Search results for: wind turbulence
437 Dynamics of the Moving Ship at Complex and Sudden Impact of External Forces
Authors: Bo Liu, Liangtian Gao, Idrees Qasim
Abstract:
The impact of the storm leads to accidents even in the case of vessels that meet the computed safety criteria for stability. That is why, in order to clarify the causes of the accident and shipwreck, it is necessary to study the dynamics of the ship under the complex sudden impact of external forces. The task is to determine the movement and landing of the ship in the complex and sudden impact of external forces, i.e. when the ship's load changes over a relatively short period of time. For the solution, a technique was used to study the ship's dynamics, which is based on the compilation of a system of differential equations of motion. A coordinate system was adopted for the equation of motion of the hull and the determination of external forces. As a numerical method of integration, the 4th order Runge-Kutta method was chosen. The results of the calculation show that dynamic deviations were lower for high-altitude vessels. The study of the movement of the hull under a difficult situation is performed: receiving of cargo, impact of a flurry of wind and subsequent displacement of the cargo. The risk of overturning and flooding was assessed.Keywords: dynamics, statics, roll, trim, vertical displacement, dynamic load, tilt
Procedia PDF Downloads 223436 Design, Control and Autonomous Trajectory Tracking of an Octorotor Rotorcraft
Authors: Seyed Jamal Haddadi, M. Reza Mehranpour, Roya Sadat Mortazavi, Zahra Sadat Mortazavi
Abstract:
Principal aim of this research is trajectory tracking, attitude and position control scheme in real flight mode by an Octorotor helicopter. For more stability, in this Unmanned Aerial Vehicle (UAV), number of motors is increased to eight motors which end of each arm installed two coaxial counter rotating motors. Dynamic model of this Octorotor includes of motion equation for translation and rotation. Utilized controller is proportional-integral-derivative (PID) control loop. The proposed controller is designed such that to be able to attenuate an effect of external wind disturbance and guarantee stability in this condition. The trajectory is determined by a Global Positioning System (GPS). Also an ARM CortexM4 is used as microprocessor. Electronic board of this UAV designed as able to records all of the sensors data, similar to an aircraft black box in external memory. Finally after auto landing of Octorotor, flight data is shown in MATLAB software and Experimental results of the proposed controller show the effectiveness of our approach on the Autonomous Quadrotor in real conditions.Keywords: octorotor, design, PID controller, autonomous, trajectory tracking
Procedia PDF Downloads 306435 Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon
Authors: M. Salmanpour, O. Nourani Zonouz
Abstract:
In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator’s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased.Keywords: CFD, corona discharge, electro hydrodynamics, flow around square cylinders, simulation
Procedia PDF Downloads 473434 Correlation between Fuel Consumption and Voyage Related Ship Operational Energy Efficiency Measures: An Analysis from Noon Data
Authors: E. Bal Beşikçi, O. Arslan
Abstract:
Fuel saving has become one of the most important issue for shipping in terms of fuel economy and environmental impact. Lowering fuel consumption is possible for both new ships and existing ships through enhanced energy efficiency measures, technical and operational respectively. The limitations of applying technical measures due to the long payback duration raise the potential of operational changes for energy efficient ship operations. This study identifies operational energy efficiency measures related voyage performance management. We use ‘noon’ data to examine the correlation between fuel consumption and operational parameters- revolutions per minute (RPM), draft, trim, (beaufort number) BN and relative wind direction, which are used as measures of ship energy efficiency. The results of this study reveal that speed optimization is the most efficient method as fuel consumption depends heavily on RPM. In conclusion, this study will provide ship operators with the strategic approach for evaluating the priority of the operational energy efficiency measures against high fuel prices and carbon emissions.Keywords: ship, voyage related operational energy Efficiency measures, fuel consumption, pearson's correlation coefficient
Procedia PDF Downloads 616433 Reliability Based Investigation on the Choice of Characteristic Soil Properties
Authors: Jann-Eike Saathoff, Kirill Alexander Schmoor, Martin Achmus, Mauricio Terceros
Abstract:
By using partial factors of safety, uncertainties due to the inherent variability of the soil properties and loads are taken into account in the geotechnical design process. According to the reliability index concept in Eurocode-0 in conjunction with Eurocode-7 a minimum safety level of β = 3.8 for reliability class RC2 shall be established. The reliability of the system depends heavily on the choice of the prespecified safety factor and the choice of the characteristic soil properties. The safety factors stated in the standards are mainly based on experience. However, no general accepted method for the calculation of a characteristic value within the current design practice exists. In this study, a laterally loaded monopile is investigated and the influence of the chosen quantile values of the deterministic system, calculated with p-y springs, will be presented. Monopiles are the most common foundation concepts for offshore wind energy converters. Based on the calculations for non-cohesive soils, a recommendation for an appropriate quantile value for the necessary safety level according to the standards for a deterministic design is given.Keywords: asymptotic sampling, characteristic value, monopile foundation, probabilistic design, quantile values
