Search results for: water resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11456

Search results for: water resistance

10346 Temporal Effects on Chemical Composition of Treated Wastewater and Borehole Water Used for Irrigation in Limpopo Province, South Africa

Authors: Pholosho M. Kgopa, Phatu W. Mashela, Alen Manyevere

Abstract:

Increasing incidents of drought spells in most Sub-Saharan Africa call for using alternative sources of water for irrigation in arid and semi-arid regions. A study was conducted to investigate chemical composition of borehole and treated wastewater from different sampling disposal sites at University of Limpopo Experimental Farm (ULEF). A 4 × 5 factorial experiment, with the borehole as a reference sampling site and three other sampling sites along the wastewater disposal system was conducted over five months. Water samples were collected at four sites namely, (a) exit from Pond 16 into the furrow, (b) entry into night-dam, (c) exit from night dam to irrigated fields and (d) exit from borehole to irrigated fields. Water samples were collected in the middle of each month, starting from July to November 2016. Samples were analysed for pH, EC, Ca, Mg, Na, K, Al, B, Zn, Cu, Cr, Pb, Cd and As. The site × time interactions were highly significant for Ca, Mg, Zn, Cu, Cr, Pb, Cd, and As variables, but not for Na and K. Sampling site was highly significant on all variables, with sampling period not significant for K and Na. Relative to water from the borehole, Na concentration in wastewater samples from the night-dam exit, night-dam entry and Pond16 exit were lower by 69, 34 and 55%, respectively. Relative to borehole water, Al was higher in wastewater sampling sites. In conclusion, both sampling site and period affected the chemical composition of treated wastewater.

Keywords: irrigation water quality, spatial effects, temporal effects, water reuse, water scarcity

Procedia PDF Downloads 239
10345 Potential Use of Leaching Gravel as a Raw Material in the Preparation of Geo Polymeric Material as an Alternative to Conventional Cement Materials

Authors: Arturo Reyes Roman, Daniza Castillo Godoy, Francisca Balarezo Olivares, Francisco Arriagada Castro, Miguel Maulen Tapia

Abstract:

Mining waste–based geopolymers are a sustainable alternative to conventional cement materials due to their contribution to the valorization of mining wastes as well as to the new construction materials with reduced fingerprints. The objective of this study was to determine the potential of leaching gravel (LG) from hydrometallurgical copper processing to be used as a raw material in the manufacture of geopolymer. NaOH, Na2SiO3 (modulus 1.5), and LG were mixed and then wetted with an appropriate amount of tap water, then stirred until a homogenous paste was obtained. A liquid/solid ratio of 0.3 was used for preparing mixtures. The paste was then cast in cubic moulds of 50 mm for the determination of compressive strengths. The samples were left to dry for 24h at room temperature, then unmoulded before analysis after 28 days of curing time. The compressive test was conducted in a compression machine (15/300 kN). According to the laser diffraction spectroscopy (LDS) analysis, 90% of LG particles were below 500 μm. The X-ray diffraction (XRD) analysis identified crystalline phases of albite (30 %), Quartz (16%), Anorthite (16 %), and Phillipsite (14%). The X-ray fluorescence (XRF) determinations showed mainly 55% of SiO2, 13 % of Al2O3, and 9% of CaO. ICP (OES) concentrations of Fe, Ca, Cu, Al, As, V, Zn, Mo, and Ni were 49.545; 24.735; 6.172; 14.152, 239,5; 129,6; 41,1;15,1, and 13,1 mg kg-1, respectively. The geopolymer samples showed resistance ranging between 2 and 10 MPa. In comparison with the raw material composition, the amorphous percentage of materials in the geopolymer was 35 %, whereas the crystalline percentage of main mineral phases decreased. Further studies are needed to find the optimal combinations of materials to produce a more resistant and environmentally safe geopolymer. Particularly are necessary compressive resistance higher than 15 MPa are necessary to be used as construction unit such as bricks.

Keywords: mining waste, geopolymer, construction material, alkaline activation

Procedia PDF Downloads 96
10344 Real-Time Optimisation and Minimal Energy Use for Water and Environment Efficient Irrigation

Authors: Kanya L. Khatri, Ashfaque A. Memon, Rod J. Smith, Shamas Bilal

Abstract:

The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed in this context are efficient water use and conversion of surface irrigation to pressurized systems. By replacing furrow irrigation with drip or centre pivot systems, the water efficiency can be improved by up to 30 to 45%. However, the installation and application of pumps and pipes, and the associated fuels needed for these alternatives increase energy consumption and cause significant greenhouse gas emissions. Hence, a balance between the improvement in water use and the potential increase in energy consumption is required keeping in view adverse impact of increased carbon emissions on the environment. When surface water is used, pressurized systems increase energy consumption substantially, by between 65% to 75%, and produce greenhouse gas emissions around 1.75 times higher than that of gravity based irrigation. With gravity based surface irrigation methods the energy consumption is assumed to be negligible. This study has shown that a novel real-time infiltration model REIP has enabled implementation of real-time optimization and control of surface irrigation and surface irrigation with real-time optimization has potential to bring significant improvements in irrigation performance along with substantial water savings of 2.92 ML/ha which is almost equivalent to that given by pressurized systems. Thus real-time optimization and control offers a modern, environment friendly and water efficient system with close to zero increase in energy consumption and minimal greenhouse gas emissions.

