more toward developer’s brand and the latter is more toward the co-creation value of the housing community.Keywords: consumer loyalty, consumer commitment, knowledge sharing platform, marketing mix
Procedia PDF Downloads 3467050 Stochastic Default Risk Estimation Evidence from the South African Financial Market
Authors: Mesias Alfeus, Kirsty Fitzhenry, Alessia Lederer
Abstract:
The present paper provides empirical studies to estimate defaultable bonds in the South African financial market. The main goal is to estimate the unobservable factors affecting bond yields for South African major banks. The maximum likelihood approach is adopted for the estimation methodology. Extended Kalman filtering techniques are employed in order to tackle the situation that the factors cannot be observed directly. Multi-dimensional Cox-Ingersoll-Ross (CIR)-type factor models are considered. Results show that default risk increased sharply in the South African financial market during COVID-19 and the CIR model with jumps exhibits a better performance.Keywords: default intensity, unobservable state variables, CIR, α-CIR, extended kalman filtering
Procedia PDF Downloads 1177049 The Aspect of the Digital Formation in the Solar Community as One Prototype to Find the Algorithmic Sustainable Conditions in the Global Environment
Authors: Kunihisa Kakumoto
Abstract:
Purpose: The global environmental problem is now raised in the global dimension. The sprawl phenomenon over the natural limitation is to be made a forecast beforehand in an algorithmic way so that the condition of our social life can hopefully be protected under the natural limitation. The sustainable condition in the globe is now to be found to keep the balance between the capacity of nature and the possibility of our social lives. The amount of water on the earth is limited. Therefore, on the reason, sustainable conditions are strongly dependent on the capacity of water. The amount of water can be considered in relation to the area of the green planting because a certain volume of the water can be obtained in the forest, where the green planting can be preserved. We can find the sustainable conditions of the water in relation to the green planting area. The reduction of CO₂ by green planting is also possible. Possible Measure and the Methods: Until now, by the opportunity of many international conferences, the concept of the solar community as one prototype has been introduced by technical papers. The algorithmic trial calculation on the basic concept of the solar community can be taken into consideration. The concept of the solar community is based on the collected data of the solar model house. According to the algorithmic results of the prototype, the simulation work in the globe can be performed as the algorithmic conversion results. This algorithmic study can be simulated by the amount of water, also in relation to the green planting area. Additionally, the submission of CO₂ in the solar community and the reduction of CO₂ by green planting can be calculated. On the base of these calculations in the solar community, the sustainable conditions on the globe can be simulated as the conversion results in an algorithmic way. The digital formation in the solar community can also be taken into consideration by this opportunity. Conclusion: For the finding of sustainable conditions around the globe, the solar community as one prototype has been taken into consideration. The role of the water is very important because the capacity of the water supply is very limited. But, at present, the cycle of the social community is not composed by the point of the natural mechanism. The simulative calculation of this study can be shown by the limitation of the total water supply. According to this process, the total capacity of the water supply and the capable residential number of the population and the areas can be taken into consideration by the algorithmic calculation. For keeping enough water, the green planting areas are very important. The planting area is also very important to keep the balance of CO₂. The simulative calculation can be performed by the relation between the submission and the reduction of CO₂ in the solar community. For the finding of this total balance and the sustainable conditions, the green planting area and the total amount of water can be recognized by the algorithmic simulative calculation. The study for the finding of sustainable conditions can be performed by the simulative calculations on the algorithmic model in the solar community as one prototype. The example of one prototype can be in balance. The activity of the social life must be in the capacity of the natural mechanism. The capable capacity of the natural environment in our world is very limited.Keywords: the solar community, the sustainable condition, the natural limitation, the algorithmic calculation
Procedia PDF Downloads 1167048 The Nature of Intelligence and Its Forms: An Ontological-Modeling Approach
Authors: Husam El-Asfour, Fateh Adhnouss, Kenneth McIsaac, Abdul Mutalib Wahaishi, Raafat Aburukba, Idris El-Feghia
Abstract:
Although intelligence is commonly referred to as the observable behavior in various fields and domains, it must also be shown how it develops by exhibiting multiple forms and without observing the inherent behavior. There have been several official and informal definitions of intelligence in various areas; however, no scientific agreement on a definition has been agreed upon. There must be a single definition, structure, and precise modeling for articulating how intelligence is perceived by people and machines in order to comprehend intelligence. Another key challenge is defining the different environment types based on the integral elements (agents) and their possible interactions. On the basis of conceptualization, this paper proposes a formal model for defining and developing intelligence. Forms of intelligence are derived from an ontological view, and thus intelligence is defined, described, and modeled based on the various types of environments.Keywords: intelligence, forms, transformation, conceptualization, ontological view