Procedia PDF Downloads 146432 An Approach towards Elementary Investigation on HCCI Technology
Authors: Jitendra Sharma
Abstract:
Here a Homogeneous Charge is used as in a spark-ignited engine, but the charge is compressed to auto ignition as in a diesel. The main difference compared with the Spark Ignition (SI) engine is the lack of flame propagation and hence the independence from turbulence. Compared with the diesel engine. HCCI has a homogeneous charge and have no problems associated with soot and Nox but HC and CO were higher than in SI mode. It was not possible to achieve high IMEP (Indicated Mean Effective Pressure) values with HCCI. The Homogeneous charge compression ignition (HCCI) is an attractive technology because of its high efficiency and low emissions. However, HCCI lakes a direct combustion trigger making control of combustion timing challenging, especially during transients. To aid in HCCI engine control we present a simple model of the HCCI combustion process valid over a range of intake pressures, intake temperatures, equivalence ratios and engine speeds. HCCI a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low Knox and particulate matter emissions. The homogenous charge compression ignition (HCCI) is a promising new engine technology that combines elements of the diesel and gasoline engine operating cycles. HCCI as a way to increase the efficiency of the gasoline engine. The attractive properties are increased fuel efficiency due to reduced throttling losses, increased expansion ratio and higher thermodynamic efficiency. With the advantages there are some mechanical limitations to the operation of the HCCI engine. The implementation of homogenous charge compression ignition (HCCI) to gasoline engines is constrained by many factors. The main drawback of HCCI is the absence of direct combustion timing control. Therefore all the right conditions for auto ignition have to be set before combustion starts. This paper describes the past and current research done on HCCI engine. Many research got considerable success in doing detailed modeling of HCCI combustion. This paper aims at studying the fundamentals of HCCI combustion, the strategy to control the limitation of HCCI engine.Keywords: HCCI, diesel engine, combustion, elementary investigation
Procedia PDF Downloads 444431 Aeroelastic Analysis of Nonlinear All-Movable Fin with Freeplay in Low-Speed
Authors: Laith K. Abbas, Xiaoting Rui, Pier Marzocca
Abstract:
Aerospace systems, generally speaking, are inherently nonlinear. These nonlinearities may modify the behavior of the system. However, nonlinearities in an aeroelastic system can be divided into structural and aerodynamic. Structural nonlinearities can be subdivided into distributed and concentrated ones. Distributed nonlinearities are spread over the whole structure representing the characteristic of materials and large motions. Concentrated nonlinearities act locally, representing loose of attachments, worn hinges of control surfaces, and the presence of external stores. The concentrated nonlinearities can be approximated by one of the classical structural nonlinearities, namely, cubic, free-play and hysteresis, or by a combination of these, for example, a free-play and a cubic one. Compressibility, aerodynamic heating, separated flows and turbulence effects are important aspects that result in nonlinear aerodynamic behavior. An issue related to the low-speed flutter and its catastrophic/benign character represented by Limit Cycle Oscillation (LCO) of all-movable fin, as well to their control is addressed in the present work. To the approach of this issue: (1) Quasi-Steady (QS) Theory and Computational Fluid Dynamics (CFD) of subsonic flow are implemented, (2) Flutter motion equations of a two-dimensional typical section with cubic nonlinear stiffness in the pitching direction and free play gap are established, (3) Uncoupled bending/torsion frequencies of the selected fin are computed using recently developed Transfer Matrix Method of Multibody System Dynamics (MSTMM), and (4) Time simulations are carried out to study the bifurcation behavior of the aeroelastic system. The main objective of this study is to investigate how the LCO and chaotic behavior are influenced by the coupled aeroelastic nonlinearities and intend to implement a control capability enabling one to control both the flutter boundary and its character. By this way, it may expand the operational envelop of the aerospace vehicle without failure.Keywords: aeroelasticity, CFD, MSTMM, flutter, freeplay, fin
Procedia PDF Downloads 371430 Developing Emission Factors of Fugitive Particulate Matter Emissions for Construction Sites in the Middle East Area
Authors: Hala A. Hassan, Vasiliki K. Tsiouri, Konstantinos E. Konstantinos
Abstract:
Fugitive particulate matter (PM) is a major source of airborne pollution in the Middle East countries. The meteorological conditions and topography of the area make it highly susceptible to wind-blown particles which raise many air quality concerns. Air quality tools such as field monitoring, emission factors, and dispersion modeling have been used in previous research studies to analyze the release and impacts of fugitive PM in the region. However, these tools have been originally developed based on experiments made for European and North American regions. In this work, an experimental campaign was conducted on April-May 2014 in a construction site in Doha city, Qatar. The ultimate goal is to evaluate the applicability of the existing emission factors for construction sites in dry and arid areas like the Middle East. This publication was made possible by a NPRP award [NPRP 7-649-2-241] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.Keywords: particulate matter, emissions, fugitive, construction, air pollution