Keywords: pressurised irrigation, carbon emissions, real-time, environmentally-friendly, REIP

Procedia PDF Downloads 504
10343 Performance of Autoclaved Aerated Concrete Containing Recycled Ceramic and Gypsum Waste as Partial Replacement for Sand

Authors: Efil Yusrianto, Noraini Marsi, Noraniah Kassim, Izzati Abdul Manaf, Hafizuddin Hakim Shariff

Abstract:

Today, municipal solid waste (MSW), noise pollution, and attack fire are three ongoing issues for inhabitants of urban including in Malaysia. To solve these issues, eco-friendly autoclaved aerated concrete (AAC) containing recycled ceramic and gypsum waste (CGW) as a partial replacement for sand with different ratios (0%, 5%, 10%, 15%, 20%, and 25% wt) has been prepared. The performance of samples, such as the physical, mechanical, sound absorption coefficient, and direct fire resistance, has been investigated. All samples showed normal color behavior, i.e., grey and free crack. The compressive strength was increased in the range of 6.10% to 29.88%. The maximum value of compressive strength was 2.13MPa for 15% wt of CGW. The positive effect of CGW on the compressive strength of AAC has also been confirmed by crystalline phase and microstructure analysis. The acoustic performances, such as sound absorption coefficients of samples at low frequencies (500Hz), are higher than the reference sample (RS). AAC-CGW samples are categorized as AAC material classes B and C. The fire resistance results showed the physical surface of the samples had a free crack and was not burned during the direct fire at 950ºC for 300s. The results showed that CGW succeeded in enhancing the performance of fresh AAC, such as compressive strength, crystalline phase, sound absorption coefficient, and fire resistance of samples.

Keywords: physical, mechanical, acoustic, direct fire resistance performance, autoclaved aerated concrete, recycled ceramic-gypsum waste

Procedia PDF Downloads 140
10342 Structural and Electrical Properties of VO₂/ZnO Nanostructures

Authors: Sang-Wook Han, Zhenlan Jin, In-Hui Hwang, Chang-In Park

Abstract:

We examined structural and electrical properties of uniformly-oriented VO₂/ZnO nanostructures. VO₂ was deposited on ZnO templates by using a direct current-sputtering deposition. Scanning electron microscope and transmission electron microscope measurements indicated that b-oriented VO₂ were uniformly crystallized on ZnO templates with different lengths. VO₂/ZnO formed nanorods on ZnO nanorods with length longer than 250 nm. X-ray absorption fine structure at V K edge of VO₂/ZnO showed M1 and R phases of VO₂ at 30 and 100 ℃, respectively, suggesting structural phase transition between temperatures. Temperature-dependent resistance measurements of VO₂/ZnO nanostructures revealed metal-to-insulator transition at 65 ℃ and 55 ℃ during heating and cooling, respectively, regardless of ZnO length. The bond lengths of V-O and V-V pairs in VO₂/ZnO nanorods were somewhat distorted, and a substantial amount of structural disorder existed in the atomic pairs, compared to those of VO₂ films without ZnO. Resistance from VO₂/ZnO nanorods revealed a sharp MIT near 65 ℃ during heating and a hysteresis behavior. The resistance results suggest that microchannel for charge carriers exist nearly room temperature during cooling. VO₂/ZnO nanorods are quite stable and reproducible so that they can be widely used for practical applications to electronic devices, gas sensors, and ultra-fast switches, as examples.

Keywords: metal-to-insulator transition, VO₂, ZnO, XAFS, structural-phase transition

Procedia PDF Downloads 483
10341 Provision of Basic Water and Sanitation Services in South Africa through the Municipal Infrastructure Grant Programme

Authors: Elkington Sibusiso Mnguni

Abstract:

Although South Africa has made good progress in providing basic water and sanitation services to its citizens, there is still a large section of the population that has no access to these services. This paper reviews the performance of the government’s municipal infrastructure grant programme in providing basic water and sanitation services which are part of the constitutional requirements to the citizens. The method used to gather data and information was a desk top study which sought to review the progress made in rolling out the programme. The successes and challenges were highlighted and possible solutions were identified that can accelerate the elimination of the remaining backlogs and improve the level of service to the citizens. Currently, approximately 6.5 million citizens are without access to basic water services and approximately 10 million are without access to basic sanitation services.

Keywords: grant, municipal infrastructure, sanitation, services, water

Procedia PDF Downloads 144
10340 Removal of Samarium in Environmental Water Samples by Modified Yeast Cells

Authors: Homayon Ahmad Panahi, Seyed Mehdi Seyed Nejad, Elham Moniri

Abstract:

A novel bio-adsorbent is fabricated by attaching a cibacron blue to yeast cells. The modified bio-sorbent has been characterized by some techniques like Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (CHN) and applied for the preconcentration and determination of samarium from aqueous water samples. The best pH value for adsorption of the brilliant crecyle blue by yeast cells- cibacron blue was 7. The sorption capacity of modified biosorbent was 18.5 mg. g⁻¹. A recovery of 95.3% was obtained for Sm(III) when eluted with 0.5 M nitric acid. The method was applied for Sm(III) preconcentration and determination in river water sample.

Keywords: samarium, solid phase extraction, yeast cells, water sample, removal

Procedia PDF Downloads 259
10339 Water Crisis or Crisis of Water Management: Assessing Water Governance in Iran

Authors: Sedigheh Kalantari

Abstract:

Like many countries in the arid and semi-arid belt, Iran experiences a natural limitation in the availability of water resources. However, rapid socioeconomic development has created a serious water crisis in a nation that was once one of the world’s pioneers in sustainable water management, due to the Persians’ contribution to hydraulic engineering inventions – the Qanat – throughout history. The exogenous issues like the changing climate, frequent droughts, and international sanctions are only crisis catalyzers, not the main cause of the water crisis; and a resilient water management system is expected to be capable of coping with these periodic external pressures. The current dramatic water security issues in Iran are rooted in managerial, political, and institutional challenges rather than engineering and technical issues, and the country is suffering from challenges in water governance. The country, instead of rigorous water conservation efforts, is still focused on supply-driven approach, technology and centralized methods, and structural solutions that aim to increase water supply; while the effectiveness of water governance and management has often left unused. To solve these issues, it is necessary to assess the present situation and its evolution over time. In this respect, establishing water governance assessment mechanisms will be a significant aspect of this paper. The research framework, however, is a conceptual framework to assess governance performance of Iran to critically diagnose problematic issues and areas, as well as proffer empirically based solutions and determine the best possible steps towards transformational processes. This concept aims to measure the adequacy of current solutions and strategies designed to ameliorate these problems and then develop and prescribe adequate futuristic solutions. Thus, the analytical framework developed in this paper seeks to provide insights on key factors influencing water governance in Iranian cities, institutional frameworks to manage water across scales and authorities, multi-level management gaps and policy responses, through an evidence-based approach and good practices to drive reform toward sustainability and water resource conservation. The findings of this paper show that the current structure of the water governance system in Iran, coupled with the lack of a comprehensive understanding of the root causes of the problem, leaves minimal hope for developing sustainable solutions to Iran’s increasing water crisis. In order to follow sustainable development approaches, Iran needs to replace symptom management with problem prevention.

