Search results for: multivariate logistic regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3807

Search results for: multivariate logistic regression

2697 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning

Authors: Xingyu Gao, Qiang Wu

Abstract:

Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.

Keywords: patent influence, interpretable machine learning, predictive models, SHAP

Procedia PDF Downloads 47
2696 Investigating Homicide Offender Typologies Based on Their Clinical Histories and Crime Scene Behaviour Patterns

Authors: Valeria Abreu Minero, Edward Barker, Hannah Dickson, Francois Husson, Sandra Flynn, Jennifer Shaw

Abstract:

Purpose – The purpose of this paper is to identify offender typologies based on aspects of the offenders’ psychopathology and their associations with crime scene behaviours using data derived from the National Confidential Enquiry into Suicide and Safety in Mental Health concerning homicides in England and Wales committed by offenders in contact with mental health services in the year preceding the offence (n=759). Design/methodology/approach – The authors used multiple correspondence analysis to investigate the interrelationships between the variables and hierarchical agglomerative clustering to identify offender typologies. Variables describing: the offender’s mental health history; the offenders’ mental state at the time of offence; characteristics useful for police investigations; and patterns of crime scene behaviours were included. Findings – Results showed differences in the offender’s histories in relation to their crime scene behaviours. Further, analyses revealed three homicide typologies: externalising, psychosis and depression. Analyses revealed three homicide typologies: externalising, psychotic and depressive. Practical implications – These typologies may assist the police during homicide investigations by: furthering their understanding of the crime or likely suspect; offering insights into crime patterns; provide advice as to what an offender’s offence behaviour might signify about his/her mental health background; findings suggest information concerning offender psychopathology may be useful for offender profiling purposes in cases of homicide offenders with schizophrenia, depression and comorbid diagnosis of personality disorder and alcohol/drug dependence. Originality/value – Empirical studies with an emphasis on offender profiling have almost exclusively focussed on the inference of offender demographic characteristics. This study provides a first step in the exploration of offender psychopathology and its integration to the multivariate analysis of offence information for the purposes of investigative profiling of homicide by identifying the dominant patterns of mental illness within homicidal behaviour.

Keywords: offender profiling, mental illness, psychopathology, multivariate analysis, homicide, crime scene analysis, crime scene behviours, investigative advice

Procedia PDF Downloads 128
2695 Examining the Cognitive Abilities and Financial Literacy Among Street Entrepreneurs: Evidence From North-East, India

Authors: Aayushi Lyngwa, Bimal Kishore Sahoo

Abstract:

The study discusses the relationship between cognitive ability and the level of education attained by the tribal street entrepreneurs on their financial literacy. It is driven by the objective of examining the effect of cognitive ability on financial ability on the one hand and determining the effect of the same on financial literacy on the other. A field experiment was conducted on 203 tribal street vendors in the north-eastern Indian state of Mizoram. This experiment's calculations are conditioned by providing each question scores like math score (cognitive ability), financial score and debt score (financial ability). After that, categories for each of the variables, like math category (math score), financial category (financial score) and debt category (debt score), are generated to run the regression model. Since the dependent variable is ordinal, an ordered logit regression model was applied. The study shows that street vendors' cognitive and financial abilities are highly correlated. It, therefore, confirms that cognitive ability positively affects the financial literacy of street vendors through the increase in attainment of educational levels. It is also found that concerning the type of street vendors, regular street vendors are more likely to have better cognitive abilities than temporary street vendors. Additionally, street vendors with more cognitive and financial abilities gained better monthly profits and performed habits of bookkeeping. The study attempts to draw a particular focus on a set-up which is economically and socially marginalized in the Indian economy. Its finding contributes to understanding financial literacy in an understudied area and provides policy implications through inclusive financial systems solutions in an economy limited to tribal street vendors.

Keywords: financial literacy, education, street entrepreneurs, tribals, cognitive ability, financial ability, ordered logit regression.

Procedia PDF Downloads 108
2694 Experimental Design and Optimization of Diesel Oil Desulfurization Process by Adsorption Processes

Authors: M. Firoz Kalam, Wilfried Schuetz, Jan Hendrik Bredehoeft

Abstract:

Thiophene sulfur compounds' removal from diesel oil by batch adsorption process using commercial powdered activated carbon was designed and optimized in two-level factorial design method. This design analysis was used to find out the effects of operating parameters directing the adsorption process, such as amount of adsorbent, temperature and stirring time. The desulfurization efficiency was considered the response or output variable. Results showed that the stirring time had the largest effects on sulfur removal efficiency as compared with other operating parameters and their interactions under the experimental ranges studied. A regression model was generated to observe the closeness between predicted and experimental values. The three-dimensional plots and contour plots of main factors were generated according to the regression results to observe the optimal points.