Procedia PDF Downloads 353429 Structural Health Monitoring of Buildings and Infrastructure
Authors: Mojtaba Valinejadshoubi, Ashutosh Bagchi, Osama Moselhi
Abstract:
Structures such as buildings, bridges, dams, wind turbines etc. need to be maintained against various factors such as deterioration, excessive loads, environment, temperature, etc. Choosing an appropriate monitoring system is important for determining any critical damage to a structure and address that to avoid any adverse consequence. Structural Health Monitoring (SHM) has emerged as an effective technique to monitor the health of the structures. SHM refers to an ongoing structural performance assessment using different kinds of sensors attached to or embedded in the structures to evaluate their integrity and safety to help engineers decide on rehabilitation measures. Ability of SHM in identifying the location and severity of structural damages by considering any changes in characteristics of the structures such as their frequency, stiffness and mode shapes helps engineers to monitor the structures and take the most effective corrective actions to maintain their safety and extend their service life. The main objective of this study is to review the overall SHM process specifically determining the natural frequency of an instrumented simply-supported concrete beam using modal testing and finite element model updating.Keywords: structural health monitoring, natural frequency, modal analysis, finite element model updating
Procedia PDF Downloads 342428 Magnetic End Leakage Flux in a Spoke Type Rotor Permanent Magnet Synchronous Generator
Authors: Petter Eklund, Jonathan Sjölund, Sandra Eriksson, Mats Leijon
Abstract:
The spoke type rotor can be used to obtain magnetic flux concentration in permanent magnet machines. This allows the air gap magnetic flux density to exceed the remanent flux density of the permanent magnets but gives problems with leakage fluxes in the magnetic circuit. The end leakage flux of one spoke type permanent magnet rotor design is studied through measurements and finite element simulations. The measurements are performed in the end regions of a 12 kW prototype generator for a vertical axis wind turbine. The simulations are made using three dimensional finite elements to calculate the magnetic field distribution in the end regions of the machine. Also two dimensional finite element simulations are performed and the impact of the two dimensional approximation is studied. It is found that the magnetic leakage flux in the end regions of the machine is equal to about 20% of the flux in the permanent magnets. The overestimation of the performance by the two dimensional approximation is quantified and a curve-fitted expression for its behavior is suggested.Keywords: end effects, end leakage flux, permanent magnet machine, spoke type rotor
Procedia PDF Downloads 335427 Power System Modeling for Calculations in Frequency and Steady State Domain
Authors: G. Levacic, A. Zupan
Abstract:
Application of new technological solutions and installation of new elements into the network requires special attention when investigating its interaction with the existing power system. Special attention needs to be devoted to the occurrence of harmonic resonance. Sources of increasing harmonic penetration could be wind power plants, Flexible Alternating Current Transmission System (FACTS) devices, underground and submarine cable installations etc. Calculation in frequency domain with various software, for example, the software for power systems transients EMTP-RV presents one of the most common ways to obtain the harmonic impedance of the system. Along calculations in frequency domain, such software allows performing of different type of calculations as well as steady-state domain. This paper describes a power system modeling with software EMTP-RV based on data from SCADA/EMS system. The power flow results on 220 kV and 400 kV voltage levels retrieved from EMTP-RV are verified by comparing with power flow results from power transmissions system planning software PSS/E. The determination of the harmonic impedance for the case of remote power plant connection with cable up to 2500 Hz is presented as an example of calculations in frequency domain.Keywords: power system modeling, frequency domain, steady state, EMTP-RV, PSS/E
Procedia PDF Downloads 323426 Effects of Convective Momentum Transport on the Cyclones Intensity: A Case Study
Authors: José Davi Oliveira De Moura, Chou Sin Chan
Abstract:
In this study, the effect of convective momentum transport (CMT) on the life of cyclone systems and their organization is analyzed. A case of strong precipitation, in the southeast of Brazil, was simulated using Eta model with two kinds of convective parameterization: Kain-Fritsch without CMT and Kain-fritsch with CMT. Reanalysis data from CFSR were used to compare Eta model simulations. The Wind, mean sea level pressure, rain and temperature are included in analysis. The rain was evaluated by Equitable Threat Score (ETS) and Bias Index; the simulations were compared among themselves to detect the influence of CMT displacement on the systems. The result shows that CMT process decreases the intensity of meso cyclones (higher pressure values on nuclei) and change the positions and production of rain. The decrease of intensity in meso cyclones should be caused by the dissolution of momentum from lower levels from up levels. The rain production and rain distribution were altered because the displacement of the larger systems scales was changed. In addition, the inclusion of CMT process is very important to improve the simulation of life time of meteorological systems.Keywords: convection, Kain-Fritsch, momentum, parameterization