Keywords: governance, Iran, sustainable development, water management, water resources

Procedia PDF Downloads 29
10338 Optimization of Water Pipeline Routes Using a GIS-Based Multi-Criteria Decision Analysis and a Geometric Search Algorithm

Authors: Leon Mortari

Abstract:

The Metropolitan East region of Rio de Janeiro state, Brazil, faces a historic water scarcity. Among the alternatives studied to solve this situation, the possibility of adduction of the available water in the reservoir Lagoa de Juturnaíba to supply the region's municipalities stands out. The allocation of a linear engineering project must occur through an evaluation of different aspects, such as altitude, slope, proximity to roads, distance from watercourses, land use and occupation, and physical and chemical features of the soil. This work aims to apply a multi-criteria model that combines geoprocessing techniques, decision-making, and geometric search algorithm to optimize a hypothetical adductor system in the scenario of expanding the water supply system that serves this region, known as Imunana-Laranjal, using the Lagoa de Juturnaíba as the source. It is proposed in this study, the construction of a spatial database related to the presented evaluation criteria, treatment and rasterization of these data, and standardization and reclassification of this information in a Geographic Information System (GIS) platform. The methodology involves the integrated analysis of these criteria, using their relative importance defined by weighting them based on expert consultations and the Analytic Hierarchy Process (AHP) method. Three approaches are defined for weighting the criteria by AHP: the first treats all criteria as equally important, the second considers weighting based on a pairwise comparison matrix, and the third establishes a hierarchy based on the priority of the criteria. For each approach, a distinct group of weightings is defined. In the next step, map algebra tools are used to overlay the layers and generate cost surfaces, that indicates the resistance to the passage of the adductor route, using the three groups of weightings. The Dijkstra algorithm, a geometric search algorithm, is then applied to these cost surfaces to find an optimized path within the geographical space, aiming to minimize resources, time, investment, maintenance, and environmental and social impacts.

Keywords: geometric search algorithm, GIS, pipeline, route optimization, spatial multi-criteria analysis model

Procedia PDF Downloads 35
10337 Interaction of Water Stress and VA Mycorrhizal Inoculation on Green Bean under Different P Levels

Authors: Shahram Baghban Cirus, Parisa Alizadeh Oskuie

Abstract:

In a greenhouse experiment, green bean were inoculated with three levels of phosphorus (P1, P2, P3, respectively 0, 50, 100 kgP/h) and four levels of water stress(Fc1, Fc2, Fc3 ,Fc4, respectively 0.8Fc, 0.7Fc, 0.6Fc, 0.5Fc) and one species of VA mycorrhiza (Glomus versiform) or left uninocolated as control plants in the steril soil. AM colonization significantly stimulated plant growth, leaf area, shoot, and pod dry weight but water stress significantly decreased colonization, pod and shoot dry weight, and shoot P. The use P levels significantly increased leaf area, shoot, and pod dry weight, pods length, and colonization.

Keywords: green bean, plant growth, VA mycorrhiza, water-stress

Procedia PDF Downloads 354
10336 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts

Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi

Abstract:

The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.

Keywords: biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts

Procedia PDF Downloads 129
10335 Evaluation of the Incorporation of Modified Starch in Puff Pastry Dough by Mixolab Rheological Analysis

Authors: Alejandra Castillo-Arias, Carlos A. Fuenmayor, Carlos M. Zuluaga-Domínguez

Abstract:

The connection between health and nutrition has driven the food industry to explore healthier and more sustainable alternatives. Key strategies to enhance nutritional quality and extend shelf life include reducing saturated fats and incorporating natural ingredients. One area of focus is the use of modified starch in baked goods, which has attracted significant interest in food science and industry due to its functional benefits. Modified starches are commonly used for their gelling, thickening, and water-retention properties. Derived from sources like waxy corn, potatoes, tapioca, or rice, these polysaccharides improve thermal stability and resistance to dough. The use of modified starch enhances the texture and structure of baked goods, which is crucial for consumer acceptance. In this study, it was evaluated the effects of modified starch inclusion on dough used for puff pastry elaboration, measured with Mixolab analysis. This technique assesses flour quality by examining its behavior under varying conditions, providing a comprehensive profile of its baking properties. The analysis included measurements of water absorption capacity, dough development time, dough stability, softening, final consistency, and starch gelatinization. Each of these parameters offers insights into how the flour will perform during baking and the quality of the final product. The performance of wheat flour with varying levels of modified starch inclusion (10%, 20%, 30%, and 40%) was evaluated through Mixolab analysis, with a control sample consisting of 100% wheat flour. Water absorption, gluten content, and retrogradation indices were analyzed to understand how modified starch affects dough properties. The results showed that the inclusion of modified starch increased the absorption index, especially at levels above 30%, indicating a dough with better handling qualities and potentially improved texture in the final baked product. However, the reduction in wheat flour resulted in a lower kneading index, affecting dough strength. Conversely, incorporating more than 20% modified starch reduced the retrogradation index, indicating improved stability and resistance to crystallization after cooling. Additionally, the modified starch improved the gluten index, contributing to better dough elasticity and stability, providing good structural support and resistance to deformation during mixing and baking. As expected, the control sample exhibited a higher amylase index, due to the presence of enzymes in wheat flour. However, this is of low concern in puff pastry dough, as amylase activity is more relevant in fermented doughs, which is not the case here. Overall, the use of modified starch in puff pastry enhanced product quality by improving texture, structure, and shelf life, particularly when used at levels between 30% and 40%. This research underscores the potential of modified starches to address health concerns associated with traditional starches and to contribute to the development of higher-quality, consumer-friendly baked products. Furthermore, the findings suggest that modified starches could play a pivotal role in future innovations within the baking industry, particularly in products aiming to balance healthfulness with sensory appeal. By incorporating modified starch into their formulations, bakeries can meet the growing demand for healthier, more sustainable products while maintaining the indulgent qualities that consumers expect from baked goods.

