Search results for: responsive architecture
967 Aerobic Bioprocess Control Using Artificial Intelligence Techniques
Authors: M. Caramihai, Irina Severin
Abstract:
This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.Keywords: bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques
Procedia PDF Downloads 419966 Targeting APP IRE mRNA to Combat Amyloid -β Protein Expression in Alzheimer’s Disease
Authors: Mateen A Khan, Taj Mohammad, Md. Imtaiyaz Hassan
Abstract:
Alzheimer’s disease is characterized by the accumulation of the processing products of the amyloid beta peptide cleaved by amyloid precursor protein (APP). Iron increases the synthesis of amyloid beta peptides, which is why iron is present in Alzheimer's disease patients' amyloid plaques. Iron misregulation in the brain is linked to the overexpression of APP protein, which is directly related to amyloid-β aggregation in Alzheimer’s disease. The APP 5'-UTR region encodes a functional iron-responsive element (IRE) stem-loop that represents a potential target for modulating amyloid production. Targeted regulation of APP gene expression through the modulation of 5’-UTR sequence function represents a novel approach for the potential treatment of AD because altering APP translation can be used to improve both the protective brain iron balance and provide anti-amyloid efficacy. The molecular docking analysis of APP IRE RNA with eukaryotic translation initiation factors yields several models exhibiting substantial binding affinity. The finding revealed that the interaction involved a set of functionally active residues within the binding sites of eIF4F. Notably, APP IRE RNA and eIF4F interaction were stabilized by multiple hydrogen bonds with residues of APP IRE RNA and eIF4F. It was evident that APP IRE RNA exhibited a structural complementarity that tightly fit within binding pockets of eIF4F. The simulation studies further revealed the stability of the complexes formed between RNA and eIF4F, which is crucial for assessing the strength of these interactions and subsequent roles in the pathophysiology of Alzheimer’s disease. In addition, MD simulations would capture conformational changes in the IRE RNA and protein molecules during their interactions, illustrating the mechanism of interaction, conformational change, and unbinding events and how it may affect aggregation propensity and subsequent therapeutic implications. Our binding studies correlated well with the translation efficiency of APP mRNA. Overall, the outcome of this study suggests that the genomic modification and/or inhibiting the expression of amyloid protein by targeting APP IRE RNA can be a viable strategy to identify potential therapeutic targets for AD and subsequently be exploited for developing novel therapeutic approaches.Keywords: Alzheimer's disease, Protein-RNA interaction analysis, molecular docking simulations, conformational dynamics, binding stability, binding kinetics, protein synthesis.
Procedia PDF Downloads 62965 Communities as a Source of Evidence: A Case of Advocating for Improved Human Resources for Health in Uganda
Authors: Asinguza P. Allan
Abstract:
The Advocacy for Better Health aims to equip citizens with enabling environment and systems to effectively advocate for strong action plans to improve health services. This is because the 2020 Government target for Uganda to transform into a middle income country will be achieved if investment is made in keeping the population healthy and productive. Citizen participation as an important foundation for change has been emphasized to gather data through participatory rural appraisal and inform evidence-based advocacy for recruitment and motivation of human resources. Citizens conduct problem ranking during advocacy forums on staffing levels and health worker absenteeism. Citizens prioritised inadequate number of midwives and absenteeism. On triangulation, health worker to population ratio in Uganda remains at 0.25/1,000 which is far below the World Health Organization (WHO) threshold of 2.3/1,000. Working with IntraHealth, the project advocated for recruitment of critical skilled staff (doctors and midwives) and scale up health workers motivation strategy to reduce Uganda’s Neonatal Mortality Rate of 22/1,000 and Maternal Mortality Ratio of 320/100,000. Government has committed to increase staffing to 80% by 2018 (10 districts have passed ordinances and revived use of duty rosters to address health worker absenteeism. On the other hand, the better health advocacy debate has been elevated with need to increase health sector budget allocations from 8% to 10%. The project has learnt that building a body of evidence from citizens enhances the advocacy agenda. Communities will further monitor government commitments to reduce Neonatal Mortality Rate and Maternal Mortality Ratio. The project has learnt that interface meeting between duty bearers and the community allows for immediate feedback and the process is a strong instrument for empowerment. It facilitates monitoring and performance evaluation of services, projects and government administrative units (like district assemblies) by the community members themselves. This, in turn, makes the human resources in health to be accountable, transparent and responsive to communities where they work. This, in turn, promotes human resource performance.Keywords: advocacy, empowerment, evidence, human resources