Keywords: activated carbon, adsorptive desulfurization, factorial design, process optimization

Procedia PDF Downloads 160
2693 Comparing Quality of Care in Family Planning Services in Primary Public and Private Health Care Facilities in Ethiopia

Authors: Gizachew Assefa Tessema, Mohammad Afzal Mahmood, Judith Streak Gomersall, Caroline O. Laurence

Abstract:

Introduction: Improving access to quality family planning services is the key to improving health of women and children. However, there is currently little evidence on the quality and scope of family planning services provided by private facilities, and this compares to the services provided in public facilities in Ethiopia. This is important, particularly in determining whether the government should further expand the roles of the private sector in the delivery of family planning facility. Methods: This study used the 2014 Ethiopian Services Provision Assessment Plus (ESPA+) survey dataset for comparing the structural aspects of quality of care in family planning services. The present analysis used a weighted sample of 1093 primary health care facilities (955 public and 138 private). This study employed logistic regression analysis to compare key structural variables between public and private facilities. While taking the structural variables as an outcome for comparison, the facility type (public vs private) were used as the key exposure of interest. Results: When comparing availability of basic amenities (infrastructure), public facilities were less likely to have functional cell phones (AOR=0.12; 95% CI: 0.07-0.21), and water supply (AOR=0.29; 95% CI: 0.15-0.58) than private facilities. However, public facilities were more likely to have staff available 24 hours in the facility (AOR=0.12; 95% CI: 0.07-0.21), providers having family planning related training in the past 24 months (AOR=4.4; 95% CI: 2.51, 7.64) and possessing guidelines/protocols (AOR= 3.1 95% CI: 1.87, 5.24) than private facilities. Moreover, comparing the availability of equipment, public facilities had higher odds of having pelvic model for IUD demonstration (AOR=2.60; 95% CI: 1.35, 5.01) and penile model for condom demonstration (AOR=2.51; 95% CI: 1.32, 4.78) than private facilities. Conclusion: The present study suggests that Ethiopian government needs to provide emphasis towards the private sector in terms of providing family planning guidelines and training on family planning services for their staff. It is also worthwhile for the public health facilities to allocate funding for improving the availability of basic amenities. Implications for policy and/ or practice: This study calls policy makers to design appropriate strategies in providing opportunities for training a health care providers working in private health facility.

Keywords: quality of care, family planning, public-private, Ethiopia

Procedia PDF Downloads 352
2692 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm

Authors: Zachary Huffman, Joana Rocha

Abstract:

Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.

Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations

Procedia PDF Downloads 134
2691 The Influence of Contextual Factors on Long-Term Contraceptive Use in East Java

Authors: Ni'mal Baroya, Andrei Ramani, Irma Prasetyowati

Abstract:

The access to reproduction health services, including with safe and effective contraception were human rights regardless of social stratum and residence. In addition to individual factors, family and contextual factors were also believed to be the cause in the use of contraceptive methods. This study aimed to assess the determinants of long-term contraceptive methods (LTCM) by considering all the factors at either the individual level or contextual level. Thereby, this study could provide basic information for program development of prevalence enhancement of MKJP in East Java. The research, which used cross-sectional design, utilized Riskesdas 2013 data, particularly in East Java Province for further analysis about multilevel modeling of MKJP application. The sample of this study consisted of 20.601 married women who were not in pregnant that were drawn by using probability sampling following the sampling technique of Riskesdas 2013. Variables in this study were including the independent variables at the individual level that consisted of education, age, occupation, access to family planning services (KB), economic status and residence. As independent variables in district level were the Human Development Index (HDI, henceforth as IPM) in each districts of East Java Province, the ratio of field officers, the ratio of midwives, the ratio of community health centers and the ratio of doctors. As for the dependent variable was the use of Long-Term Contraceptive Method (LTCM or MKJP). The data were analyzed by using chi-square test and Pearson product moment correlation. The multivariable analysis was using multilevel logistic regression with 95% of Confidence Interval (CI) at the significance level of p < 0.05 and 80% of strength test. The results showed a low CPR LTCM was concentrated in districts in Madura Island and the north coast. The women which were 25 to 35 or more than 35 years old, at least high school education, working, and middle-class social status were more likely to use LTCM or MKJP. The IPM and low PLKB ratio had implications for poor CPR LTCM / MKJP.

Keywords: multilevel, long-term contraceptive methods, east java, contextual factor

Procedia PDF Downloads 240
2690 Dietary Patterns and Adherence to the Mediterranean Diet among Breast Cancer Female Patients in Lebanon: A Cross-Sectional Study

Authors: Yasmine Aridi, Lara Nasreddine, Maya Khalil, Arafat Tfayli, Anas Mugharbel, Farah Naja

Abstract:

Breast cancer is the most commonly diagnosed cancer site among women worldwide and the second most common cause of cancer mortality. Breast cancer rates differ vastly between geographical areas, countries, and within the same country. In Lebanon, the proportion of breast cancer to all other sites of tumor is 38.2%; these rates are still lower than those observed worldwide, but remain the highest among Arab countries. Studies and evidence based reviews show a strong association between breast cancer development and prognosis and dietary habits, specifically the Mediterranean diet (MD). As such, the aim of this study is to examine dietary patterns and adherence to the MD among a sample of 182 breast cancer female patients in Beirut, Lebanon. Subjects were recruited from two major hospitals; a private medical center and a public hospital. All subjects were administered two questionnaires: socio- demographics and Mediterranean diet adherence. Five Mediterranean scores were calculated: MS, MSDPS, PMDI, PREDIMED and DDS. The mean age of the participants was 53.78 years. The overall adherence to the Mediterranean diet (MD) was low since the sample means of 3 out of the 5 calculated scores were less than the scores’ medians. Given that 4 out of the 5 Mediterranean scores significantly varied between the recruitment sites, women in the private medical center were found to adhere more to the MD. Our results also show that the majority of the sample population’s intakes are exceeding the recommendations for total and saturated fat, while meeting the requirements for fiber, EPA, DHA and Linolenic Acid. Participants in the private medical center were consuming significantly more calories, carbohydrates, fiber, sugar, Lycopene, Calcium, Iron and Folate and less fat. After conducting multivariate linear regression analyses, the following significant results were observed: positive associations between MD (CPMDI, PREDIMED) and monthly income & current state of health, while negative associations between MD (MSDPS, PREDIMED) and age & employment status. Our findings indicated a low overall adherence to the MD and identified factors associated with it; which suggests a need to address dietary habits among BC patients in Lebanon, specifically encouraging them to adhere to their traditional Mediterranean diet.