Keywords: baking quality, dough properties, modified starch, puff pastry

Procedia PDF Downloads 26
10334 Characterization of Erodibility Using Soil Strength and Stress-Strain Indices for Soils in Some Selected Sites in Enugu State

Authors: C. C. Egwuonwu, N. A. A. Okereke, K. O. Chilakpu, S. O. Ohanyere

Abstract:

In this study, initial soil strength indices (qu) and stress-strain characteristics, namely failure strain (ϵf), area under the stress-strain curve up to failure (Is) and stress-strain modulus between no load and failure (Es) were investigated as potential indicators for characterizing the erosion resistance of two compacted soils, namely sandy clay loam (SCL) and clay loam (CL) in some selected sites in Enugu State, Nigeria. The unconfined compressive strength (used in obtaining strength indices) and stress-strain measurements were obtained as a function of moisture content in percentage (mc %) and dry density (γd). Test were conducted over a range of 8% to 30% moisture content and 1.0 g/cm3 to 2.0 g/cm3 dry density at applied loads of 20, 40, 80, 160 and 320 kPa. Based on the results, it was found out that initial soil strength alone was not a good indicator of erosion resistance. For instance, in the comparison of exponents of mc% and γd for jet index or erosion resistance index (Ji) and the strength measurements, qu and Es agree in signs for mc%, but are opposite in signs for γd. Therefore, there is an inconsistency in exponents making it difficult to develop a relationship between the strength parameters and Ji for this data set. In contrast, the exponents of mc% and γd for Ji and ϵf and Is are opposite in signs, there is potential for an inverse relationship. The measured stress-strain characteristics, however, appeared to have potential in providing useful information on erosion resistance. The models developed for the prediction of the extent or the susceptibility of soils to erosion and subjected to sensitivity test on some selected sites achieved over 90% efficiency in their functions.

Keywords: characterization of erodibility, selected sites in Enugu state, soil strength, stress-strain indices

Procedia PDF Downloads 415
10333 Experimental Study on Shaft Grouting Bearing Capacity of Small Diameter Bored Piles

Authors: Trung Le Thanh

Abstract:

Bored piles are always the optimal solution for high-rise building foundations. They have many advantages, such as large diameter, large pile length and construction in all different geological conditions. However, due to construction characteristics, the load-bearing capacity of bored piles is not optimal because wall friction is reduced due to poor contact between the pile and the surrounding soil. Therefore, grouting technology along the pile body helps improve the load-bearing capacity of bored piles significantly through increasing the skin resistance of the pile and surrounding soil. The improvement of pile skin resistance depends on the parameters of grouting technology, especially grouting volume, mortar viscosity, mortar strength,... and different geological conditions. Studies show that the technology of grouting piles on sandy soil is more effective than on clay. This article presents an experimental model to determine the load-bearing capacity of bored piles with a diameter of 400 mm and a length of 3 m on sand with different slurry volume in Tan Uyen city, Binh Duong province. On that basis, analyze the correlation between the increase in load-bearing capacity of bored piles without and with shaft grouting pile. Research results show that the wall resistance of shaft grouted piles increases 2-3 times compared to piles without grouting, and the pile's load-bearing capacity increases significantly. The article's research provides scientific value for consulting work on the design of bored piles when grouted along the pile body.

Keywords: bored pile, shaft grouting, bearing capacity, pile shaft resistance

Procedia PDF Downloads 68
10332 Study of Environmental Impact

Authors: Houmame Benbouali

Abstract:

The risks, in general, exist in any project; one can hardly carry out a project without taking risks. The hydraulic works are rather complex projects in their design, realization and exploitation, and are often subjected at the multiple risks being able to influence with their good performance, and can have an negative impact on their environment. The present study was carried out to quote the impacts caused by purification plant STEP Chlef on the environment, it aims has studies the environmental impacts during construction and when designing this STEP, it is divided into two parts: The first part results from a research task bibliographer which contain three chapters (-cleansing of water worn-general information on water worn-proceed of purification of waste water). The second part is an experimental part which is divided into four chapters (detailed state initial-description of the station of purification-evaluation of the impacts of the project analyzes measurements and recommendations).

Keywords: treatment plant, waste water, waste water treatment, environmental impact

Procedia PDF Downloads 511
10331 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objetives

Authors: Mingyu Xie, Mietek Brdys

Abstract:

The paper develops a non-linear model predictive control (NMPC) of water quality in drinking water distribution systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.

Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives

Procedia PDF Downloads 318
10330 The Fracture Resistance of Zirconia Based Dental Crowns from Cyclic Loading: A Function of Relative Wear Depth

Authors: T. Qasim, B. El Masoud, D. Ailabouni

Abstract:

This in vitro study focused on investigating the fatigue resistance of veneered zirconia molar crowns with different veneering ceramic thicknesses, simulating the relative wear depths under simulated cyclic loading. A mandibular first molar was prepared and then scanned using computer-aided design/computer-aided manufacturing (CAD/CAM) technology to fabricate 32 zirconia copings of uniform 0.5 mm thickness. The manufactured copings then veneered with 1.5 mm, 1.0 mm, 0.5 mm, and 0.0 mm representing 0%, 33%, 66%, and 100% relative wear of a normal ceramic thickness of 1.5 mm. All samples were thermally aged to 6000 thermo-cycles for 2 minutes with distilled water between 5 ˚C and 55 ˚C. The samples subjected to cyclic fatigue and fracture testing using SD Mechatronik chewing simulator. These samples are loaded up to 1.25x10⁶ cycles or until they fail. During fatigue, testing, extensive cracks were observed in samples with 0.5 mm veneering layer thickness. Veneering layer thickness 1.5-mm group and 1.0-mm group were not different in terms of resisting loads necessary to cause an initial crack or final failure. All ceramic zirconia-based crown restorations with varying occlusal veneering layer thicknesses appeared to be fatigue resistant. Fracture load measurement for all tested groups before and after fatigue loading exceeded the clinical chewing forces in the posterior region. In general, the fracture loads increased after fatigue loading and with the increase in the thickness of the occlusal layering ceramic.

Keywords: all ceramic, cyclic loading, chewing simulator, dental crowns, relative wear, thermally ageing

Procedia PDF Downloads 144
10329 Impure Water, a Future Disaster: A Case Study of Lahore Ground Water Quality with GIS Techniques

Authors: Rana Waqar Aslam, Urooj Saeed, Hammad Mehmood, Hameed Ullah, Imtiaz Younas

Abstract:

This research has been conducted to assess the water quality in and around Lahore Metropolitan area on the basis of three different land uses, i.e. residential, commercial, and industrial land uses. For this, 29 sample sites have been selected on the basis of simple random sampling technique. Samples were collected at the source (WASA tube wells). The criteria for selecting sample sites are to have a maximum concentration of population in the selected land uses. The results showed that in the residential land use the proportion of nitrate and turbidity is at their highest level in the areas of Allama Iqbal Town and Samanabad Town. Commercial land use of Gulberg and Data Gunj Bakhsh Town have highest level of proportion of chlorides, calcium, TDS, pH, Mg, total hardness, arsenic and alkalinity. Whereas in industrial type of land use in Ravi and Wahga Town have the proportion of arsenic, Mg, nitrate, pH, and turbidity are at their highest level. The high rate of concentration of these parameters in these areas is basically due to the old and fractured pipelines that allow bacterial as well as physiochemical contaminants to contaminate the portable water at the sources. Furthermore, it is seen in most areas that waste water from domestic, industrial, as well as municipal sources may get easy discharge into open spaces and water bodies, like, cannels, rivers, lakes that seeps and become a part of ground water. In addition, huge dumps located in Lahore are becoming the cause of ground water contamination as when the rain falls, the water gets seep into the ground and impures the ground water quality. On the basis of the derived results with the help of Geo-spatial technology ACRGIS 9.3 Interpolation (IDW), it is recommended that water filtration plants must be installed with specific parameter control. A separate team for proper inspection has to be made for water quality check at the source. Old water pipelines must be replaced with the new pipelines, and safe water depth must be ensured at the source end.

Keywords: GIS, remote sensing, pH, nitrate, disaster, IDW

Procedia PDF Downloads 225
10328 A Review of the Future of Sustainable Urban Water Supply in South Africa

Authors: Jeremiah Mutamba

Abstract:

Water is a critical resource for sustainable economic growth and social development. It enables societies to thrive and influences every urban center’s future. Thus, water must always be available in the right quantity and quality. However, in South Africa - a known physically water scarce nation – the future of sustainable urban supply of water may be in jeopardy. The country facing a water crisis influenced by insufficient infrastructure investment and maintenance, recurrent droughts and climate variation, human induced water quality deterioration, as well as growing lack of technical capacity in water institutions, particularly local municipalities. Aside of the eight metropolitan municipalities for the country, most municipalities struggle with provision of reliable water to their citizens. These municipalities contend with having now capable engineers, aging infrastructure with concomitant high system water losses (of 30% and upwards), coupled with growing water demand from expanding industries and population growth. Also, a significant portion (44%) of national water treatment plants are in critically poor condition, requiring urgent rehabilitation. Municipalities also struggle to raise funding to instate projects. All these factors militate against sustainable urban water supply in the country. Urgent mitigation measures are required. This paper seeks to review the extent of the current water supply challenges in South Africa’s urban centers, including searching for practical and cost-effective measures. The study followed a qualitative approach, combining desktop literature research, interviews with key sector stakeholders, and a workshop. Phenomenological data analysis technique was used to study and examine interview data and secondary desktop data. Preliminary findings established the building of technical or engineering capacity, reversal of the high physical water losses, rehabilitation of poor condition and dysfunctional water treatment works, diversification of water resource mix, and water scarcity awareness programs as possible practical solutions. Other proposed solutions include the use of performance-based or value-based contracting to fund initiatives to reduce high system water losses. Out-come based arrangements for revenue increasing water loss reduction projects were considered more practical in funding-stressed local municipalities. If proactively implemented in an integrated manner, these proposed solutions are likely to ensure sustainable urban water supply in South African urban centers in the future.