Procedia PDF Downloads 215964 Immediate Geometric Solution of Irregular Quadrilaterals: A Digital Tool Applied to Topography
Authors: Miguel Mariano Rivera Galvan
Abstract:
The purpose of this research was to create a digital tool by which users can obtain an immediate and accurate solution of the angular characteristics of an irregular quadrilateral. The development of this project arose because of the frequent absence of a polygon’s geometric information in land ownership accreditation documents. The researcher created a mathematical model using a linear approximation iterative method, employing various disciplines and techniques including trigonometry, geometry, algebra, and topography. This mathematical model uses as input data the surface of the quadrilateral, as well as the length of its sides, to obtain its interior angles and make possible its representation in a coordinate system. The results are as accurate and reliable as the user requires, offering the possibility of using this tool as a support to develop future engineering and architecture projects quickly and reliably.Keywords: digital tool, geometry, mathematical model, quadrilateral, solution
Procedia PDF Downloads 144963 U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset
Authors: Jaiden X. Schraut
Abstract:
Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database.Keywords: chest X-ray, deep learning, image segmentation, image classification
Procedia PDF Downloads 142962 Design and Implementation of 2D Mesh Network on Chip Using VHDL
Authors: Boudjedra Abderrahim, Toumi Salah, Boutalbi Mostefa, Frihi Mohammed
Abstract:
Nowadays, using the advancement of technology in semiconductor device fabrication, many transistors can be integrated to a single chip (VLSI). Although the growth chip density potentially eases systems-on-chip (SoCs) integrating thousands of processing element (PE) such as memory, processor, interfaces cores, system complexity, high-performance interconnect and scalable on-chip communication architecture become most challenges for many digital and embedded system designers. Networks-on-chip (NoCs) becomes a new paradigm that makes possible integrating heterogeneous devices and allows many communication constraints and performances. In this paper, we are interested for good performance and low area for implementation and a behavioral modeling of network on chip mesh topology design using VHDL hardware description language with performance evaluation and FPGA implementation results.Keywords: design, implementation, communication system, network on chip, VHDL
Procedia PDF Downloads 376961 A Novel Approach to Design of EDDR Architecture for High Speed Motion Estimation Testing Applications
Authors: T. Gangadhararao, K. Krishna Kishore
Abstract:
Motion Estimation (ME) plays a critical role in a video coder, testing such a module is of priority concern. While focusing on the testing of ME in a video coding system, this work presents an error detection and data recovery (EDDR) design, based on the residue-and-quotient (RQ) code, to embed into ME for video coding testing applications. An error in processing Elements (PEs), i.e. key components of a ME, can be detected and recovered effectively by using the proposed EDDR design. The proposed EDDR design for ME testing can detect errors and recover data with an acceptable area overhead and timing penalty.Keywords: area overhead, data recovery, error detection, motion estimation, reliability, residue-and-quotient (RQ) code
Procedia PDF Downloads 430960 Intracellular Sphingosine-1-Phosphate Receptor 3 Contributes to Lung Tumor Cell Proliferation
Authors: Michela Terlizzi, Chiara Colarusso, Aldo Pinto, Rosalinda Sorrentino
Abstract:
Sphingosine-1-phosphate (S1P) is a membrane-derived bioactive phospholipid exerting a multitude of effects on respiratory cell physiology and pathology through five S1P receptors (S1PR1-5). Higher levels of S1P have been registered in a broad range of respiratory diseases, including inflammatory disorders and cancer, although its exact role is still elusive. Based on our previous study in which we found that S1P/S1PR3 is involved in an inflammatory pattern via the activation of Toll-like Receptor 9 (TLR9), highly expressed on lung cancer cells, the main goal of the current study was to better understand the involvement of S1P/S1PR3 pathway/signaling during lung carcinogenesis, taking advantage of a mouse model of first-hand smoke exposure and of carcinogen-induced lung cancer. We used human samples of Non-Small Cell Lung Cancer (NSCLC), a mouse model of first-hand smoking, and of Benzo(a)pyrene (BaP)-induced tumor-bearing mice and A549 lung adenocarcinoma cells. We found that the intranuclear, but not the membrane, localization of S1PR3 was associated to the proliferation of lung adenocarcinoma cells, the mechanism that was correlated to human and mouse samples of smoke-exposure and carcinogen-induced lung cancer, which were characterized by higher utilization of S1P. Indeed, the inhibition of the membrane S1PR3 did not alter tumor cell proliferation after TLR9 activation. Instead, according to the nuclear localization of sphingosine kinase (SPHK) II, the enzyme responsible for the catalysis of the S1P last step synthesis, the inhibition of the kinase completely blocked the endogenous S1P-induced tumor cell proliferation. These results prove that the endogenous TLR9-induced S1P can on one side favor pro-inflammatory mechanisms in the tumor microenvironment via the activation of cell surface receptors, but on the other tumor progression via the nuclear S1PR3/SPHK II axis, highlighting a novel molecular mechanism that identifies S1P as one of the crucial mediators for lung carcinogenesis-associated inflammatory processes and that could provide differential therapeutic approaches especially in non-responsive lung cancer patients.Keywords: sphingosine-1-phosphate (S1P), S1P Receptor 3 (S1PR3), smoking-mice, lung inflammation, lung cancer