Keywords: Adherence, Breast cancer, Dietary patterns, Mediterranean diet, Nutrition

Procedia PDF Downloads 421
2689 Assessment of the Impact of Traffic Safety Policy in Barcelona, 2010-2019

Authors: Lluís Bermúdez, Isabel Morillo

Abstract:

Road safety involves carrying out a determined and explicit policy to reduce accidents. In the city of Barcelona, through the Local Road Safety Plan 2013-2018, in line with the framework that has been established at the European and state level, a series of preventive, corrective and technical measures are specified, with the priority objective of reducing the number of serious injuries and fatalities. In this work, based on the data from the accidents managed by the local police during the period 2010-2019, an analysis is carried out to verify whether the measures established in the Plan to reduce the accident rate have had an effect or not and to what extent. The analysis focuses on the type of accident and the type of vehicles involved. Different count regression models have been fitted, from which it can be deduced that the number of serious and fatal victims of the accidents that have occurred in the city of Barcelona has been reduced as the measures approved by the authorities.

Keywords: accident reduction, count regression models, road safety, urban traffic

Procedia PDF Downloads 130
2688 Understanding the Impact of Climate-Induced Rural-Urban Migration on the Technical Efficiency of Maize Production in Malawi

Authors: Innocent Pangapanga-Phiri, Eric Dada Mungatana

Abstract:

This study estimates the effect of climate-induced rural-urban migrants (RUM) on maize productivity. It uses panel data gathered by the National Statistics Office and the World Bank to understand the effect of RUM on the technical efficiency of maize production in rural Malawi. The study runs the two-stage Tobit regression to isolate the real effect of rural-urban migration on the technical efficiency of maize production. The results show that RUM significantly reduces the technical efficiency of maize production. However, the interaction of RUM and climate-smart agriculture has a positive and significant influence on the technical efficiency of maize production, suggesting the need for re-investing migrants’ remittances in agricultural activities.

Keywords: climate-smart agriculture, farm productivity, rural-urban migration, panel stochastic frontier models, two-stage Tobit regression

Procedia PDF Downloads 129
2687 Geochemical Characteristics and Chemical Toxicity: Appraisal of Groundwater Uranium With Other Geogenic Contaminants in Various Districts of Punjab, India

Authors: Tanu Sharma, Bikramjit Singh Bajwa, Inderpreet Kaur

Abstract:

Monitoring of groundwater in Tarn-Taran, Bathinda, Faridkot and Mansa districts of Punjab state, India is essential where this freshwater resource is being over-exploited causing quality deterioration, groundwater depletion and posing serious threats to residents. The present integrated study was done to appraise quality and suitability of groundwater for drinking/irrigation purposes, hydro-geochemical characteristics, source identification and associated health risks. In the present study, groundwater of various districts of Punjab state was found to be heavily contaminated with As followed by U, thus posing high cancerous risks to local residents via ingestion, along with minor contamination of Fe, Mn, Pb and F−. Most health concerns in the study region were due to the elevated concentrations of arsenic in groundwater with average values of 130 µg L-1, 176 µg L-1, 272 µg L-1 and 651 µg L-1 in Tarn-Taran, Bathinda, Faridkot and Mansa districts, respectively, which is quite high as compared to the safe limit as recommended by BIS i.e. 10 µg L-1. In Tarn-Taran, Bathinda, Faridkot and Mansa districts, average uranium contents were found to be 37 µg L-1, 88 µg L-1, 61 µg L-1 and 104 µg L-1, with 51 %, 74 %, 61 % and 71 % samples, respectively, being above the WHO limit of 30 µg L-1 in groundwater. Further, the quality indices showed that groundwater of study region is suited for irrigation but not appropriate for drinking purposes. Hydro-geochemical studies revealed that most of the collected groundwater samples belonged to Ca2+ - Mg2+ - HCO3- type showing dominance of MgCO3 type which indicates the presence of temporary hardness in groundwater. Rock-water reactions and reverse ion exchange were the predominant factors for controlling hydro-geochemistry in the study region. Dissolution of silicate minerals caused the dominance of Na+ ions in the aquifers of study region. Multivariate statistics revealed that along with geogenic sources, contribution of anthropogenic activities such as injudicious application of agrochemicals and domestic waste discharge was also very significant. The results obtained abolished the myth that uranium is only root cause for large number of cancer patients in study region as arsenic and mercury were also present in groundwater at levels that were of health concern to groundwater.

Keywords: uranium, trace elements, multivariate data analysis, risk assessment

Procedia PDF Downloads 69
2686 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer

Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo

Abstract:

Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.

Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer

Procedia PDF Downloads 206
2685 Prognosis of Patients with COVID-19 and Hematologic Malignancies

Authors: Elizabeth Behrens, Anne Timmermann, Alexander Yerkan, Joshua Thomas, Deborah Katz, Agne Paner, Melissa Larson, Shivi Jain, Seo-Hyun Kim, Celalettin Ustun, Ankur Varma, Parameswaran Venugopal, Jamile Shammo

Abstract:

Coronavirus Disease-2019 (COVID-19) causes persistent concern for poor outcomes in vulnerable populations. Patients with hematologic malignancies (HM) have been found to have higher COVID-19 case fatality rates compared to those without malignancy. While cytopenias are common in patients with HM, especially in those undergoing chemotherapy treatment, hemoglobin (Hgb) and platelet count have not yet been studied, to our best knowledge, as potential prognostic indicators for patients with HM and COVID-19. The goal of this study is to identify factors that may increase the risk of mortality in patients with HM and COVID-19. In this single-center, retrospective, observational study, 65 patients with HM and laboratory confirmed COVID-19 were identified between March 2020 and January 2021. Information on demographics, laboratory data the day of COVID-19 diagnosis, and prognosis was extracted from the electronic medical record (EMR), chart reviewed, and analyzed using the statistical software SAS version 9.4. Chi-square testing was used for categorical variable analyses. Risk factors associated with mortality were established by logistic regression models. Non-Hodgkin lymphoma (37%), chronic lymphocytic leukemia (20%), and plasma cell dyscrasia (15%) were the most common HM. Higher Hgb level upon COVID-19 diagnosis was related to decreased mortality, odd ratio=0.704 (95% confidence interval [CI]: 0.511-0.969; P = .0263). Platelet count the day of COVID-19 diagnosis was lower in patients who ultimately died (mean 127 ± 72K/uL, n=10) compared to patients who survived (mean 197 ±92K/uL, n=55) (P=.0258). Female sex was related to decreased mortality, odd ratio=0.143 (95% confidence interval [CI]: 0.026-0.785; P = .0353). There was no mortality difference between the patients who were on treatment for HM the day of COVID-19 diagnosis compared to those who were not (P=1.000). Lower Hgb and male sex are independent risk factors associated with increased mortality of HM patients with COVID-19. Clinicians should be especially attentive to patients with HM and COVID-19 who present with cytopenias. Larger multi-center studies are urgently needed to further investigate the impact of anemia, thrombocytopenia, and demographics on outcomes of patients with hematologic malignancies diagnosed with COVID-19.

Keywords: anemia, COVID-19, hematologic malignancy, prognosis

Procedia PDF Downloads 146
2684 Prevalence, Antimicrobial Susceptibility Pattern and Associated Risk Factors for Salmonella Species and Escherichia Coli from Raw Meat at Butchery Houses in Mekelle, Tigray, Northern Ethiopia

Authors: Haftay Abraha Tadesse, Dawit Gebreegziabiher Hagos, Atsebaha Gebrekidan Kahsay, Mahumd Abdulkader

Abstract:

Background: Salmonella species and Escherichia coli (E. coli) are important foodborne pathogens affecting humans and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. This study was aimed to determine the prevalence, antimicrobial susceptibility patterns and associated risk factors for Salmonella species and E. coli in raw meat from butchery houses of Mekelle, Northern Ethiopia. Method: A cross-sectional study was conducted from January to December 2019. Socio-demographic data and risk factors were collected using a predesigned questionnaire. Meat samples were collected aseptically from the butchery houses and transported using icebox to Mekelle University, College of Veterinary Sciences for the isolation and identification of Salmonella species and E. coli. Antimicrobial susceptibility patterns were determined using Kirby disc diffusion method. Data obtained were cleaned and entered into Statistical Package for the Social Sciences version 22 and logistic regression models with odds ratio were calculated. P-value < 0.05 was considered as statistically significant. Results: A total of 153 out of 384 (39.8%) of the meat specimens were found to be contaminated. The contamination of Salmonella species and E. coli were 15.6% (n=60) and 20.8%) (n=80), respectively. Mixed contamination (Salmonella species and E. coli) was observed in 13 (3.4 %) of the analyzed. Poor washing hands regularly (AOR = 8.37; 95% CI: 2.75-25.50) and not using gloves during meat handling (AOR=11. 28; 95% CI:(4.69 27.10) were associated with overall bacterial contamination. About 100% of the tested isolates were sensitive to ciprofloxacin, gentamicin, Co trimoxazole , sulphamethoxazole, ceftriaxone, and trimethoprim and ciprofloxacin, gentamicin, and norfloxacine of E. coli and Salmonella species, respectively, while the resistance of amoxyclav_amoxicillin and erythromycin were both isolated bacteria species. The overall multidrug resistance pattern for Salmonella and E. coli were 51.4% (n=19) and 31.8% (14), respectively. Conclusion: Of the 153 (153/384) contaminated raw meat, 60 (15.6%) and 80 (20.8%) were contaminated by Salmonella species and E. coli, respectively. Poor handwashing practice and not using glove during meat handling showed a significant association with bacterial contamination. Multidrug-resistant showed in Salmonella species, and E. coli were 19 (51.4%) and 14 (31.8%), respectively.

Keywords: antimicrobial susceptibility test, butchery houses, E. coli, raw meat, salmonella species

Procedia PDF Downloads 172
2683 Transport Related Air Pollution Modeling Using Artificial Neural Network

Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar

Abstract:

Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).

Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling

Procedia PDF Downloads 522
2682 Impact of Improved Beehive on Income of Rural Households: Evidence from Bugina District of Northern Ethiopia

Authors: Wondmnew Derebe

Abstract:

Increased adoption of modern beehives improves the livelihood of smallholder farmers whose income largely depends on mixed crop-livestock farming. Improved beehives have been disseminated to farmers in many parts of Ethiopia. However, its impact on income is less investigated. Thus, this study estimates how adopting improved beehives impacts rural households' income. Survey data were collected from 350 randomly selected households' and analyzed using an endogenous switching regression model. The result revealed that the adoption of improved beehives is associated with a higher annual income. On average, improved beehive adopters earned about 6,077 (ETB) more money than their counterparts. However, the impact of adoption would have been larger for actual non-adopters, as reflected in the negative transitional heterogeneity effect of 1792 (ETB). The result also indicated that the decision to adopt or not to adopt improved beehives was subjected to individual self-selection. Improved beehive adoption can increase farmers' income and can be used as an alternative poverty reduction strategy.