Keywords: sustainable, water scarcity, water supply, South Africa

Procedia PDF Downloads 123
10327 Fluoride Removal from Groundwater in the East Nile Area (Sudan) Using Locally Available Charcoal

Authors: Motwkel M. Alhaj, Bashir M. Elhassan

Abstract:

The East Nile area is located in Khartoum state. The main source of drinking water in the East Nile Area (Sudan) is groundwater. However, fluoride concentration in the water is more than the maximum allowable dose, which is 1.5 mg/l. This study aims to demonstrate and innovative, affordable, and efficient filter to remove fluoride from drinking water. Many researchers have found that aluminum oxide-coated adsorbent is the most affordable technology for fluoride removal. However, adsorption is pH-dependent, and the water pH in the East Nile area is relatively high (around 8), which is hindering the adsorption process. Locally available charcoal was crushed, sieved, and coated with aluminum oxide. Then, different coating configurations were tested in order to produce an adsorbent with a high pH point of zero charge pH PZC in order to overcome the effect of high pH of water. Moreover, different methods were used to characterize the adsorbent, including: Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), Brunauer - Emmett - Teller (BET) method, and pH point of zero charge pH PZC. The produced adsorbent has pH PZC of 8.5, which is essential in enhancing the fluoride adsorption process. A pilot household fluoride filter was also designed and installed in a house that has water with 4.34 mg/l F- and pH of 8.4. The filter was operated at a flow rate 250 cm³/min. The total cost of treating one cubic meter was about 0.63$, while the cost for the same water before adsorbent coating modification was 2.33$⁄cm³.

Keywords: water treatment, fluoride, adsorption, charcoal, Sudan

Procedia PDF Downloads 117
10326 An Experimental Study on the Temperature Reduction of Exhaust Gas at a Snorkeling of Submarine

Authors: Seok-Tae Yoon, Jae-Yeong Choi, Gyu-Mok Jeon, Yong-Jin Cho, Jong-Chun Park

Abstract:

Conventional submarines obtain propulsive force by using an electric propulsion system consisting of a diesel generator, battery, motor, and propeller. In the underwater, the submarine uses the electric power stored in the battery. After that, when a certain amount of electric power is consumed, the submarine floats near the sea water surface and recharges the electric power by using the diesel generator. The voyage carried out while charging the power is called a snorkel, and the high-temperature exhaust gas from the diesel generator forms a heat distribution on the sea water surface. The heat distribution is detected by weapon system equipped with thermo-detector and that is the main cause of reducing the survivability of the submarine. In this paper, an experimental study was carried out to establish optimal operating conditions of a submarine for reduction of infrared signature radiated from the sea water surface. For this, a hot gas generating system and a round acrylic water tank with adjustable water level were made. The control variables of the experiment were set as the mass flow rate, the temperature difference between the water and the hot gas in the water tank, and the water level difference between the air outlet and the water surface. The experimental instrumentation used a thermocouple of T-type to measure the released air temperature on the surface of the water, and a thermography system to measure the thermal energy distribution on the water surface. As a result of the experiment study, we analyzed the correlation between the final released temperature of the exhaust pipe exit in a submarine and the depth of the snorkel, and presented reasonable operating conditions for the infrared signature reduction of submarine.

Keywords: experiment study, flow rate, infrared signature, snorkeling, thermography

Procedia PDF Downloads 352
10325 Performance Analysis of Modified Solar Water Heating System for Climatic Condition of Allahabad, India

Authors: Kirti Tewari, Rahul Dev

Abstract:

Solar water heating is a thermodynamic process of heating water using sunlight with the help of solar water heater. Thus, solar water heater is a device used to harness solar energy. In this paper, a modified solar water heating system (MSWHS) has been proposed over flat plate collector (FPC) and Evacuated tube collector (ETC). The modifications include selection of materials other than glass, and glass wool which are conventionally used for fabricating FPC and ETC. Some modifications in design have also been proposed. Its collector is made of double layer of semi-cylindrical acrylic tubes and fibre reinforced plastic (FRP) insulation base. Water tank is made of double layer of acrylic sheet except base and north wall. FRP is used in base and north wall of the water tank. A concept of equivalent thickness has been utilised for calculating the dimensions of collector plate, acrylic tube and tank. A thermal model for the proposed design of MSWHS is developed and simulation is carried out on MATLAB for the capacity of 200L MSWHS having collector area of 1.6 m2, length of acrylic tubes of 2m at an inclination angle 25° which is taken nearly equal to the latitude of the given location. Latitude of Allahabad is 24.45° N. The results show that the maximum temperature of water in tank and tube has been found to be 71.2°C and 73.3°C at 17:00hr and 16:00hr respectively in March for the climatic data of Allahabad. Theoretical performance analysis has been carried out by varying number of tubes of collector, the tank capacity and climatic data for given months of winter and summer.

Keywords: acrylic, fibre reinforced plastic, solar water heating, thermal model, conventional water heaters

Procedia PDF Downloads 338
10324 Is Presence of Psychotic Features Themselves Carry a Risk for Metabolic Syndrome?

Authors: Rady A., Elsheshai A., Elsawy M., Nagui R.

Abstract:

Background and Aim: Metabolic syndrome affect around 20% of general population , authors have incriminated antipsychotics as serious risk factor that may provoke such derangement. The aim of our study is to assess metabolic syndrome in patients presenting psychotic features (delusions and hallucinations) whether schizophrenia or mood disorder and compare results in terms of drug naïf, on medication and healthy control. Subjects and Methods: The study recruited 40 schizophrenic patients, half of them drug naïf and the other half on antipsychotics, 40 patients with mood disorder with psychotic features, half of them drug naïf and the other half on medication, 20 healthy control. Exclusion criteria were put in order to exclude patients having already endocrine or metabolic disorders that my interfere with results obtain to minimize confusion bias. Metabolic syndrome assessed by measuring parameters including weight, body mass index, waist circumference, triglyceride level, HDL, fasting glucose, fasting insulin and insulin resistance Results: No difference was found when comparing drug naïf to those on medication in both schizophrenic and psychotic mood disorder arms, schizophrenic patients whether on medication or drug naïf should difference with control group for fasting glucose, schizophrenic patients on medication also showed difference in insulin resistance compared to control group. On the other hand, patients with psychotic mood disorder whether drug naïf or on medication showed difference from control group for fasting insulin level. Those on medication also differed from control for insulin resistance Conclusion: Our study didn’t reveal difference in metabolic syndrome among patients with psychotic features whether on medication or drug naïf. Only patients with Psychotic features on medication showed insulin resistance. Schizophrenic patients drug naïf or on medication tend to show higher fasting glucose while psychotic mood disorder whether drug naïf or on medication tend to show higher fasting insulin. This study suggest that presence of psychotic features themselves regardless being on medication or not carries a risk for insulin resistance and metabolic syndrome. Limitation: This study is limited by number of participants and larger numbers in future studies should be included in order to extrapolate results. Cohort longitudinal studies are needed in order to evaluate such hypothesis.