Procedia PDF Downloads 1477047 Developing and Managing an Institutional Repository in a Nigerian University Library: The Futa Experience
Authors: Belau Olatunde Gbadamosi, Oluchi Okere
Abstract:
Spurred by the ease of access to and the cost-effectiveness of open-source software such as DSpace, EPrints, and Greenstone Digital Libraries for hosting digital content, many libraries have added institutional repositories (IRs) to their repertoire of digital assets. This paper adopts a qualitative approach based on focus group discussions and the system development life cycle model (SDLC) to describe the experience of Albert Ilemobade Library (the Federal University of Technology Akure, Nigeria (FUTA) in the development of their IR - FUTASpace. Peculiar challenges experienced in the course of the development and solutions adopted are also reported. This study will serve as a reference point to other institutions, particularly those operating in developing countries, which may be poorly funded.Keywords: institutional repository, digital libraries, university libraries, DSpace
Procedia PDF Downloads 1817046 Atypical Retinoid ST1926 Nanoparticle Formulation Development and Therapeutic Potential in Colorectal Cancer
Authors: Sara Assi, Berthe Hayar, Claudio Pisano, Nadine Darwiche, Walid Saad
Abstract:
Nanomedicine, the application of nanotechnology to medicine, is an emerging discipline that has gained significant attention in recent years. Current breakthroughs in nanomedicine have paved the way to develop effective drug delivery systems that can be used to target cancer. The use of nanotechnology provides effective drug delivery, enhanced stability, bioavailability, and permeability, thereby minimizing drug dosage and toxicity. As such, the use of nanoparticle (NP) formulations in drug delivery has been applied in various cancer models and have shown to improve the ability of drugs to reach specific targeted sites in a controlled manner. Cancer is one of the major causes of death worldwide; in particular, colorectal cancer (CRC) is the third most common type of cancer diagnosed amongst men and women and the second leading cause of cancer related deaths, highlighting the need for novel therapies. Retinoids, consisting of natural and synthetic derivatives, are a class of chemical compounds that have shown promise in preclinical and clinical cancer settings. However, retinoids are limited by their toxicity and resistance to treatment. To overcome this resistance, various synthetic retinoids have been developed, including the adamantyl retinoid ST1926, which is a potent anti-cancer agent. However, due to its limited bioavailability, the development of ST1926 has been restricted in phase I clinical trials. We have previously investigated the preclinical efficacy of ST1926 in CRC models. ST1926 displayed potent inhibitory and apoptotic effects in CRC cell lines by inducing early DNA damage and apoptosis. ST1926 significantly reduced the tumor doubling time and tumor burden in a xenograft CRC model. Therefore, we developed ST1926-NPs and assessed their efficacy in CRC models. ST1926-NPs were produced using Flash NanoPrecipitation with the amphiphilic diblock copolymer polystyrene-b-ethylene oxide and cholesterol as a co-stabilizer. ST1926 was formulated into NPs with a drug to polymer mass ratio of 1:2, providing a stable formulation for one week. The contin ST1926-NP diameter was 100 nm, with a polydispersity index of 0.245. Using the MTT cell viability assay, ST1926-NP exhibited potent anti-growth activities as naked ST1926 in HCT116 cells, at pharmacologically achievable concentrations. Future studies will be performed to study the anti-tumor activities and mechanism of action of ST1926-NPs in a xenograft mouse model and to detect the compound and its glucuroconjugated form in the plasma of mice. Ultimately, our studies will support the use of ST1926-NP formulations in enhancing the stability and bioavailability of ST1926 in CRC.Keywords: nanoparticles, drug delivery, colorectal cancer, retinoids
Procedia PDF Downloads 1057045 Reduction of Impulsive Noise in OFDM System using Adaptive Algorithm
Authors: Alina Mirza, Sumrin M. Kabir, Shahzad A. Sheikh
Abstract:
The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.Keywords: OFDM, impulsive noise, SSRLS, BER
Procedia PDF Downloads 4617044 Measuring Oxygen Transfer Coefficients in Multiphase Bioprocesses: The Challenges and the Solution
Authors: Peter G. Hollis, Kim G. Clarke
Abstract:
Accurate quantification of the overall volumetric oxygen transfer coefficient (KLa) is ubiquitously measured in bioprocesses by analysing the response of dissolved oxygen (DO) to a step change in the oxygen partial pressure in the sparge gas using a DO probe. Typically, the response lag (τ) of the probe has been ignored in the calculation of KLa when τ is less than the reciprocal KLa, failing which a constant τ has invariably been assumed. These conventions have now been reassessed in the context of multiphase bioprocesses, such as a hydrocarbon-based system. Here, significant variation of τ in response to changes in process conditions has been documented. Experiments were conducted in a 5 L baffled stirred tank bioreactor (New Brunswick) in a simulated hydrocarbon-based bioprocess comprising a C14-20 alkane-aqueous dispersion with suspended non-viable Saccharomyces cerevisiae solids. DO was measured with a polarographic DO probe fitted with a Teflon membrane (Mettler Toledo). The DO concentration response to a step change in the sparge gas oxygen partial pressure was recorded, from which KLa was calculated using a first order model (without incorporation of τ) and a second order model (incorporating τ). τ was determined as the time taken to reach 63.2% of the saturation DO after the probe was transferred from a nitrogen saturated vessel to an oxygen saturated bioreactor and is represented as the inverse of the probe constant (KP). The relative effects of the process parameters on KP were quantified using a central composite design with factor levels typical of hydrocarbon bioprocesses, namely 1-10 g/L yeast, 2-20 vol% alkane and 450-1000 rpm. A response surface was fitted to the empirical data, while ANOVA was used to determine the significance of the effects with a 95% confidence interval. KP varied with changes in the system parameters with the impact of solid loading statistically significant at the 95% confidence level. Increased solid loading reduced KP consistently, an effect which was magnified at high alkane concentrations, with a minimum KP of 0.024 s-1 observed at the highest solids loading of 10 g/L. This KP was 2.8 fold lower that the maximum of 0.0661 s-1 recorded at 1 g/L solids, demonstrating a substantial increase in τ from 15.1 s to 41.6 s as a result of differing process conditions. Importantly, exclusion of KP in the calculation of KLa was shown to under-predict KLa for all process conditions, with an error up to 50% at the highest KLa values. Accurate quantification of KLa, and therefore KP, has far-reaching impact on industrial bioprocesses to ensure these systems are not transport limited during scale-up and operation. This study has shown the incorporation of τ to be essential to ensure KLa measurement accuracy in multiphase bioprocesses. Moreover, since τ has been conclusively shown to vary significantly with process conditions, it has also been shown that it is essential for τ to be determined individually for each set of process conditions.Keywords: effect of process conditions, measuring oxygen transfer coefficients, multiphase bioprocesses, oxygen probe response lag
Procedia PDF Downloads 2697043 Energy Efficient Heterogeneous System for Wireless Sensor Networks (WSN)
Authors: José Anderson Rodrigues de Souza, Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, Jeronimo Silva Rocha
Abstract:
Mobile devices are increasingly occupying sectors of society and one of its most important features is mobility. However, the use of mobile devices is subject to the lifetime of the batteries. Thus, the use of energy batteries has become an important issue in the study of wireless network technologies. In this context, new solutions that enable aggregate energy efficiency not only through energy saving, and principally they are evaluated from a more realistic model of energy discharge, if easy adaptation to existing protocols. This paper presents a study on the energy needed and the lifetime for Wireless Sensor Networks (WSN) using a heterogeneous network and applying the LEACH protocol.Keywords: wireless sensor networks, energy efficiency, heterogeneous, LEACH protocol
Procedia PDF Downloads 5867042 Simulations of Cryogenic Cavitation of Low Temperature Fluids with Thermodynamics Effects
Authors: A. Alhelfi, B. Sunden
Abstract:
Cavitation in cryogenic liquids is widely present in contemporary science. In the current study, we re-examine a previously validated acoustic cavitation model which was developed for a gas bubble in liquid water. Furthermore, simulations of cryogenic fluids including the thermal effect, the effect of acoustic pressure amplitude and the frequency of sound field on the bubble dynamics are presented. A gas bubble (Helium) in liquids Nitrogen, Oxygen and Hydrogen in an acoustic field at ambient pressure and low temperature is investigated numerically. The results reveal that the oscillation of the bubble in liquid Hydrogen fluctuates more than in liquids Oxygen and Nitrogen. The oscillation of the bubble in liquids Oxygen and Nitrogen is approximately similar.Keywords: cryogenic liquids, cavitation, rocket engineering, ultrasound
Procedia PDF Downloads 3237041 Non-Destructive Prediction System Using near Infrared Spectroscopy for Crude Palm Oil
Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim
Abstract:
Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of predictive models has facilitated the estimation process in recent years. In this research, 176 crude palm oil (CPO) samples acquired from Felda Johor Bulker Sdn Bhd were studied. A FOSS NIRSystem was used to tak e absorbance measurements from the sample. The wavelength range for the spectral measurement is taken at 1600nm to 1900nm. Partial Least Square Regression (PLSR) prediction model with 50 optimal number of principal components was implemented to study the relationship between the measured Free Fatty Acid (FFA) values and the measured spectral absorption. PLSR showed predictive ability of FFA values with correlative coefficient (R) of 0.9808 for the training set and 0.9684 for the testing set.Keywords: palm oil, fatty acid, NIRS, PLSR
Procedia PDF Downloads 2147040 Perceptions of Chinese Top-up Students Transitioning through a Regional UK University: A Longitudinal Study Using the U-Curve Model