Procedia PDF Downloads 199959 The Social Perception of National Security Risks: A Comparative Perspective
Authors: Nicula Valentin, Andrei Virginia
Abstract:
Nowadays, the individual plays a central role in the state’s architecture. This is why the subjective dimension of the security represents a key concept in risk assessment. The paper’s scope is to emphasize the discrepancy between expert and lay evaluations of national security hazards, which is caused by key factors like emotions, personal experience, knowledge and media. Therefore, we have chosen to apply, using these two different groups of respondents, the Q-sort method, which reveals individual beliefs, attitudes, preferences hidden behind the subjects’ own way of prioritizing the risks they are confronted with. Our study’s conclusions are meant to unveil significant indicators needed to be taken into consideration by a state’s leadership in order to understand the social perception of national security hazards, to communicate better with the public opinion and prevent or mitigate the overestimation of the severity or probability of these dangers.Keywords: risk perception, Q-sort method, national security hazards, individual beliefs
Procedia PDF Downloads 308958 Sculpted Forms and Sensitive Spaces: Walking through the Underground in Naples
Authors: Chiara Barone
Abstract:
In Naples, the visible architecture is only what emerges from the underground. Caves and tunnels cross it in every direction, intertwining with each other. They are not natural caves but spaces built by removing what is superfluous in order to dig a form out of the material. Architects, as sculptors of space, do not determine the exterior, what surrounds the volume and in which the forms live, but an interior underground space, perceptive and sensitive, able to generate new emotions each time. It is an intracorporeal architecture linked to the body, not in its external relationships, but rather with what happens inside. The proposed aims to reflect on the design of underground spaces in the Neapolitan city. The idea is to intend the underground as a spectacular museum of the city, an opportunity to learn in situ the history of the place along an unpredictable itinerary that crosses the caves and, in certain points, emerges, escaping from the world of shadows. Starting form the analysis and the study of the many overlapping elements, the archaeological one, the geological layer and the contemporary city above, it is possible to develop realistic alternatives for underground itineraries. The objective is to define minor paths to ensure the continuity between the touristic flows and entire underground segments already investigated but now disconnected: open-air paths, which abyss in the earth, retracing historical and preserved fragments. The visitor, in this way, passes from real spaces to sensitive spaces, in which the imaginary replaces the real experience, running towards exciting and secret knowledge. To safeguard the complex framework of the historical-artistic values, it is essential to use a multidisciplinary methodology based on a global approach. Moreover, it is essential to refer to similar design projects for the archaeological underground, capable of guide action strategies, looking at similar conditions in other cities, where the project has led to an enhancement of the heritage in the city. The research limits the field of investigation, by choosing the historic center of Naples, applying bibliographic and theoretical research to a real place. First of all, it’s necessary to deepen the places’ knowledge understanding the potentialities of the project as a link between what is below and what is above. Starting from a scientific approach, in which theory and practice are constantly intertwined through the architectural project, the major contribution is to provide possible alternative configurations for the underground space and its relationship with the city above, understanding how the condition of transition, as passage between the below and the above becomes structuring in the design process. Starting from the consideration of the underground as both a real physical place and a sensitive place, which engages the memory, imagination, and sensitivity of a man, the research aims at identifying possible configurations and actions useful for future urban programs to make the underground a central part of the lived city, again.Keywords: underground paths, invisible ruins, imaginary, sculpted forms, sensitive spaces, Naples
Procedia PDF Downloads 103957 SciPaaS: a Scientific Execution Platform for the Cloud
Authors: Wesley H. Brewer, John C. Sanford
Abstract:
SciPaaS is a prototype development of an execution platform/middleware designed to make it easy for scientists to rapidly deploy their scientific applications (apps) to the cloud. It provides all the necessary infrastructure for running typical IXP (Input-eXecute-Plot) style apps, including: a web interface, post-processing and plotting capabilities, job scheduling, real-time monitoring of running jobs, and even a file/case manager. In this paper, first the system architecture is described and then is demonstrated for a two scientific applications: (1) a simple finite-difference solver of the inviscid Burger’s equation, and (2) Mendel’s Accountant—a forward-time population genetics simulation model. The implications of the prototype are discussed in terms of ease-of-use and deployment options, especially in cloud environments.Keywords: web-based simulation, cloud computing, Platform-as-a-Service (PaaS), rapid application development (RAD), population genetics
Procedia PDF Downloads 589956 MyAds: A Social Adaptive System for Online Advertisment from Hypotheses to Implementation
Authors: Dana A. Al Qudah, Alexandra I. Critea, Rizik M. H. Al Sayyed, Amer Obeidah
Abstract:
Online advertisement is one of the major incomes for many companies; it has a role in the overall business flow and affects the consumer behavior directly. Unfortunately most users tend to block their ads or ignore them. MyAds is a social adaptive hypermedia system for online advertising and its main goal is to explore how to make online ads more acceptable. In order to achieve such a goal, various technologies and techniques are used. This paper presents a theoretical framework as well as the system architecture for MyAds that was designed based on a set of hypotheses and an exploratory study. The system then was implemented and a pilot experiment was conducted to validate it. The main outcomes suggest that the system has provided personalized ads for users. The main implications suggest that the system can be used for further testing and validating.Keywords: adaptive hypermedia, e-advertisement, social, hypotheses, exploratory study, framework
Procedia PDF Downloads 410955 Development of a Very High Sensitivity Magnetic Field Sensor Based on Planar Hall Effect
Authors: Arnab Roy, P. S. Anil Kumar
Abstract:
Hall bar magnetic field sensors based on planar hall effect were fabricated from permalloy (Ni¬80Fe20) thin films grown by pulsed laser ablation. As large as 400% planar Hall voltage change was observed for a magnetic field sweep within ±4 Oe, a value comparable with present day TMR sensors at room temperature. A very large planar Hall sensitivity of 1200 Ω/T was measured close to switching fields, which was not obtained so far apart from 2DEG Hall sensors. In summary, a highly sensitive low magnetic field sensor has been constructed which has the added advantage of simple architecture, good signal to noise ratio and robustness.Keywords: planar hall effect, permalloy, NiFe, pulsed laser ablation, low magnetic field sensor, high sensitivity magnetic field sensor
Procedia PDF Downloads 512954 A Comparative Study on the Positive and Negative of Electronic Word-of-Mouth on the SERVQUAL Scale-Take A Certain Armed Forces General Hospital in Taiwan As An Example
Authors: Po-Chun Lee, Li-Lin Liang, Ching-Yuan Huang
Abstract:
Purpose: Research on electronic word-of-mouth (eWOM)& online review has been widely used in service industry management research in recent years. The SERVQUAL scale is the most commonly used method to measure service quality. Therefore, the purpose of this research is to combine electronic word of mouth & online review with the SERVQUAL scale. To explore the comparative study of positive and negative electronic word-of-mouth reviews of a certain armed force general hospital in Taiwan. Data sources: This research obtained online word-of-mouth comment data on google maps from a military hospital in Taiwan in the past ten years through Internet data mining technology. Research methods: This study uses the semantic content analysis method to classify word-of-mouth reviews according to the revised PZB SERVQUAL scale. Then carry out statistical analysis. Results of data synthesis: The results of this study disclosed that the negative reviews of this military hospital in Taiwan have been increasing year by year. Under the COVID-19 epidemic, positive word-of-mouth has a downward trend. Among the five determiners of SERVQUAL of PZB, positive word-of-mouth reviews performed best in “Assurance,” with a positive review rate of 58.89%, Followed by 43.33% of “Responsiveness.” In negative word-of-mouth reviews, “Assurance” performed the worst, with a positive rate of 70.99%, followed by responsive 29.01%. Conclusions: The important conclusions of this study disclosed that the total number of electronic word-of-mouth reviews of the military hospital has revealed positive growth in recent years, and the positive word-of-mouth growth has revealed negative growth after the epidemic of COVID-19, while the negative word-of-mouth has grown substantially. Regardless of the positive and negative comments, what patients care most about is “Assurance” of the professional attitude and skills of the medical staff, which needs to be strengthened most urgently. In addition, good “Reliability” will help build positive word-of-mouth. However, poor “Responsiveness” can easily lead to the spread of negative word-of-mouth. This study suggests that the hospital should focus on these few service-oriented quality management and audits.Keywords: quality of medical service, electronic word-of-mouth, armed forces general hospital
Procedia PDF Downloads 175953 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking
Authors: Noga Bregman
Abstract:
Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves
Procedia PDF Downloads 49952 Analytics Model in a Telehealth Center Based on Cloud Computing and Local Storage
Authors: L. Ramirez, E. Guillén, J. Sánchez
Abstract:
Some of the main goals about telecare such as monitoring, treatment, telediagnostic are deployed with the integration of applications with specific appliances. In order to achieve a coherent model to integrate software, hardware, and healthcare systems, different telehealth models with Internet of Things (IoT), cloud computing, artificial intelligence, etc. have been implemented, and their advantages are still under analysis. In this paper, we propose an integrated model based on IoT architecture and cloud computing telehealth center. Analytics module is presented as a solution to control an ideal diagnostic about some diseases. Specific features are then compared with the recently deployed conventional models in telemedicine. The main advantage of this model is the availability of controlling the security and privacy about patient information and the optimization on processing and acquiring clinical parameters according to technical characteristics.Keywords: analytics, telemedicine, internet of things, cloud computing
Procedia PDF Downloads 324951 Artificial Neural Networks with Decision Trees for Diagnosis Issues
Authors: Y. Kourd, D. Lefebvre, N. Guersi
Abstract:
This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.Keywords: neural networks, decision trees, diagnosis, behaviors
Procedia PDF Downloads 502950 Design and Implementation of Active Radio Frequency Identification on Wireless Sensor Network-Based System
Authors: Che Z. Zulkifli, Nursyahida M. Noor, Siti N. Semunab, Shafawati A. Malek
Abstract:
Wireless sensors, also known as wireless sensor nodes, have been making a significant impact on human daily life. The Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two complementary technologies; hence, an integrated implementation of these technologies expands the overall functionality in obtaining long-range and real-time information on the location and properties of objects and people. An approach for integrating ZigBee and RFID networks is proposed in this paper, to create an energy-efficient network improved by the benefits of combining ZigBee and RFID architecture. Furthermore, the compatibility and requirements of the ZigBee device and communication links in the typical RFID system which is presented with the real world experiment on the capabilities of the proposed RFID system.Keywords: mesh network, RFID, wireless sensor network, zigbee
Procedia PDF Downloads 460949 Scaling Up Psychosocial Wellbeing of Orphans and Vulnerable Learners in Rural Schools in Lesotho: An Ethnopsychology Approach
Authors: Fumane Portia Khanare
Abstract:
This paper explores strategies to improve the psychosocial wellbeing of orphans and vulnerable learners (OVLs) in rural schools in Lesotho that seem essential for their success, in anticipation of, and in the context of global education. Various strategies to improve psychosocial wellbeing are considered necessary in that they are inclusive and buffer other forms of conditions beyond traditional and Eurocentric forms in orientation. Furthermore, they bring about the local experiences and particularly of the learners and schools in rural areas – all of which constitute ethnopsychology. COVID-19 pandemic has enthused the demands for collaboration and responsive support for learners within rural and many deprived contexts in Lesotho. However, the increase of OVLs in the education sector has also sparked the debate of how many rural schools with a lack of resources, inadequate teacher training, declining unemployment and the detriment of COVID-19 throughout Lesotho affected the psychosocial wellbeing of these learners. In some cases, the pandemic has created opportunities to explore existing, forgotten or ignored resources dated back to the pre-colonial era in Lesotho, and emphasizing to have an optimistic outlook on life as a result of collaboration and appreciating local knowledge. In order to scale up the psychosocial wellbeing of OVLs, there is a need to explore various strategies to improve their psychosocial wellbeing, in which all learners can succeed during the COVID-19 pandemic and beyond, thereby promoting the agency of young people from the rural areas towards building supportive learning environments. The paper draws on qualitative participatory arts-based study data generated by 30 learners in two rural secondary schools in Lesotho. Thematic analysis was employed to provide an in-depth understanding of learners' psychosocial needs and strategies to improve their psychosocial wellbeing. The paper is guided by ethnopsychology – a strength-based perspective, which posits that in the most difficult situations, individuals including, young people have strengths, can collaborate and find solutions that respond to their challenges. This was done by examining how various facets of their environments such as peers, teachers, schools’ environment, family and community played out in creating supportive strategies to improve the psychosocial wellbeing of OVLs which buffer the successful completion of their secondary school education. It is recommended that ethnopsychology should recognise and be used under the realm of positive wellbeing in rural schools in Lesotho.Keywords: arts-based research, ethnopsychology, Lesotho, orphans and vulnerable learners, psychosocial wellbeing, rural schools.