Keywords: schizophrenia, metabolic syndrome, psychosis, insulin, resistance

Procedia PDF Downloads 535
10323 Photo-Enhanced Catalytic Dry Reforming of Methane on Ni@SiO2 with High Resistance to Carbon

Authors: Jinrui Zhang, Tianlong Yang, Ying Pan

Abstract:

Methane and carbon dioxide are major greenhouse gases contributor. CO₂ dry reforming of methane (DRM) for syngas production is a promising approach to reducing global CO₂ emission and extensive utilization of natural gas. However, the reported catalysts endured rapid deactivation due to severe carbon deposition at high temperature. Here, CO₂ reduction by CH4 on hexagonal nano-nickel flakes packed by porous SiO₂ (Ni@SiO₂) catalysts driven by thermal and solar light are tested. High resistance to carbon deposition and higher reactive activity are demonstrated under focused solar light at moderate temperature (400-500 ℃). Furthermore, the photocatalytic DRM under different wavelength is investigated, and even IR irradiation can enhance the catalytic activity. The mechanism of light-enhanced reaction reactivity and equilibrium is investigated by Infrared and Raman spectroscopy, and the unique reaction pathway with light is depicted. The photo-enhanced DRM provides a promising method of renewable solar energy conversion and CO₂ emission reduction due to the excellent activity and durability.

Keywords: CO₂ emission reduction, methane, photocatalytic DRM, resistance to carbon deposition, syngas

Procedia PDF Downloads 118
10322 Alternative Water Resources and Brominated Byproducts

Authors: Nora Kuiper, Candace Rowell, Hugues Preud'Homme, Basem Shomar

Abstract:

As the global dependence on seawater desalination as a primary drinking water resource increases, a unique class of secondary pollutants is emerging. The presence of bromide salts in seawater may result in increased levels of bromine and brominated byproducts in drinking water. The State of Qatar offers a unique setting to study these pollutants and their impacts on consumers as the country is 100% dependent on seawater desalination to supply municipal tap water and locally produced bottled water. Tap water (n=115) and bottled water (n=62) samples were collected throughout the State of Qatar and analyzed for a suite of inorganic and organic compounds, including 54 volatile organic compounds (VOCs), with an emphasis on brominated byproducts. All VOC identification and quantification was completed using a Bruker Scion GCMSMS with static headspace technologies. A risk survey tool was used to collect information regarding local consumption habits, health outcomes and perception of water sources for adults and children. This study is the first of its kind in the country. Dibromomethane, bromoform, and bromobenzene were detected in 61%, 88% and 2%, of the drinking water samples analyzed. The levels of dibromomethane ranged from approximately 100-500 ng/L and the concentrations of bromoform ranged from approximately 5-50 µg/L. Additionally, bromobenzene concentrations were 60 ng/L. The presence of brominated compounds in drinking water is a public health concern specific to populations using seawater as a feed water source and may pose unique risks that have not been previously studied. Risk assessments are ongoing to quantify the risks associated with prolonged consumption of disinfection byproducts; specifically the risks of brominated trihalomethanes as the levels of bromoform found in Qatar’s drinking water reach more than 60% of the US EPA’s Maximum Contaminant Level of all THMs.

Keywords: brominated byproducts, desalination, trihalomethanes, risk assessment

Procedia PDF Downloads 431
10321 Mechanical Study Material on Low Environmental Impact

Authors: Fetta Ait Ahsene-Aissat, Messaoud Hachemi, Yacine Moussaoui, Yacine Kerchiche

Abstract:

Our study focuses on two important aspects, environmental by using a sub industrial product (FAD), by economic incorporation as an addition to Portland cement, thus improving resistance to compression and bending with different proportions ADF % up to 40 additions. We studied the effect of different substitutions 0%, 10%, 20%, and 40% of additions to the mechanical effect of the mortar. We obtained a compressive strength of 61 MPa at 90 days for the cement mixture porthland FAD-40% against a resistance of 58MPa for porthland cement without addition. The flexural strength also showed a marked increase in the cement substitution. We also monitored the behavior of the mixed ash-cement by XRD analysis and scanning electron microscopy (SEM).

Keywords: FAD, porthland, flexural strength, compressive strength, DRX

Procedia PDF Downloads 354
10320 Rapid and Cheap Test for Detection of Streptococcus pyogenes and Streptococcus pneumoniae with Antibiotic Resistance Identification

Authors: Marta Skwarecka, Patrycja Bloch, Rafal Walkusz, Oliwia Urbanowicz, Grzegorz Zielinski, Sabina Zoledowska, Dawid Nidzworski

Abstract:

Upper respiratory tract infections are one of the most common reasons for visiting a general doctor. Streptococci are the most common bacterial etiological factors in these infections. There are many different types of Streptococci and infections vary in severity from mild throat infections to pneumonia. For example, S. pyogenes mainly contributes to acute pharyngitis, palatine tonsils and scarlet fever, whereas S. Streptococcus pneumoniae is responsible for several invasive diseases like sepsis, meningitis or pneumonia with high mortality and dangerous complications. There are only a few diagnostic tests designed for detection Streptococci from the infected throat of patients. However, they are mostly based on lateral flow techniques, and they are not used as a standard due to their low sensitivity. The diagnostic standard is to culture patients throat swab on semi selective media in order to multiply pure etiological agent of infection and subsequently to perform antibiogram, which takes several days from the patients visit in the clinic. Therefore, the aim of our studies is to develop and implement to the market a Point of Care device for the rapid identification of Streptococcus pyogenes and Streptococcus pneumoniae with simultaneous identification of antibiotic resistance genes. In the course of our research, we successfully selected genes for to-species identification of Streptococci and genes encoding antibiotic resistance proteins. We have developed a reaction to amplify these genes, which allows detecting the presence of S. pyogenes or S. pneumoniae followed by testing their resistance to erythromycin, chloramphenicol and tetracycline. What is more, the detection of β-lactamase-encoding genes that could protect Streptococci against antibiotics from the ampicillin group, which are widely used in the treatment of this type of infection is also developed. The test is carried out directly from the patients' swab, and the results are available after 20 to 30 minutes after sample subjection, which could be performed during the medical visit.