Procedia PDF Downloads 325425 Control of Single Axis Magnetic Levitation System Using Fuzzy Logic Control
Authors: A. M. Benomair, M. O. Tokhi
Abstract:
This paper presents the investigation on a system model for the stabilization of a Magnetic Levitation System (Maglev’s). The magnetic levitation system is a challenging nonlinear mechatronic system in which an electromagnetic force is required to suspend an object (metal sphere) in air space. The electromagnetic force is very sensitive to the noise which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev’s give the contribution in industry and this system has reduce the power consumption, has increase the power efficiency and reduce the cost maintenance. The common applications for Maglev’s Power Generation (e.g. wind turbine), Maglev’s trains and Medical Device (e.g. Magnetically suspended Artificial Heart Pump). This paper presents the comparison between dynamic response and robust characteristic for both conventional PD and Fuzzy PD controller. The main contribution of this paper is the proof of fuzzy PD type stabilization and robustness. By use of a method to tune the scaling factors of the linear PD type fuzzy controller from an equivalent tuned conventional PD.Keywords: magnetic levitation system, PD controller, Fuzzy Logic Control, Fuzzy PD
Procedia PDF Downloads 275424 Incidence and Prevalence of Dry Eye Syndrome in Different Occupational Sector of Society
Authors: Vergeena Varghese, G. Gajalakshmi, Jayarajini Vasanth
Abstract:
The present study deals with the indication of prevalence of dry eye and evaluates environmental risk factors attributed to dry eye in different occupational sectors. 240 subjects above 20 years and below 45 years of age were screened for dry eye. Mcmonnies dry eye questionnaire based history and Schirmer’s test were used to diagnose dry eye. For Schirmer’s test Whatman strip and paracaine drop used as an anesthetic. Subject’s demographics include age, sex, smoking, alcoholism, occupation history and working environment. Out of a total of 240 subjects, 52 subjects were positive for dry eye syndrome (21.7%). The highest prevalence of dry eye syndrome in software sector was 14subjects (26.9%) out of a total of 40 subjects. In the construction sector, the prevalence of dry eye syndrome had 12 subjects (23.1%) out of 40 subjects and 9 subjects (17.3%) out of 40 subjects in agriculture sector. 7 subjects (13.5%) who had dry eye out of 40 subjects in the transport sector and in industrial 6 subjects (11.5%). In a normal sector, this was taken as control group had dry eye in 4 subjects (7.7%) out of 40 subjects. We also found the prevalence of dry eye in OS was higher than OD. Dry eye is a most common ocular condition. The highest prevalence of dry eye syndrome in software sector was 14 members than other sector. There was a significant correlation between environmental and occupational factors to cause dry eye. Excessive exposure to sunlight, wind, high temperature, and air pollution, electromagnetic radiation are the factors affect the tear film and ocular surface causing the dry eye syndrome.Keywords: DES – dry eye syndrome, Mcmonnies dry eye questionnaire, schirmer’s test, whatman vstrip
Procedia PDF Downloads 469423 Survey the Effects of Climate in Traditional and Modern Architecture of Iran
Authors: Yousefali Ziari, Hamidreza Joudaki
Abstract:
Humans have regularly been interacting with their environment, and have a close relation with their environment. House as a shelter which protects us against hot and cold weather and the other climatic occurrences in the environment has a close relation with climate. Before human could have access to the fossil fuels, preparing the comfort for the house was done by adjusting the building according to the climate conditions, and the help of natural resources. However after the man could access the fossil fuel, this way was forgotten, and caused much use of energy for heating & cooling. This research is trying to find some methods for designing suitable building that create comfort fitting with the zone by studying the climate condition of Arak city and as a result to find a way to reduce the use of energy and improving the design. So for the aim of this research we have used the statistics and information such as temperature, rain, wind and the approximate moisture from a period of 40 years from synoptic station of Arak. After specifying the climate of Arak by the use of effective temperature, Ulgi, Guni, Mahani and Ovenz indicator, we investigated the climate comfort conditions and the harmonious architecture with the climate and then some suggestion was given according to the climate situation of each month of the year and quality of human comfort according to this indicators.Keywords: climate, architecture, traditional and modern architecture, comfort indicator, Arak city
Procedia PDF Downloads 479422 Development of a Nanocompound Based Fibre to Combat Insects
Authors: Merle Bischoff, Thomas Gries, Gunnar Seide
Abstract:
Pesticides, which harm crop enemies, but can also interfere with the human body, are nowadays mostly used for crop spraying. Silica particles (SiO2) in the nanometer and micrometer scale offer a physical way to combat insects without harming humans and other mammals. Thereby, they allow foregoing pesticides, which can harm the environment. As silica particles are supplied as a powder or in a suspension to farmers, the silica use in large scale agriculture is not sufficient due to erosion through wind and rain. When silica is implemented in a textile’s surface (nanocompound), particles are locally bound and do resist erosion, but can function against bugs. By choosing polypropylene as a matrix polymer, the production of an inexpensive agritextile with an 'anti-bug' effect is made possible. In the Symposium the results of the manufacturing and filament spinning of silica nanocomposites from a polypropylene basis is compared to the fabrication from nanocomposites based on Polybutylene succinate, a biodegradable composite. The investigation focuses on the difference between degradable nanocomposite and stable nanocomposite. Focus will be laid on the filament characteristics as well as the degradation of the nanocompound to underline their potential use and application as an agricultural textile.Keywords: agriculture, environment, insects, protection, silica, textile, nanocomposite
Procedia PDF Downloads 249421 Chemical and Physical Modification of Carbon Fiber Reinforced Polymers Based on Thermoplastic Acrylic Resin
Authors: Kamil Dydek, Szymon Demski, Kamil Majchrowicz, Paulina Kozera, Bogna Sztorch, Dariusz Brząkalski, Zuzanna Krawczyk, Robert Przekop, Anna Boczkowska
Abstract:
Thanks to their excellent properties, i.e. high stiffness and strength in relation to their weight, corrosion resistance, and low thermal expansion, Carbon Fiber Reinforced Polymers (CFRPs) are a group of materials readily used in many industrial sectors, e.g. aviation, automotive, wind energy. Conventional CFRPs also have their disadvantages, namely, relatively low electrical conductivity and brittle cracking. To counteract this, a thermoplastic acrylic resin was proposed, which was further modified by the addition of organosilicon compounds and multi-walled carbon nanotubes (MWCNTs). The addition of the organosilicon compounds was aimed at improving the dispersion of the MWCNTs and obtaining good adhesion between the resin and the carbon fibre, where the MWCNTs were used as a conductive filler. In addition, during the fabrication of laminates using the infusion method, thermoplastic nonwovens doped with MWCNTs were placed between the carbon reinforcement layers to achieve a synergistic effect with an increase in electrical and mechanical properties.Keywords: CFRP, acrylic resin, organosilicon compounds, mechanical properties, electrical properties
Procedia PDF Downloads 129420 Thermodynamic Analysis of Ventilated Façades under Operating Conditions in Southern Spain
Authors: Carlos A. Domínguez Torres, Antonio Domínguez Delgado
Abstract:
In this work we study the thermodynamic behavior of some ventilated facades under summer operating conditions in Southern Spain. Under these climatic conditions, indoor comfort implies a high energetic demand due to high temperatures that usually are reached in this season in the considered geographical area. The aim of this work is to determine if during summer operating conditions in Southern Spain, ventilated façades provide some energy saving compared to the non-ventilated façades and to deduce their behavior patterns in terms of energy efficiency. The modeling of the air flow in the channel has been performed by using Navier-Stokes equations for thermodynamic flows. Numerical simulations have been carried out with a 2D Finite Element approach. This way, we analyze the behavior of ventilated façades under different weather conditions as variable wind, variable temperature and different levels of solar irradiation. CFD computations show that the combined effect of the shading of the external wall and the ventilation by the natural convection into the air gap achieve a reduction of the heat load during the summer period. This reduction has been evaluated by comparing the thermodynamic performances of two ventilated and two unventilated façades with the same geometry and thermophysical characteristics.Keywords: passive cooling, ventilated façades, energy-efficient building, CFD, FEM
Procedia PDF Downloads 356419 Streamlining Coastal Defense: Investigating the Impact of Seawall Geometry on Wave Loads
Authors: Ahmadreza Ebadati, Asaad Y. Shamseldin, Amin Ghadirian
Abstract:
Seawall geometry plays a crucial role in mitigating wave impacts, though detailed exploration of its manipulation is limited. This study delves into the effects of varying cross-shore seawall geometry on the dynamics of wave impacts, with a particular focus on vertical seawalls. Inspired by foundational insights linking seawall shape to hydraulic efficiency, this investigation centres on how alterations in seawall geometry can influence wave energy dissipation and subsequent wave impacts. The study investigates the 2D interaction of regular waves with a period of 2.1s with a vertical seawall and berm featuring small-scale cross-shore protrusions and recesses. Utilising OpenFOAM® simulations and a k-ω SST turbulence model, this investigation compares results to a base case simulation, which is partially calibrated with experimental data from a flume study. The analysis evaluates various geometric modifications, specifically interchanged protrusions and recesses at different heights and orientations along the seawall. Findings suggest that specific configurations, such as interchanged protrusions and recesses, can mitigate initial impact forces, while certain arrangements may intensify subsequent impacts. Key insights include the identification of geometry configurations that can effectively reduce the force impulse of slamming waves on coastal structures and potentially decrease the frequency and cost of seawall maintenance. This research contributes to the field by advancing the understanding of how seawall geometry influences wave forces and by providing actionable insights for the design of more resilient seawall structures. Further exploration of seawall geometry variation is recommended, advocating additional case studies to optimise designs tailored to specific coastal environments.Keywords: seawall geometry, wave impact loads, numerical simulation, coastal engineering, wave-structure interaction