Procedia PDF Downloads 205948 Scaling Up Psychosocial Wellbeing of Orphans and Vulnerable Learners in Rural Schools in Lesotho: An Ethnopsychology Approach
Authors: Fumane Portia Khanare
Abstract:
This paper explores strategies to improve the psychosocial wellbeing of orphans and vulnerable learners (OVLs) in rural schools in Lesotho that seem essential for their success, in anticipation of, and in the context of global education. Various strategies to improve the psychosocial wellbeing are considered necessary in that they are inclusive and buffer other forms of conditions beyond traditional and Eurocentric forms in orientation. Furthermore, they bring about the local experiences and particularly of the learners and schools in rural areas – all of which constitute ethnopsychology. COVID-19 pandemic has enthused the demands for collaboration and responsive support for learners within rural and many deprived contexts in Lesotho. However, the increase of OVLs in the education sector has also sparked the debate of how much rural schools with lack of resources, inadequate teacher training, declining unemployment and the detriment of COVID-19 throughout Lesotho affected the psychosocial wellbeing of these learners. In some cases, the pandemic has created opportunities to explore existing, forgotten or ignored resources dated back to pre-colonial era in Lesotho, and emphasizing to have an optimistic outlook on life as a result of collaboration and appreciating local knowledge. In order to scale up the psychosocial wellbeing of OVLs there is a need to explore various strategies to improve their psychosocial wellbeing, in which all learners can succeed during COVID-19 pandemic and beyond, thereby promoting agency of young people from the rural areas towards building supportive learning environments. The paper draws on a qualitative participatory arts-based study data generated by 30 learners in two rural secondary schools in Lesotho. Thematic analysis was employed to provide an in-depth understanding of learners' psychosocial needs and strategies to improve their psychosocial wellbeing. The paper is guided by ethnopsychology – a strength-based perspective, which posit that in the most difficult situations, individual including, young people have strengths, can collaborate and find solutions that respond to their challenges. This was done by examining how various facets of their environments such as peers, teachers, schools’ environment, family and community played out in creating supportive strategies to improve the psychosocial wellbeing of OVLs which buffer their successful completion of their secondary school education. It is recommended that ethnopsychology should recognised and be used under the realm of positive wellbeing in rural schools in Lesotho.Keywords: arts-based research, ethnopsychology, orphans and vulnerable learners, Lesotho, psychosocial wellbeing, rural schools
Procedia PDF Downloads 153947 IACOP - Route Optimization in Wireless Networks Using Improved Ant Colony Optimization Protocol
Authors: S. Vasundra, D. Venkatesh
Abstract:
Wireless networks have gone through an extraordinary growth in the past few years, and will keep on playing a crucial role in future data communication. The present wireless networks aim to make communication possible anywhere and anytime. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Since an ad hoc network may consist of a large number of mobile hosts, this imposes a significant challenge on the design of an effective and efficient routing protocol that can work well in an environment with frequent topological changes. This paper proposes improved ant colony optimization (IACO) technique. It also maintains load balancing in wireless networks. The simulation results show that the proposed IACO performs better than existing routing techniques.Keywords: wireless networks, ant colony optimization, load balancing, architecture
Procedia PDF Downloads 420946 Evolution of Memorial Architecture: Comparative Study of Aesthetics and Elements of Memorials in Europe and Indian Subcontinent
Authors: Madhusudan Hamirwasia, Sarang Barbarwar, Arshleen Kaur
Abstract:
The construction of memorials began thousands of years ago and the practice is still continuing. These memorials became a symbol to honor great people and events in the history. The aim of the study was to understand the evolution of memorials from an architectural design perspective. It is also concentrated on the similarities and differences between the memorials in Europe and those in the Indian subcontinent. The study shows how the design of a memorial has seen a considerable shift from the tribal Urasgattas to the contemporary commemorative structures. While they were somber symbolic gestures in the past, they have now transformed into a socio-cultural space in urban areas. Not only the memorials were inspired by the culture but the culture too got influenced by the memorials as with progressing time, they hold the vital link to our past. The study intends to encapsulate the essence of design elements in these memorials that convey the visitors the intangible messages held by the edifice in its tangible presence.Keywords: evolution, emotion, memorials, symbolism
Procedia PDF Downloads 140945 Classification Based on Deep Neural Cellular Automata Model
Authors: Yasser F. Hassan
Abstract:
Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.Keywords: cellular automata, neural cellular automata, deep learning, classification
Procedia PDF Downloads 194944 Instant Data-Driven Robotics Fabrication of Light-Transmitting Ceramics: A Responsive Computational Modeling Workflow
Authors: Shunyi Yang, Jingjing Yan, Siyu Dong, Xiangguo Cui
Abstract:
Current architectural façade design practices incorporate various daylighting and solar radiation analysis methods. These emphasize the impact of geometry on façade design. There is scope to extend this knowledge into methods that address material translucency, porosity, and form. Such approaches can also achieve these conditions through adaptive robotic manufacturing approaches that exploit material dynamics within the design, and alleviate fabrication waste from molds, ultimately accelerating the autonomous manufacturing system. Besides analyzing the environmental solar radiant in building facade design, there is also a vacancy research area of how lighting effects can be precisely controlled by engaging the instant real-time data-driven robot control and manipulating the material properties. Ceramics carries a wide range of transmittance and deformation potentials for robotics control with the research of its material property. This paper presents one semi-autonomous system that engages with real-time data-driven robotics control, hardware kit design, environmental building studies, human interaction, and exploratory research and experiments. Our objectives are to investigate the relationship between different clay bodies or ceramics’ physio-material properties and their transmittance; to explore the feedback system of instant lighting data in robotic fabrication to achieve precise lighting effect; to design the sufficient end effector and robot behaviors for different stages of deformation. We experiment with architectural clay, as the material of the façade that is potentially translucent at a certain stage can respond to light. Studying the relationship between form, material properties, and porosity can help create different interior and exterior light effects and provide façade solutions for specific architectural functions. The key idea is to maximize the utilization of in-progress robotics fabrication and ceramics materiality to create a highly integrated autonomous system for lighting facade design and manufacture.Keywords: light transmittance, data-driven fabrication, computational design, computer vision, gamification for manufacturing
Procedia PDF Downloads 120943 Geopolymer Stabilization of Earth Building Material for Construction 3D Printing
Authors: Timur Mukhametkaliyev
Abstract:
The earthen material possesses low compression strength, and it is highly sensitive to the water content. Different binders can be added (Portland cement or lime) to improve the durability and the mechanical characteristics of earthen material, but the production of these binders has high embodied energy and results in an increase in world CO₂ emission. Geopolymers are binders which can be synthesized at low temperature in alkaline solutions from raw materials consisting of amorphous aluminosilicates. Geopolymers are an attractive substitution of Portland cement and can be used as an excellent stabilization for earthen material. In this study, earthen material stabilized with geopolymer binder for use in construction 3D printing was developed. Construction 3D printing offers freedom of design, waste minimisation, customisation, reduced labour, and automation. For successful 3D printing, the properties of used material are the most important aspects because they require adaptability for extrusion and controlled time of hardening for the binder.Keywords: 3D printing, building construction, geopolymer, architecture
Procedia PDF Downloads 150942 Designing Sustainable and Energy-Efficient Urban Network: A Passive Architectural Approach with Solar Integration and Urban Building Energy Modeling (UBEM) Tools
Authors: A. Maghoul, A. Rostampouryasouri, MR. Maghami
Abstract:
The development of an urban design and power network planning has been gaining momentum in recent years. The integration of renewable energy with urban design has been widely regarded as an increasingly important solution leading to climate change and energy security. Through the use of passive strategies and solar integration with Urban Building Energy Modeling (UBEM) tools, architects and designers can create high-quality designs that meet the needs of clients and stakeholders. To determine the most effective ways of combining renewable energy with urban development, we analyze the relationship between urban form and renewable energy production. The procedure involved in this practice include passive solar gain (in building design and urban design), solar integration, location strategy, and 3D models with a case study conducted in Tehran, Iran. The study emphasizes the importance of spatial and temporal considerations in the development of sector coupling strategies for solar power establishment in arid and semi-arid regions. The substation considered in the research consists of two parallel transformers, 13 lines, and 38 connection points. Each urban load connection point is equipped with 500 kW of solar PV capacity and 1 kWh of battery Energy Storage (BES) to store excess power generated from solar, injecting it into the urban network during peak periods. The simulations and analyses have occurred in EnergyPlus software. Passive solar gain involves maximizing the amount of sunlight that enters a building to reduce the need for artificial lighting and heating. Solar integration involves integrating solar photovoltaic (PV) power into smart grids to reduce emissions and increase energy efficiency. Location strategy is crucial to maximize the utilization of solar PV in an urban distribution feeder. Additionally, 3D models are made in Revit, and they are keys component of decision-making in areas including climate change mitigation, urban planning, and infrastructure. we applied these strategies in this research, and the results show that it is possible to create sustainable and energy-efficient urban environments. Furthermore, demand response programs can be used in conjunction with solar integration to optimize energy usage and reduce the strain on the power grid. This study highlights the influence of ancient Persian architecture on Iran's urban planning system, as well as the potential for reducing pollutants in building construction. Additionally, the paper explores the advances in eco-city planning and development and the emerging practices and strategies for integrating sustainability goals.Keywords: energy-efficient urban planning, sustainable architecture, solar energy, sustainable urban design