Keywords: impact, adoption, endogenous switching regression, income, improved

Procedia PDF Downloads 72
2681 Pattern Synthesis of Nonuniform Linear Arrays Including Mutual Coupling Effects Based on Gaussian Process Regression and Genetic Algorithm

Authors: Ming Su, Ziqiang Mu

Abstract:

This paper proposes a synthesis method for nonuniform linear antenna arrays that combine Gaussian process regression (GPR) and genetic algorithm (GA). In this method, the GPR model can be used to calculate the array radiation pattern in the presence of mutual coupling effects, and then the GA is used to optimize the excitations and locations of the elements so as to generate the desired radiation pattern. In this paper, taking a 9-element nonuniform linear array as an example and the desired radiation pattern corresponding to a Chebyshev distribution as the optimization objective, optimize the excitations and locations of the elements. Finally, the optimization results are verified by electromagnetic simulation software CST, which shows that the method is effective.

Keywords: nonuniform linear antenna arrays, GPR, GA, mutual coupling effects, active element pattern

Procedia PDF Downloads 106
2680 Determinants of Repeated Abortion among Women of Reproductive Age Attending Health Facilities in Northern Ethiopia: A Case-Control Study

Authors: Henok Yebyo Henok, Araya Abrha Araya, Alemayehu Bayray Alemayehu, Gelila Goba Gelila

Abstract:

Background: Every year, an estimated 19–20 million unsafe abortions take place, almost all in developing countries, leading to 68,000 deaths and millions more injured many permanently. Many women throughout the world, experience more than one abortion in their lifetimes. Repeat abortion is an indicator of the larger problem of unintended pregnancy. This study aimed to identify determinants of repeat abortion in Tigray Region, Ethiopia. Methods: Unmatched case-control study was conducted in hospitals in Tigray Region, Northern Ethiopia, from November 2014 to June 2015. The sample included 105 cases and 204 controls, recruited from among women seeking abortion care at public hospitals. Clients having two or more abortions (“repeat abortion”) were taken as cases, and those who had a total of one abortion were taken as controls (“single abortion”). Cases were selected consecutive based on proportional to size allocation while systematic sampling was employed for controls. Data were analyzed using SPSS version 20.0. Binary and multiple variable logistic regression analyses were calculated with 95% CI. Results: Mean age of cases was 24 years (±6.85) and 22 years (±6.25) for controls. 79.0% of cases had their sexual debut in less than 18 years of age compared to 57% of controls. 42.2% of controls and 23.8% of cases cited rape as the reason for having an abortion. Study participants who did not understand their fertility cycle and when they were most likely to conceive after menstruation (adjusted odds ratio [AOR]=2.0, 95% confidence interval [CI]: 1.1-3.7), having a previous abortion using medication(AOR=3.3, CI: 1.83, 6.11), having multiple sexual partners in the preceding 12 months (AOR=4.4, CI: 2.39,8.45), perceiving that the abortion procedure is not painful (AOR=2.3, CI: 1.31,4.26), initiating sexual intercourse before the age of 18 years (AOR=2.7, CI: 1.49, 5.23) and disclosure to a third-party about terminating the pregnancy (AOR=2.1, CI: 1.2,3.83) were independent predictors of repeat abortion. Conclusion: This study identified several factors correlated with women having repeat abortions. It may be helpful for the Government of Ethiopia to encourage women to delay sexual debut and decrease their number of sexual partners, including by promoting discussion within families about sexuality, to decrease the occurrence of repeated abortion.

Keywords: abortion, Ethiopia, repeated abortion, single abortion

Procedia PDF Downloads 285
2679 Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data

Authors: Arjun G. Koppad

Abstract:

The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest.

Keywords: forest, biomass, LULC, back scatter, SAR, regression

Procedia PDF Downloads 26
2678 Assessment of Utilization of Provider Initiated HIV Testing and Counseling and Associated Factors among Adult out Patient Department Patients in Wonchi Woreda, South West Shoa Zone, Central Ethiopia

Authors: Dinka Fikadu, Mulugeta Shegaze

Abstract:

Background: Currently in health facility, provider-initiated human immunodeficiency virus testing is the key entry point to prevention, care, treatment and support services, but most people remains unaware of their HIV status due to various reasons. In many high-prevalence countries, fewer than one in ten people with HIV are aware of their HIV status. HIV, the virus that causes AIDS, “acquired immunodeficiency syndrome, "has become one of the world’s most serious health and development challenges. Reaching individuals with HIV who do not know their serostatus is a global public health priority. Objective: To assess utilization of provider initiated HIV testing and counseling and associated factors among adult outpatient department patients. Methods: Health facility based cross sectional study was conducted among 392 adult outpatient department patients in Wonchi woreda from February 24 to March 24 /2013. The study participant was recruited patients from all adult outpatient department patients of all four public health facilities of wonchi woreda using systematic sampling. A structured interviewer administered questionnaire was used to elicit all important variables from the study participants and multiple logistic regression analysis was used. Result: A total of 371 adult outpatient department patients aged between 15 to 64 years were actively participated in the study and 291(78.4%) of them utilized provider initiated HIV testing and counseling and 80(21.6%) of them refused. Knowledge on HIV is low in the study population; majority of the participants didn’t have comprehensive knowledge (64.7%) and (35.3%) fail to reject misconception about means of HIV transmission and prevention. Utilization of provider-initiated HIV testing and counseling were associated with divorced/widowed marital status[AOR (95%CI) = 0.32(0.15, 0.69)], being male sex [AOR (95%CI) =1.81(1.01, 3.24)], having comprehensive knowledge on HIV [AOR (95%CI) =0.408(0.220,0.759)],having awareness about provider initiated HIV testing and counseling [AOR(95%CI) =2.89(1.48,5.66)] and receiving test on HIV before[AOR (95%CI)=4.15(2.30, 7.47)]. Conclusion: Utilization of provider initiated HIV testing and counseling among adult outpatient departments in wonchi woreda public health facility was [(78.4%)].Strengthening health information through mass media and peer education on HIV to address barrier to testing in the community such as low awareness on PITC, to increase up take of PITC among adult OPD patients.

Keywords: utilization, human immune deficiency, testing, provider, initiate

Procedia PDF Downloads 302
2677 Assessment of Incidence and Predictors of Mortality Among HIV Positive Children on Art in Public Hospitals of Harer Town Who Were Enrolled From 2011 to 2021

Authors: Getahun Nigusie Demise

Abstract:

Background; antiretroviral treatment reduce HIV-related morbidity, and prolonged survival of patients however, there is lack of up-to-date information concerning the treatment long term effect on the survival of HIV positive children especially in the study area. Objective: The aim of this study is to assess the incidence and predictors of mortality among HIV positive children on antiretroviral therapy (ART) in public hospitals of Harer town who were enrolled from 2011 to 2021. Methodology: Institution based retrospective cohort study was conducted among 429 HIV positive children enrolled in ART clinic from January 1st 2011 to December30th 2021. Data were collected from medical cards by using a data extraction form, Descriptive analyses were used to Summarized the results, and life table was used to estimate survival probability at specific point of time after introduction of ART. Kaplan Meier survival curve together with log rank test was used to compare survival between different categories of covariates, and Multivariate Cox-proportional hazard regression model was used to estimate adjusted Hazard rate. Variables with p-values ≤0.25 in bivariable analysis were candidates to the multivariable analysis. Finally, variables with p-values < 0.05 were considered as significant variables. Results: The study participants had followed for a total of 2549.6 child-years (30596 child months) with an overall mortality rate of 1.5 (95% CI: 1.1, 2.04) per 100 child-years. Their median survival time was 112 months (95% CI: 101–117). There were 38 children with unknown outcome, 39 deaths, and 55 children transfer out to different facility. The overall survival at 6, 12, 24, 48 months were 98%, 96%, 95%, 94% respectively. being in WHO clinical Stage four (AHR=4.55, 95% CI:1.36, 15.24), having anemia(AHR=2.56, 95% CI:1.11, 5.93), baseline low absolute CD4 count (AHR=2.95, 95% CI: 1.22, 7.12), stunting (AHR=4.1, 95% CI: 1.11, 15.42), wasting (AHR=4.93, 95% CI: 1.31, 18.76), poor adherence to treatment (AHR=3.37, 95% CI: 1.25, 9.11), having TB infection at enrollment (AHR=3.26, 95% CI: 1.25, 8.49),and no history of change their regimen(AHR=7.1, 95% CI: 2.74, 18.24), were independent predictors of death. Conclusion: more than half of death occurs within 2 years. Prevalent tuberculosis, anemia, wasting, and stunting nutritional status, socioeconomic factors, and baseline opportunistic infection were independent predictors of death. Increasing early screening and managing those predictors are required.

Keywords: human immunodeficiency virus-positive children, anti-retroviral therapy, survival, treatment, Ethiopia

Procedia PDF Downloads 45
2676 Perceived Stigma, Perception of Burden and Psychological Distress among Parents of Intellectually Disable Children: Role of Perceived Social Support

Authors: Saima Shafiq, Najma Iqbal Malik

Abstract:

This study was aimed to explore the relationship of perceived stigma, perception of burden and psychological distress among parents of intellectually disabled children. The study also aimed to explore the moderating role of perceived social support on all the variables of the study. The sample of the study comprised of (N = 250) parents of intellectually disabled children. The present study utilized the co-relational research design. It consists of two phases. Phase-I consisted of two steps which contained the translation of two scales that were used in the present study and tried out on the sample of parents (N = 70). The Affiliated Stigma Scale and Care Giver Burden Inventory were translated into Urdu for the present study. Phase-1 revealed that translated scaled entailed satisfactory psychometric properties. Phase -II of the study was carried out in order to test the hypothesis. Correlation, linear regression analysis, and t-test were computed for hypothesis testing. Hierarchical regression analysis was applied to study the moderating effect of perceived social support. Findings revealed that there was a positive relationship between perceived stigma and psychological distress, perception of burden and psychological distress. Linear regression analysis showed that perceived stigma and perception of burden were positive predictors of psychological distress. The study did not show the moderating role of perceived social support among variables of the present study. The major limitation of the study is the sample size and the major implication is awareness regarding problems of parents of intellectually disabled children.