Authors: Xianghan O'Dea
Abstract:
This article argues an urgent need to better understand the personal experiences of Chinese top-up students studying in the UK since the number of Chinese students taking year-long top-up programmes in the UK has risen rapidly in recent years. This lack of knowledge could potentially have implications for the reputation of some UK institutions and also the attractiveness of the UK higher education sector to future international students. This longitudinal study explored the academic and social experiences of twelve Chinese top-up students in a UK institution in-depth and revealed that the students felt their experiences were influenced significantly by their surrounding contexts at the macro and meso levels, which, however, have been largely overlooked in existing research. This article suggests the importance of improving the communications between the partner institutions in China and the UK, and also providing sufficient pre-departure and after arrival support to Chinese top-up students at the institutional level.Keywords: articulation agreements, Chinese top-up students, top-up programmes, U-curve
Procedia PDF Downloads 1767039 Drivers of E-Participation: Case of Saudi Arabia
Authors: R. Alrashedi, A. Persaud
Abstract:
This study provides insights into the readiness of users to participate in e-government activities in Saudi Arabia. A user-centric model of e-participation is developed based on a review of the literature and empirically tested. The findings are based on an online survey of a sample of 200 hundred Saudi citizens and residents living in Saudi Arabia. The study found that trust of the government, attitude towards e-participation, e-participation through the use of social media, and social influence and social identity positively influence e-participation while perceived benefits of e-government is negatively related to e-participation. This study contributes to the literature by providing empirical evidence of the drivers of e-participation. The study also provides insights that could be used by policymakers to increase the level of e-participation in Saudi Arabia.Keywords: e-government, e-participation, social media, trust, social influence and social identity
Procedia PDF Downloads 4677038 Application of an Artificial Neural Network to Determine the Risk of Malignant Tumors from the Images Resulting from the Asymmetry of Internal and External Thermograms of the Mammary Glands
Authors: Amdy Moustapha Drame, Ilya V. Germashev, E. A. Markushevskaya
Abstract:
Among the main problems of medicine is breast cancer, from which a significant number of women around the world are constantly dying. Therefore, the detection of malignant breast tumors is an urgent task. For many years, various technologies for detecting these tumors have been used, in particular, in thermal imaging in order to determine different levels of breast cancer development. These periodic screening methods are a diagnostic tool for women and may have become an alternative to older methods such as mammography. This article proposes a model for the identification of malignant neoplasms of the mammary glands by the asymmetry of internal and external thermal imaging fields.Keywords: asymmetry, breast cancer, tumors, deep learning, thermogram, convolutional transformation, classification
Procedia PDF Downloads 677037 Optimization of Slider Crank Mechanism Using Design of Experiments and Multi-Linear Regression
Authors: Galal Elkobrosy, Amr M. Abdelrazek, Bassuny M. Elsouhily, Mohamed E. Khidr
Abstract:
Crank shaft length, connecting rod length, crank angle, engine rpm, cylinder bore, mass of piston and compression ratio are the inputs that can control the performance of the slider crank mechanism and then its efficiency. Several combinations of these seven inputs are used and compared. The throughput engine torque predicted by the simulation is analyzed through two different regression models, with and without interaction terms, developed according to multi-linear regression using LU decomposition to solve system of algebraic equations. These models are validated. A regression model in seven inputs including their interaction terms lowered the polynomial degree from 3rd degree to 1st degree and suggested valid predictions and stable explanations.Keywords: design of experiments, regression analysis, SI engine, statistical modeling
Procedia PDF Downloads 1887036 Economic and Technical Study for Hybrid (PV/Wind) Power System in the North East of Algeria
Authors: Nabila Louai, Fouad Khaldi, Houria Benharchache
Abstract:
In this paper, the case of meeting a household’s electrical energy demand with hybrid systems has been examined. The objective is to study technological feasibility and economic viability of the electrification project by a hybrid system (PV/ wind) of a residential home located in Batna-Algeria and to reduce the emissions from traditional power by using renewable energy. An autonomous hybrid wind/photovoltaic (PV)/battery power system and a PV/Wind grid connected system, has been carried out using Hybrid Optimization Model for Electric Renewable (HOMER) simulation software. As a result, it has been found that electricity from the grid can be supplied at a lower price than electricity from renewable energy at this moment.Keywords: batna, household, hybrid system, renewable energy, techno-economy
Procedia PDF Downloads 6057035 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost
Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku
Abstract:
Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost
Procedia PDF Downloads 116