Procedia PDF Downloads 74941 Regulating Green Roofs: A Review of the Relation between Current International Regulations and Economic, Environmental and Social Effects
Authors: Marianna Nigra, Maicol Negrello
Abstract:
Efficiency, productivity, and sustainability are important factors for structure and the application of processes in green building. Various previous studies have addressed efficiency, productivity, and sustainability separately. This research study aims to investigate the implications of these three factors taking together. Frequency analysis and the ranking techniques are carried out to explore the connection between these factors. The interconnection matrix has been developed and functional grouping is made based upon data from expert opinion and field professionals. The existence of a relationship, the type of relationship and the scaled impact have been drawn. Additionally, a system diagram has been developed to show the variable correlation. The results of expert opinion show that efficiency, productivity, and sustainability have a stronger impact on green buildings.Keywords: green roof regulation, architecture, climate adaptation, resilience, innovation management
Procedia PDF Downloads 103940 3D Object Model Reconstruction Based on Polywogs Wavelet Network Parametrization
Authors: Mohamed Othmani, Yassine Khlifi
Abstract:
This paper presents a technique for compact three dimensional (3D) object model reconstruction using wavelet networks. It consists to transform an input surface vertices into signals,and uses wavelet network parameters for signal approximations. To prove this, we use a wavelet network architecture founded on several mother wavelet families. POLYnomials WindOwed with Gaussians (POLYWOG) wavelet families are used to maximize the probability to select the best wavelets which ensure the good generalization of the network. To achieve a better reconstruction, the network is trained several iterations to optimize the wavelet network parameters until the error criterion is small enough. Experimental results will shown that our proposed technique can effectively reconstruct an irregular 3D object models when using the optimized wavelet network parameters. We will prove that an accurateness reconstruction depends on the best choice of the mother wavelets.Keywords: 3d object, optimization, parametrization, polywog wavelets, reconstruction, wavelet networks
Procedia PDF Downloads 283939 Nano-Sized Iron Oxides/ZnMe Layered Double Hydroxides as Highly Efficient Fenton-Like Catalysts for Degrading Specific Pharmaceutical Agents
Authors: Marius Sebastian Secula, Mihaela Darie, Gabriela Carja
Abstract:
Persistent organic pollutant discharged by various industries or urban regions into the aquatic ecosystems represent a serious threat to fauna and human health. The endocrine disrupting compounds are known to have toxic effects even at very low values of concentration. The anti-inflammatory agent Ibuprofen is an endocrine disrupting compound and is considered as model pollutant in the present study. The use of light energy to accomplish the latest requirements concerning wastewater discharge demands highly-performant and robust photo-catalysts. Many efforts have been paid to obtain efficient photo-responsive materials. Among the promising photo-catalysts, layered double hydroxides (LDHs) attracted significant consideration especially due to their composition flexibility, high surface area and tailored redox features. This work presents Fe(II) self-supported on ZnMeLDHs (Me =Al3+, Fe3+) as novel efficient photo-catalysts for Fenton-like catalysis. The co-precipitation method was used to prepare ZnAlLDH, ZnFeAlLDH and ZnCrLDH (Zn2+/Me3+ = 2 molar ratio). Fe(II) was self-supported on the LDHs matrices by using the reconstruction method, at two different values of weight concentration. X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), Fourier transform infrared (FTIR) and transmission electron microscopy (TEM) were used to investigate the structural, textural, and micromorphology of the catalysts. The Fe(II)/ZnMeLDHs nano-hybrids were tested for the degradation of a model pharmaceutical agent, the anti-inflammatory agent ibuprofen, by photocatalysis and photo-Fenton catalysis, respectively. The results point out that the embedment Fe(II) into ZnFeAlLDH and ZnCrLDH lead to a slight enhancement of ibuprofen degradation by light irradiation, whereas in case of ZnAlLDH, the degradation process is relatively low. A remarkable enhancement of ibuprofen degradation was found in the case of Fe(II)/ZnMeLDHs by photo-Fenton process. Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.Keywords: layered double hydroxide, heterogeneous Fenton, micropollutant, photocatalysis
Procedia PDF Downloads 294938 Foraminiferal Associations and Paleoecology of the Oligocene Sediments in Zagros Basin, SW Iran
Authors: Tahereh Habibi
Abstract:
The Oligocene carbonates are widespread along Fars Province, Zagros Basin, SW Iran. Distribution of planktonic and larger benthic foraminfera, stratal patterns and facies architecture are used as a tool to define microfacies and foraminiferal associations of these strata at Kavar Section. The presence of Nummulites spp. indicated the age of the sequence as Rupelian-Chattian (Nummulites vascus-Nummulites fichteli and Archaias asmaricus/hensoni-Miogypsinoides complanatus assemblage zones). The paleoenvironmental setting is interpreted as a homoclinal ramp environment according to the recognition of eight microfacies types. Four foraminiferal associations are recognized in the investigated ramp setting. They represent a salinity of 34-40 to 50 psu and higher than 50 psu in more restricted conditions. The depth ranges from 200 m as evidenced by the presence of planktonic foraminifera and to less than 30m in the more restricted inner ramp environment. Warm tropical and subtropical water with temperature of 18-25° C is proposed.Keywords: foraminiferal associations, microfacies, oligocene, paleoecology
Procedia PDF Downloads 505