Keywords: antibiotic resistance, Streptococci, respiratory infections, diagnostic test

Procedia PDF Downloads 130
10319 Alternatives to the Disposal of Sludge from Water and Wastewater Treatment Plants

Authors: Lima Priscila, Gianotto Raiza, Arruda Leonan, Magalhães Filho Fernando

Abstract:

Industrialization and especially the accentuated population growth in developing countries and the lack of drainage, public cleaning, water and sanitation services has caused concern about the need for expansion of water treatment units and sewage. However, these units have been generating by-products, such as the sludge. This paper aims to investigate aspects of operation and maintenance of sludge from a wastewater treatment plant (WWTP - 90 L.s-1) and two water treatment plants (WTPs; 1.4 m3.s-1 and 0.5 m3.s-1) for the purpose of proper disposal and reuse, evaluating their qualitative and quantitative characteristics, the Brazilian legislation and standards. It was concluded that the sludge from the water treatment plants is directly related to the quality of raw water collected, and it becomes feasible for use in construction materials, and to dispose it in the sewage system, improving the efficiency of the WWTP regarding precipitation of phosphorus (35% of removal). The WTP Lageado had 55,726 kg/month of sludge production, more than WTP Guariroba (29,336 kg/month), even though the flow of WTP Guariroba is 1,400 L.s-1 and the WTP Lagedo 500 L.s-1, being explained by the quality that influences more than the flow. The WWTP sludge have higher concentrations of organic materials due to their origin and could be used to improve the fertility of the soil, crop production and recovery of degraded areas. The volume of sludge generated at the WWTP was 1,760 ton/month, with 5.6% of solid content in the raw sludge and in the dewatered sludge it increased its content to 23%.

Keywords: disposal, sludge, water treatment, wastewater treatment

Procedia PDF Downloads 324
10318 Relative Importance of Different Mitochondrial Components in Maintaining the Barrier Integrity of Retinal Endothelial Cells: Implications for Vascular-associated Retinal Diseases

Authors: Shaimaa Eltanani, Thangal Yumnamcha, Ahmed S. Ibrahim

Abstract:

Purpose: Mitochondria dysfunction is central to breaking the barrier integrity of retinal endothelial cells (RECs) in various blinding eye diseases such as diabetic retinopathy and retinopathy of prematurity. Therefore, we aimed to dissect the role of different mitochondrial components, specifically, those of oxidative phosphorylation (OxPhos), in maintaining the barrier function of RECs. Methods: Electric cell-substrate impedance sensing (ECIS) technology was used to assess in real-time the role of different mitochondrial components in the total impedance (Z) of human RECs (HRECs) and its components; the capacitance (C) and the total resistance (R). HRECs were treated with specific mitochondrial inhibitors that target different steps in OxPhos: Rotenone for complex I; Oligomycin for ATP synthase; and FCCP for uncoupling OxPhos. Furthermore, data were modeled to investigate the effects of these inhibitors on the three parameters that govern the total resistance of cells: cell-cell interactions (Rb), cell-matrix interactions (α), and cell membrane permeability (Cm). Results: Rotenone (1 µM) produced the greatest reduction in the Z, followed by FCCP (1 µM), whereas no reduction in the Z was observed after the treatment with Oligomycin (1 µM). Following this further, we deconvoluted the effect of these inhibitors on Rb, α, and Cm. Firstly, rotenone (1 µM) completely abolished the resistance contribution of Rb, as the Rb became zero immediately after the treatment. Secondly, FCCP (1 µM) eliminated the resistance contribution of Rb only after 2.5 hours and increased Cm without considerable effect on α. Lastly, Oligomycin had the lowest impact among these inhibitors on Rb, which became similar to the control group at the end of the experiment without noticeable effects on Cm or α. Conclusion: These results demonstrate differential roles for complex I, complex V, and coupling of OxPhos in maintaining the barrier functionality of HRECs, in which complex I being the most important component in regulating the barrier functionality and the spreading behavior of HRECs. Such differences can be used in investigating gene expression as well as for screening selective agents that improve the functionality of complex I to be used in the therapeutic approach for treating REC-related retinal diseases.

Keywords: human retinal endothelial cells (hrecs), rotenone, oligomycin, fccp, oxidative phosphorylation, oxphos, capacitance, impedance, ecis modeling, rb resistance, α resistance, and barrier integrity

Procedia PDF Downloads 101
10317 Resistance of African States Against the African Court on Human and People Rights (ACPHR)

Authors: Ayyoub Jamali

Abstract:

At the first glance, it seems that the African Court on Human and People’s Rights has achieved a tremendous development in the protection of human rights in Africa. Since its first judgement in 2009, the court has taken a robust approach/ assertive stance, showing its strength by finding states to be in violation of the Africana Charter and other human rights treaties. This paper seeks to discuss various challenges and resistance that the Court has faced since the adoption of the Founding Protocol to the Establishment of the African Court on Human and People’s Rights. The outcome of the paper casts shadow on the legitimacy and effectiveness of the African Court as the guarantor of human rights within the African continent.

Keywords: African Court on Human and People’s Rights, African Union, African regional human rights system, compliance

Procedia PDF Downloads 153