Search results for: hybrid memory
1729 Music of a Film City: Interwar Europe in Los Angeles, 1930s
Authors: Alexander Rosenblatt
Abstract:
The musical culture of the city of Los Angeles, as it is seen today, developed not without the influence of outstanding musicians who came from Europe during the period between the world wars. The combination of European modernist ideas with American musical culture, which differed in many ways from European musical culture, led to unique results. During the 1920s and even more so in the 1930s, members of the Austrian-German artistic intelligentsia, particularly those of Jewish origin who felt insecure in their homeland, began to look for a safer place. The United States has become such a place for many, and many of them chose the second largest metropolis—Los Angeles. The most notable figure in this group was the modernist composer Arnold Schoenberg. Other famous musicians were conductors Otto Klemperer and Bruno Walter. The study focused on how these people acclimated to a city whose culture and business revolved around film production; what place the conductors Klemperer and Walter occupied in the city, state, and country; how Schoenberg, whose musical style was little understood by the American public, was able to realize himself; what path he took when he was accepted to two universities as a professor of counterpoint and composition; and whether he revised his own views on the development of Western music. Another aspect was the study of how the composer’s memory was preserved in the universities where he taught. The study is based primarily on materials found in four libraries of two universities located in Los Angeles, UCLA and USC, during my tenure as a visiting scholar at USC Thornton School of Music (August 2023), to be completed during my upcoming visit there in August-September 2024, as well as on interviews with people active in efforts to keep Schoenberg’s memory alive on the USC Campus.Keywords: los angeles, filmmaking, immigrant musicians, arnold schoenberg, otto klemperer, bruno walter
Procedia PDF Downloads 261728 Solar and Wind Energy Potential Study of Lower Sindh, Pakistan for Power Generation
Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha A. Siddiqui
Abstract:
Global and diffuse solar radiation on horizontal surface of Lower Sindh, namely Karachi, Hyderabad, Nawabshah were carried out using sunshine hour data of the area to assess the feasibility of solar energy utilization for power generation in Sindh province. The results obtained show a large variation in the direct and diffuse component of solar radiation in summer and winter months in Lower Sindh (50% direct and 50% diffuse for Karachi and Hyderabad). In Nawabshah area, the contribution of diffuse solar radiation is low during the monsoon months, July and August. The KT value of Nawabshah indicates a clear sky throughout almost the entire year. The percentage of diffuse radiation does not exceed more than 20%. In Nawabshah, the appearance of cloud is rare even during the monsoon months. The estimated values indicate that Nawabshah has high solar potential, whereas Karachi and Hyderabad have low solar potential. During the monsoon months the Lower part of Sindh can utilize the hybrid system with wind power. Near Karachi and Hyderabad, the wind speed ranges between 6.2 m/sec to 6.9 m/sec. A wind corridor exists near Karachi, Hyderabad, Gharo, Keti Bander and Shah Bander. The short fall of solar can be compensated by wind because in the monsoon months of July and August, wind speeds are higher in the Lower region of Sindh.Keywords: hybrid power system, lower Sindh, power generation, solar and wind energy potential
Procedia PDF Downloads 2521727 Polish Authorities Towards Refugee Crises
Authors: Klaudia Gołębiowska
Abstract:
This article analyzes the actions of Poland's ruling party facing two refugee crises. These crises emerged almost one after the other within a few months. The first concerned irregular migrants from various countries, including the Middle East, seeking to cross the Polish border from the territory of Belarus. The second was caused by Russia's full-scale invasion of Ukraine. I aim to show the evolution of the discourse and law towards immigrants and refugees by the party Prawo i Sprawiedliwość (PiS, ang. Law and Justice), which has been in power in Poland since 2015. The authorities, in power since 2015, have radically changed its anti-immigrant discourse towards the exodus of civilians from Ukraine. Research questions are the following: What were the roots of the refugee crises in Poland in 2021 and 2022? What legal or illegal measures were taken in Poland to deal with the refugee crises? The methods of qualitative source analysis and process tracing. From the first days of the war in Ukraine, not only was aid organised for Ukrainians, but they were also given access to public services and education. All refugees were granted temporary international protection. At the same time, the basic physiological needs of those on the Polish-Belarusian border were ignored. Moreover, illegal pushbacks were used against those coming mainly from the Middle East, pushing them into the territory of Belarus, where they were often subjected to torture and inhumane treatment. The Polish government justified such treatment on the grounds that these people were part of a 'hybrid war' waged by Russia and Belarus using migrants. Only Ukrainians were treated as 'real' refugees in the analyzed crises at the Polish borders.Keywords: refugee, irregular migrants, hybrid war, migrants