Keywords: perceived stigma, perception of burden, psychological distress, perceived social support

Procedia PDF Downloads 211
2675 A Study on the Conspicuous Consumption, Involvement and Physical and Mental Health of Pet Owners

Authors: Chi-Yueh Hsu, Hsuan-Liang Hsu, Hsiu-Hui Chiang

Abstract:

This study is to explore the relationship between the conspicuous consumption, leisure involvement and physical and mental health, and to understand the prediction of conspicuous consumption and leisure involvement to physical and mental health. The data was collected and analysed by purposive sampling, and the research objects were the dog walkers in Taiwan area. A total of 300 questionnaires were issued and after shaving the invalid questionnaire, a total of 246 valid samples were collected, and the effective rate was 82%.. The data were analyzed by correlation analysis and multiple stepwise regression analysis. The results showed that there was a significant correlation between conspicuous consumption and leisure involvement, and the conspicuous consumption and leisure involvement of dog walkers have a significant impact on physical and mental health, especially in self-expression, attractiveness and centrality of leisure involvement have a significant impact on physical and mental health.

Keywords: walking dog, attractiveness, self-expression, multiple stepwise regression analysis

Procedia PDF Downloads 259
2674 Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages

Authors: Ya-Li Tsai

Abstract:

Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation.

Keywords: intelligent fertilizer management, nitrogen top and ear dressing fertilizer, rice, yield optimization

Procedia PDF Downloads 78
2673 Forced-Choice Measurement Models of Behavioural, Social, and Emotional Skills: Theory, Research, and Development

Authors: Richard Roberts, Anna Kravtcova

Abstract:

Introduction: The realisation that personality can change over the course of a lifetime has led to a new companion model to the Big Five, the behavioural, emotional, and social skills approach (BESSA). BESSA hypothesizes that this set of skills represents how the individual is thinking, feeling, and behaving when the situation calls for it, as opposed to traits, which represent how someone tends to think, feel, and behave averaged across situations. The five major skill domains share parallels with the Big Five Factor (BFF) model creativity and innovation (openness), self-management (conscientiousness), social engagement (extraversion), cooperation (agreeableness), and emotional resilience (emotional stability) skills. We point to noteworthy limitations in the current operationalisation of BESSA skills (i.e., via Likert-type items) and offer up a different measurement approach: forced choice. Method: In this forced-choice paradigm, individuals were given three skill items (e.g., managing my time) and asked to select one response they believed they were “worst at” and “best at”. The Thurstonian IRT models allow these to be placed on a normative scale. Two multivariate studies (N = 1178) were conducted with a 22-item forced-choice version of the BESSA, a published measure of the BFF, and various criteria. Findings: Confirmatory factor analysis of the forced-choice assessment showed acceptable model fit (RMSEA<0.06), while reliability estimates were reasonable (around 0.70 for each construct). Convergent validity evidence was as predicted (correlations between 0.40 and 0.60 for corresponding BFF and BESSA constructs). Notable was the extent the forced-choice BESSA assessment improved upon test-criterion relationships over and above the BFF. For example, typical regression models find BFF personality accounting for 25% of the variance in life satisfaction scores; both studies showed incremental gains over the BFF exceeding 6% (i.e., BFF and BESSA together accounted for over 31% of the variance in both studies). Discussion: Forced-choice measurement models offer up the promise of creating equated test forms that may unequivocally measure skill gains and are less prone to fakability and reference bias effects. Implications for practitioners are discussed, especially those interested in selection, succession planning, and training and development. We also discuss how the forced choice method can be applied to other constructs like emotional immunity, cross-cultural competence, and self-estimates of cognitive ability.

Keywords: Big Five, forced-choice method, BFF, methods of measurements

Procedia PDF Downloads 94
2672 Assessment of Oral and Dental Health Status of Pregnant Women in Malaga, Spain

Authors: Nepton Kiani

Abstract:

Dental decay is one of the most common chronic diseases worldwide and imposes significant costs annually on people and healthcare systems. Addressing this issue is among the important programs of the World Health Organization in the field of oral and dental disease prevention and health promotion. In this context, oral and dental health in vulnerable groups, especially pregnant women, is of greater importance due to the health maintenance of the mother and fetus. The aim of this study is to investigate the DMFT index and various factors affecting it in order to identify different factors influencing the process of dental decay and to take an effective step in reducing the progression of this disease, control, and prevention. In this cross-sectional descriptive study, 120 pregnant women attending Nepton Policlinica clinic in Malaga, Spain, were evaluated for the DMFT index and oral and dental hygiene. In this regard, interviews, precise observations, and data collection were used. Subsequently, data analysis was performed using SPSS software and employing correlation tests, Kruskal-Wallis, and Mann-Whitney tests. The DMFT index for pregnant women in three age groups 22-26, 27- 31, and 32-36 years was respectively 2.8, 4.5, and 5.6. The results of logistic regression analysis showed that demographic variables (age, education, job, economic status) and the frequency of brushing and flossing lead to preventive behavior up to 49.58 percent (P<0.05). Generally, the results indicated that oral and dental care during pregnancy is poor. Only a small number of pregnant women regularly used toothbrush and dental floss or visited the dentist regularly. On the other hand, poor performance in adopting oral and dental care was more observed in pregnant women with lower economic and educational status. The present study showed that raising the level of awareness and education on oral and dental health in pregnant women is essential. In this field, it is necessary to focus on conducting educational-care courses at the level of healthcare centers for midwives, healthcare personnel, and at the community level for families, to prevent and perform dental treatments before the pregnancy period