Procedia PDF Downloads 50418 Nest-Site Selection of Crested Lark (Galerida cristata) in Yazd Province, Iran
Authors: Shirin Aghanajafizadeh
Abstract:
Nest site selection of Crested Lark was investigated in Boroyeh wildlife sanctuary of Harat during spring 2014. Habitat variables such as number of plant species, soil texture, distance to the nearest water resources, farms and roads were compared in the species presence plots with absence ones. Our analysis showed that the average number of Zygophyllum atriplicoidesand, Artemisia sieberi were higher while fine-textured soil percent cover (with very little and gravel) was lower in species presence plots than control plots. We resulted that the most affecting factor in the species nest site selection is the number of Z .atriplicoides and soil texture. Z. atriplicoides and A. sieberi can provide cover for nests and chickens against predators and environmental harsh events such as sunshine and wind. The stability of built nest forces the birds to select sites with not fine-textured soil. Some of the nests were detected in Alfalfa farms that can be related to its cover producing capability.Keywords: habitat selection, Yazd Province, presence and absence plots, habitat variables
Procedia PDF Downloads 186417 Spatial Distribution of Ambient BTEX Concentrations at an International Airport in South Africa
Authors: Raeesa Moolla, Ryan S. Johnson
Abstract:
Air travel, and the use of airports, has experienced proliferative growth in the past few decades, resulting in the concomitant release of air pollutants. Air pollution needs to be monitored because of the known relationship between exposure to air pollutants and increased adverse effects on human health. This study monitored a group of volatile organic compounds (VOCs); specifically BTEX (viz. benzene, toluene, ethyl-benzene and xylenes), as many are detrimental to human health. Through the use of passive sampling methods, the spatial variability of BTEX within an international airport was investigated, in order to determine ‘hotspots’ where occupational exposure to BTEX may be intensified. The passive sampling campaign revealed BTEXtotal concentrations ranged between 12.95–124.04 µg m-3. Furthermore, BTEX concentrations were dispersed heterogeneously within the airport. Due to the slow wind speeds recorded (1.13 m.s-1); the hotspots were located close to their main BTEX sources. The main hotspot was located over the main apron of the airport. Employees working in this area may be chronically exposed to these emissions, which could be potentially detrimental to their health.Keywords: air pollution, air quality, hotspot monitoring, volatile organic compounds
Procedia PDF Downloads 173416 Experimental Investigation of Boundary Layer Transition on Rotating Cones in Axial Flow in 0 and 35 Degrees Angle of Attack
Authors: Ali Kargar, Kamyar Mansour
Abstract:
In this paper, experimental results of using hot wire anemometer and smoke visualization are presented. The results obtained on the hot wire anemometer for critical Reynolds number and transitional Reynolds number are compared by previous results. Excellent agreement is found for the transitional Reynolds number. The results for the transitional Reynolds number are also compared by previous linear stability results. The results of the smoke visualization clearly show the cross flow vortices which arise in the transition process from a laminar to a turbulent flow. A non-zero angle of attack is also considered. We compare our results by linear stability theory which was done by Garret et. Al (2007). We just emphasis, Also the visualization and hot wire anemometer results have been compared graphically. The goal in this paper is to check reliability of using hot wire anemometer and smoke visualization in transition problems and check reliability of linear stability theory for this case and compare our results with some trusty experimental works.Keywords: transitional reynolds number, wind tunnel, rotating cone, smoke visualization
Procedia PDF Downloads 307415 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System
Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva
Abstract:
Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.Keywords: energy production, meteorological data, irradiance decomposition, solar photovoltaic system
Procedia PDF Downloads 143414 Study on the Influence of Different Lengths of Tunnel High Temperature Zones on Train Aerodynamic Resistance
Authors: Chong Hu, Tiantian Wang, Zhe Li, Ourui Huang, Yichen Pan
Abstract:
When the train is running in a high geothermal tunnel, changes in the temperature field will cause disturbances in the propagation and superposition of pressure waves in the tunnel, which in turn have an effect on the aerodynamic resistance of the train. The aim of this paper is to investigate the effect of the changes in the lengths of the high-temperature zone of the tunnel on the aerodynamic resistance of the train, clarifying the evolution mechanism of aerodynamic resistance of trains in tunnels with high ground temperatures. Firstly, moving model tests of trains passing through wall-heated tunnels were conducted to verify the reliability of the numerical method in this paper. Subsequently, based on the three-dimensional unsteady compressible RANS method and the standard k-ε two-equation turbulence model, the change laws of the average aerodynamic resistance under different high-temperature zone lengths were analyzed, and the influence of frictional resistance and pressure difference resistance on total resistance at different times was discussed. The results show that as the length of the high-temperature zone LH increases, the average aerodynamic resistance of a train running in a tunnel gradually decreases; when LH = 330 m, the aerodynamic resistance can be reduced by 5.7%. At the moment of maximum resistance, the total resistance, differential pressure resistance, and friction resistance all decrease gradually with the increase of LH and then remain basically unchanged. At the moment of the minimum value of resistance, with the increase of LH, the total resistance first increases and then slowly decreases; the differential pressure resistance first increases and then remains unchanged, while the friction resistance first remains unchanged and then gradually decreases, and the ratio of the differential pressure resistance to the total resistance gradually increases with the increase of LH. The results of this paper can provide guidance for scholars who need to investigate the mechanism of aerodynamic resistance change of trains in high geothermal environments, as well as provide a new way of thinking for resistance reduction in non-high geothermal tunnels.Keywords: high-speed trains, aerodynamic resistance, high-ground temperature, tunnel
Procedia PDF Downloads 68413 Crater Pattern on the Moon and Origin of the Moon
Authors: Xuguang Leng
Abstract:
The crater pattern on the Moon indicates the Moon was captured by Earth in the more recent years, disproves the theory that the Moon was born as a satellite to the Earth. The Moon was tidal locked since it became the satellite of the Earth. Moon’s near side is shielded by Earth from asteroid/comet collisions, with the center of the near side most protected. Yet the crater pattern on the Moon is fairly random, with no distinguishable empty spot/strip, no distinguishable difference near side vs. far side. Were the Moon born as Earth’s satellite, there would be a clear crater free spot, or strip should the tial lock shifts over time, on the near side; and far more craters on the far side. The nonexistence of even a vague crater free spot on the near side of the Moon indicates the capture was a more recent event. Given Earth’s much larger mass and sphere size over the Moon, Earth should have collided with asteroids and comets in much higher frequency, resulting in significant mass gain over the lifespan. Earth’s larger mass and magnetic field are better at retaining water and gas from solar wind’s stripping effect, thus accelerating the mass gain. A dwarf planet Moon can be pulled closer and closer to the Earth over time as Earth’s gravity grows stronger, eventually being captured as a satellite. Given enough time, it is possible Earth’s mass would be large enough to cause the Moon to collide with Earth.Keywords: moon, origin, crater, pattern
Procedia PDF Downloads 98412 Numerical Study on the Effects of Truncated Ribs on Film Cooling with Ribbed Cross-Flow Coolant Channel
Abstract:
To evaluate the effect of the ribs on internal structure in film hole and the film cooling performance on outer surface, the numerical study investigates on the effects of rib configuration on the film cooling performance with ribbed cross-flow coolant channel. The base smooth case and three ribbed cases, including the continuous rib case and two cross-truncated rib cases with different arrangement, are studied. The distributions of adiabatic film cooling effectiveness and heat transfer coefficient are obtained under the blowing ratios with the value of 0.5 and 1.0, respectively. A commercial steady RANS (Reynolds-averaged Navier-Stokes) code with realizable k-ε turbulence model and enhanced wall treatment were performed for numerical simulations. The numerical model is validated against available experimental data. The two cross-truncated rib cases produce approximately identical cooling effectiveness compared with the smooth case under lower blowing ratio. The continuous rib case significantly outperforms the other cases. With the increase of blowing ratio, the cases with ribs are inferior to the smooth case, especially in the upstream region. The cross-truncated rib I case produces the highest cooling effectiveness among the studied the ribbed channel case. It is found that film cooling effectiveness deteriorates with the increase of spiral intensity of the cross-flow inside the film hole. Lower spiral intensity leads to a better film coverage and thus results in better cooling effectiveness. The distinct relative merits among the cases at different blowing ratios are explored based on the aforementioned dominant mechanism. With regard to the heat transfer coefficient, the smooth case has higher heat transfer intensity than the ribbed cases under the studied blowing ratios. The laterally-averaged heat transfer coefficient of the cross-truncated rib I case is higher than the cross-truncated rib II case.Keywords: cross-flow, cross-truncated rib, film cooling, numerical simulation
Procedia PDF Downloads 136411 A Smart Contract Project: Peer-to-Peer Energy Trading with Price Forecasting in Microgrid
Authors: Şakir Bingöl, Abdullah Emre Aydemir, Abdullah Saado, Ahmet Akıl, Elif Canbaz, Feyza Nur Bulgurcu, Gizem Uzun, Günsu Bilge Dal, Muhammedcan Pirinççi
Abstract:
Smart contracts, which can be applied in many different areas, from financial applications to the internet of things, come to the fore with their security, low cost, and self-executing features. In this paper, it is focused on peer-to-peer (P2P) energy trading and the implementation of the smart contract on the Ethereum blockchain. It is assumed a microgrid consists of consumers and prosumers that can produce solar and wind energy. The proposed architecture is a system where the prosumer makes the purchase or sale request in the smart contract and the maximum price obtained through the distribution system operator (DSO) by forecasting. It is aimed to forecast the hourly maximum unit price of energy by using deep learning instead of a fixed pricing. In this way, it will make the system more reliable as there will be more dynamic and accurate pricing. For this purpose, Istanbul's energy generation, energy consumption and market clearing price data were used. The consistency of the available data and forecasting results is observed and discussed with graphs.Keywords: energy trading smart contract, deep learning, microgrid, forecasting, Ethereum, peer to peer
Procedia PDF Downloads 141410 A Study on the Influence of Planet Pin Parallelism Error to Load Sharing Factor
Authors: Kyung Min Kang, Peng Mou, Dong Xiang, Yong Yang, Gang Shen
Abstract:
In this paper, planet pin parallelism error, which is one of manufacturing error of planet carrier, is employed as a main variable to influence planet load sharing factor. This error is categorize two group: (i) pin parallelism error with rotation on the axis perpendicular to the tangent of base circle of gear(x axis rotation in this paper) (ii) pin parallelism error with rotation on the tangent axis of base circle of gear(y axis rotation in this paper). For this study, the planetary gear system in 1.5MW wind turbine is applied and pure torsional rigid body model of this planetary gear is built using Solidworks and MSC.ADAMS. Based on quantified parallelism error and simulation model, dynamics simulation of planetary gear is carried out to obtain dynamic mesh load results with each type of error and load sharing factor is calculated with mesh load results. Load sharing factor formula and the suggestion for planetary reliability design is proposed with the conclusion of this study.Keywords: planetary gears, planet load sharing, MSC. ADAMS, parallelism error
Procedia PDF Downloads 400409 Using Tilted Façade to Reduce Thermal Discomfort in a UK Passivhaus Dwelling for a Warming Climate
Authors: Yahya Lavafpour, Steve Sharples
Abstract:
This study investigated the potential negative impacts of future UK climate change on dwellings. In particular, the risk of overheating was considered for a Passivhaus dwelling in London. The study used dynamic simulation modelling software to investigate the potential use of building geometry to control current and future overheating risks in the dwelling for London climate. Specifically, the focus was on the optimum inclination of a south façade to make use of the building’s shape to self-protect itself. A range of different inclined façades were examined to test their effectiveness in reducing the overheating risk. The research found that implementing a 115° tilted façade could completely eliminate the risk of overheating in current climate, but with some consequence for natural ventilation and daylighting. Future overheating was significantly reduced by the tilted façade. However, geometric considerations could not eradicate completely the risk of overheating particularly by the 2080s. The study also used CFD modelling and sensitivity analysis to investigate the effect of the façade geometry on the wind pressure distributions on and around the building surface. This was done to assess natural ventilation flows for alternative façade inclinations.Keywords: climate change, tilt façade, thermal comfort, passivhaus, overheating
Procedia PDF Downloads 764408 Remote Sensing of Aerated Flows at Large Dams: Proof of Concept
Authors: Ahmed El Naggar, Homyan Saleh
Abstract:
Dams are crucial for flood control, water supply, and the creation of hydroelectric power. Every dam has a water conveyance system, such as a spillway, providing the safe discharge of catastrophic floods when necessary. Spillway design has historically been investigated in laboratory research owing to the absence of suitable full-scale flow monitoring equipment and safety problems. Prototype measurements of aerated flows are urgently needed to quantify projected scale effects and provide missing validation data for design guidelines and numerical simulations. In this work, an image-based investigation of free-surface flows on a tiered spillway was undertaken at the laboratory (fixed camera installation) and prototype size (drone video) (drone footage) (drone footage). The drone videos were generated using data from citizen science. Analyses permitted the measurement of the free-surface aeration inception point, air-water surface velocities, fluctuations, and residual energy at the chute's downstream end from a remote site. The prototype observations offered full-scale proof of concept, while laboratory results were efficiently confirmed against invasive phase-detection probe data. This paper stresses the efficacy of image-based analyses at prototype spillways. It highlights how citizen science data may enable academics better understand real-world air-water flow dynamics and offers a framework for a small collection of long-missing prototype data.Keywords: remote sensing, aerated flows, large dams, proof of concept, dam spillways, air-water flows, prototype operation, remote sensing, inception point, optical flow, turbulence, residual energy
Procedia PDF Downloads 93