Keywords: Malaga, oral and dental health, pregnant women, Spain

Procedia PDF Downloads 58
2671 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 129
2670 Impact of Interest and Foreign Exchange Rates Liberalization on Investment Decision in Nigeria

Authors: Kemi Olalekan Oduntan

Abstract:

This paper was carried out in order to empirical, and descriptively analysis how interest rate and foreign exchange rate liberalization influence investment decision in Nigeria. The study spanned through the period of 1985 – 2014, secondary data were restricted to relevant variables such as investment (Proxy by Gross Fixed Capital Formation) saving rate, interest rate and foreign exchange rate. Theories and empirical literature from various scholars were reviews in the paper. Ordinary Least Square regression method was used for the analysis of data collection. The result of the regression was critically interpreted and discussed. It was discovered for empirical finding that tax investment decision in Nigeria is highly at sensitive rate. Hence, all the alternative hypotheses were accepted while the respective null hypotheses were rejected as a result of interest rate and foreign exchange has significant effect on investment in Nigeria. Therefore, impact of interest rate and foreign exchange rate on the state of investment in the economy cannot be over emphasized.

Keywords: interest rate, foreign exchange liberalization, investment decision, economic growth

Procedia PDF Downloads 362
2669 Television, Internet, and Internet Social Media Direct-To-Consumer Prescription Medication Advertisements: Intention and Behavior to Seek Additional Prescription Medication Information

Authors: Joshua Fogel, Rivka Herzog

Abstract:

Although direct-to-consumer prescription medication advertisements (DTCA) are viewed or heard in many venues, there does not appear to be any research for internet social media DTCA. We study the association of traditional media DTCA and digital media DTCA including internet social media of YouTube, Facebook, and Twitter with three different outcomes. There was one intentions outcome and two different behavior outcomes. The intentions outcome was the agreement level for seeking additional information about a prescription medication after seeing a DTCA. One behavior outcome was the agreement level for obtaining additional information about a prescription medication after seeing a DTCA. The other behavior outcome was the frequency level for obtaining additional information about a prescription medication after seeing a DTCA. Surveys were completed by 635 college students. Predictors included demographic variables, theory of planned behavior variables, health variables, and advertisements seen or heard. Also, in the behavior analyses, additional predictors of intentions and sources for seeking additional prescription drug information were included. Multivariate linear regression analyses were conducted. We found that increased age was associated with increased behavior, women were associated with increased intentions, and Hispanic race/ethnicity was associated with decreased behavior. For the theory of planned behavior variables, increased attitudes were associated with increased intentions, increased social norms were associated with increased intentions and behavior, and increased intentions were associated with increased behavior. Very good perceived health was associated with increased intentions. Advertisements seen in spam mail were associated with decreased intentions. Advertisements seen on traditional or cable television were associated with decreased behavior. Advertisements seen on television watched on the internet were associated with increased behavior. The source of seeking additional information of reading internet print content was associated with increased behavior. No internet social media advertisements were associated with either intentions or behavior. In conclusion, pharmaceutical brand managers and marketers should consider these findings when tailoring their DTCA advertising campaigns and directing their DTCA advertising budget towards young adults such as college students. They need to reconsider the current approach for traditional television DTCA and also consider dedicating a larger advertising budget toward internet television DTCA. Although internet social media is a popular place to advertise, the financial expenditures do not appear worthwhile for DTCA when targeting young adults such as college students.

Keywords: brand managers, direct-to-consumer advertising, internet, social media

Procedia PDF Downloads 265
2668 An Investigation of the Determinants of Discount Rate Manipulation in Swedish and Finnish Listed Companies

Authors: Fredrik Hartwig, Peter Lindberg

Abstract:

In 2004, the International Accounting Standards Board (IASB) issued new accounting standards for impairment testing of goodwill. IFRS 3 Business Combinations and IAS 36 Impairment of Assets prohibited amortization of acquired goodwill and instead required companies to test goodwill for impairment annually or more often if necessary. The goodwill impairment test is based on management’s judgement and estimations, making the impairment-only-approach subjective and unreliable. Management can use the discretion opportunistically by managing goodwill impairments. The IASB’s remedy to the reliability problem has been to demand transparent financial reports. IAS 36 paragraph 134 requires detailed disclosures regarding the impairment test in order to make potentially unreasonable assumptions and estimations visible. The disclosure requirements should thus (in theory) make it more difficult for management to ‘choose’ assumptions and estimations that suit an agenda. Whether the requirement to disclose detailed disclosures regarding the impairment test leads to less opportunism is however an empirical question. This work analyses whether one of the required disclosures in IAS 36 paragraph 134, the reported discount rate, differs from an independently estimated risk-adjusted discount rate. Estimates of discount rates that are either lower or higher than the independently estimated discount rate are here defined as opportunism. In the former case - i.e. when the reported discount rate is lower - the objective may be to avoid profit reducing impairment charges. In the latter case - i.e. when the reported discount rate is higher - the objective may be to reduce profits or take ‘big baths’. This paper differs in one important respect from previous similar studies, the majority of which are based on purely descriptive statistics; we use multivariate regression analysis to analyze what factors affect deviations between disclosed discount rates and independently estimated discount rates. The sample consists of Swedish and Finnish listed companies. Swedish and Finnish listed companies are analysed since the accounting oversight bodies differ between the two countries. The results show that discount rate deviations in Swedish and Finnish listed companies are significantly related to accounting oversight, size and industry but not financial risk, business risk and goodwill intensity.

Keywords: discount rate, manipulation, goodwill impairment test, disclosures

Procedia PDF Downloads 129