Procedia PDF Downloads 641726 Artificially Intelligent Context Aware Personal Computer Assistant (ACPCA)
Authors: Abdul Mannan Akhtar
Abstract:
In this paper a novel concept of a self learning smart personalized computer assistant (ACPCA) is established which is a context aware system. Based on user habits, moods, and other routines/situational reactions the system will manage various services and suggestions at appropriate times including what schedule to follow, what to watch, what software to be used, what should be deleted etc. This system will utilize a hybrid fuzzyNeural model to predict what the user will do next and support his actions. This will be done by establishing fuzzy sets of user activities, choices, preferences etc. and utilizing their combinations to predict his moods and immediate preferences. Various application of context aware systems exist separately e.g. on certain websites for music or multimedia suggestions but a personalized autonomous system that could adapt to user’s personality does not exist at present. Due to the novelty and massiveness of this concept, this paper will primarily focus on the problem establishment, product features and its functionality; however a small mini case is also implemented on MATLAB to demonstrate some of the aspects of ACPCA. The mini case involves prediction of user moods, activity, routine and food preference using a hybrid fuzzy-Neural soft computing technique.Keywords: context aware systems, APCPCA, soft computing techniques, artificial intelligence, fuzzy logic, neural network, mood detection, face detection, activity detection
Procedia PDF Downloads 4641725 Application of Genetic Algorithm with Multiobjective Function to Improve the Efficiency of Photovoltaic Thermal System
Authors: Sonveer Singh, Sanjay Agrawal, D. V. Avasthi, Jayant Shekhar
Abstract:
The aim of this paper is to improve the efficiency of photovoltaic thermal (PVT) system with the help of Genetic Algorithms with multi-objective function. There are some parameters that affect the efficiency of PVT system like depth and length of the channel, velocity of flowing fluid through the channel, thickness of the tedlar and glass, temperature of inlet fluid i.e. all above parameters are considered for optimization. An attempt has been made to the model and optimizes the parameters of glazed hybrid single channel PVT module when two objective functions have been considered separately. The two objective function for optimization of PVT module is overall electrical and thermal efficiency. All equations for PVT module have been derived. Using genetic algorithms (GAs), above two objective functions of the system has been optimized separately and analysis has been carried out for two cases. Two cases are: Case-I; Improvement in electrical and thermal efficiency when overall electrical efficiency is optimized, Case-II; Improvement in electrical and thermal efficiency when overall thermal efficiency is optimized. All the parameters that are used in genetic algorithms are the parameters that could be changed, and the non-changeable parameters, like solar radiation, ambient temperature cannot be used in the algorithm. It has been observed that electrical efficiency (14.08%) and thermal efficiency (19.48%) are obtained when overall thermal efficiency was an objective function for optimization. It is observed that GA is a very efficient technique to estimate the design parameters of hybrid single channel PVT module.Keywords: genetic algorithm, energy, exergy, PVT module, optimization
Procedia PDF Downloads 6051724 Sub-Chronic Exposure to Dexamethasone Impairs Cognitive Function and Insulin in Prefrontal Cortex of Male Wistar Rats
Authors: A. Alli-Oluwafuyi, A. Amin, S. M. Fii, S. O. Amusa, A. Imam, N. T. Asogwa, W. I. Abdulmajeed, F. Olaseinde, B. V. Owoyele
Abstract:
Chronic stress or prolonged glucocorticoid administration impairs higher cognitive functions in rodents and humans. However, the mechanisms are not fully clear. Insulin and receptors are expressed in the brain and are involved in cognition. Insulin resistance accompanies Alzheimer’s disease and associated cognitive decline. The goal of this study was to evaluate the effects of sub-chronic administration of a glucocorticoid, dexamethasone (DEX) on behavior and biochemical changes in prefrontal cortex (PFC). Male Wistar rats were administered DEX (2, 4 & 8 mg/kg, IP) or saline for seven consecutive days and behavior was assessed in the following paradigms: “Y” maze, elevated plus maze, Morris’ water maze and novel object recognition (NOR) tests. Insulin, lactate dehydrogenase (LDH) and Superoxide Dismutase (SOD) activity were evaluated in homogenates of the prefrontal cortex. DEX-treated rats exhibited impaired prefrontal cortex function manifesting as reduced locomotion, impaired novel object exploration and impaired short- and long-term spatial memory compared to normal controls (p < 0.05). These effects were not consistently dose-dependent. These behavioral alterations were accompanied by a decrease in insulin concentration observed in PFC of 4 mg/kg DEX-treated rats compared to control (10μIU/mg vs. 50μIU/mg; p < 0.05) but not 2mg/kg. Furthermore, we report a modification of brain stress markers LDH and SOD (p > 0.05). These results indicate that prolonged activation of GCs disrupt prefrontal cortex function which may be related to insulin impairment. These effects may not be attributable to a non-specific elevation of oxidative stress in the brain. Future studies would evaluate mechanisms of GR-induced insulin loss.Keywords: dexamethasone, insulin, memory, prefrontal cortex
Procedia PDF Downloads 2841723 Enhancing Industrial Wastewater Treatment through Fe3o4 Nanoparticles-loaded Activated Charcoal: Design and Optimization for Sustainable Development
Authors: Komal Verma, V. S. Moholkar
Abstract:
This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result is essentially a consequence of synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Microconvection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe₃O₄@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater The Fe₃O₄@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.Keywords: Fe₃O₄@AC nanocomposite, RSM, COD;, LC-MS, Toxicity
Procedia PDF Downloads 1161722 Efficient Residual Road Condition Segmentation Network Based on Reconstructed Images
Authors: Xiang Shijie, Zhou Dong, Tian Dan
Abstract:
This paper focuses on the application of real-time semantic segmentation technology in complex road condition recognition, aiming to address the critical issue of how to improve segmentation accuracy while ensuring real-time performance. Semantic segmentation technology has broad application prospects in fields such as autonomous vehicle navigation and remote sensing image recognition. However, current real-time semantic segmentation networks face significant technical challenges and optimization gaps in balancing speed and accuracy. To tackle this problem, this paper conducts an in-depth study and proposes an innovative Guided Image Reconstruction Module. By resampling high-resolution images into a set of low-resolution images, this module effectively reduces computational complexity, allowing the network to more efficiently extract features within limited resources, thereby improving the performance of real-time segmentation tasks. In addition, a dual-branch network structure is designed in this paper to fully leverage the advantages of different feature layers. A novel Hybrid Attention Mechanism is also introduced, which can dynamically capture multi-scale contextual information and effectively enhance the focus on important features, thus improving the segmentation accuracy of the network in complex road condition. Compared with traditional methods, the proposed model achieves a better balance between accuracy and real-time performance and demonstrates competitive results in road condition segmentation tasks, showcasing its superiority. Experimental results show that this method not only significantly improves segmentation accuracy while maintaining real-time performance, but also remains stable across diverse and complex road conditions, making it highly applicable in practical scenarios. By incorporating the Guided Image Reconstruction Module, dual-branch structure, and Hybrid Attention Mechanism, this paper presents a novel approach to real-time semantic segmentation tasks, which is expected to further advance the development of this field.Keywords: hybrid attention mechanism, image reconstruction, real-time, road status recognition
Procedia PDF Downloads 241721 Topographic and Thermal Analysis of Plasma Polymer Coated Hybrid Fibers for Composite Applications
Authors: Hande Yavuz, Grégory Girard, Jinbo Bai
Abstract:
Manufacturing of hybrid composites requires particular attention to overcome various critical weaknesses that are originated from poor interfacial compatibility. A large number of parameters have to be considered to optimize the interfacial bond strength either to avoid flaw sensitivity or delamination that occurs in composites. For this reason, surface characterization of reinforcement phase is needed in order to provide necessary data to drive an assessment of fiber-matrix interfacial compatibility prior to fabrication of composite structures. Compared to conventional plasma polymerization processes such as radiofrequency and microwave, dielectric barrier discharge assisted plasma polymerization is a promising process that can be utilized to modify the surface properties of carbon fibers in a continuous manner. Finding the most suitable conditions (e.g., plasma power, plasma duration, precursor proportion) for plasma polymerization of pyrrole in post-discharge region either in the presence or in the absence of p-toluene sulfonic acid monohydrate as well as the characterization of plasma polypyrrole coated fibers are the important aspects of this work. Throughout the current investigation, atomic force microscopy (AFM) and thermogravimetric analysis (TGA) are used to characterize plasma treated hybrid fibers (CNT-grafted Toray T700-12K carbon fibers, referred as T700/CNT). TGA results show the trend in the change of decomposition process of deposited polymer on fibers as a function of temperature up to 900 °C. Within the same period of time, all plasma pyrrole treated samples began to lose weight with relatively fast rate up to 400 °C which suggests the loss of polymeric structures. The weight loss between 300 and 600 °C is attributed to evolution of CO2 due to decomposition of functional groups (e.g. carboxyl compounds). With keeping in mind the surface chemical structure, the higher the amount of carbonyl, alcohols, and ether compounds, the lower the stability of deposited polymer. Thus, the highest weight loss is observed in 1400 W 45 s pyrrole+pTSA.H2O plasma treated sample probably because of the presence of less stable polymer than that of other plasma treated samples. Comparison of the AFM images for untreated and plasma treated samples shows that the surface topography may change on a microscopic scale. The AFM image of 1800 W 45 s treated T700/CNT fiber possesses the most significant increase in roughening compared to untreated T700/CNT fiber. Namely, the fiber surface became rougher with ~3.6 fold that of the T700/CNT fiber. The increase observed in surface roughness compared to untreated T700/CNT fiber may provide more contact points between fiber and matrix due to increased surface area. It is believed to be beneficial for their application as reinforcement in composites.Keywords: hybrid fibers, surface characterization, surface roughness, thermal stability
Procedia PDF Downloads 2331720 An Evaluation and Guidance for mHealth Apps
Authors: Tareq Aljaber
Abstract:
The number of mobile health apps is growing at a fast frequency as it's nearly doubled in a year between 2015 and 2016. Though, there is a lack of an effective evaluation framework to verify the usability and reliability of mobile phone health education applications which would help saving time and effort for the numerous user groups. This abstract describing a framework for evaluating mobile applications in specifically mobile health education applications, along with a guidance select tool to assist different users to select the most suitable mobile health education apps. The effective framework outcome is intended to meet the requirements and needs of the different stakeholder groups additionally to enhancing the development of mobile health education applications with software engineering approaches, by producing new and more effective techniques to evaluate such software. This abstract highlights the significance and consequences of mobile health education apps, before focusing the light on the required to create an effective evaluation framework for these apps. An explanation of the effective evaluation framework is going to be delivered in the abstract, beside with some specific evaluation metrics: an efficient hybrid of selected heuristic evaluation (HE) and usability evaluation (UE) metrics to enable the determination of the usefulness and usability of health education mobile apps. Moreover, an explanation of the qualitative and quantitative outcomes for the effective evaluation framework was accomplished using Epocrates mobile phone app in addition to some other mobile phone apps. This proposed framework-An Evaluation Framework for Mobile Health Education Apps-consists of a hybrid of 5 metrics designated from a larger set in usability evaluation and heuristic evaluation, illuminated grounded on 15 unstructured interviews from software developers (SD), health professionals (HP) and patients (P). These five metrics corresponding to explicit facets of usability recognised through a requirements analysis of typical stakeholders of mobile health apps. These five hybrid selected metrics were scattered across 24 specific questionnaire questions, which are available on request from first author. This questionnaire has been sent to 81 participants distributed in three sets of stakeholders from software developers (SD), health professionals (HP) and patients/general users (P/GU) on the purpose of ranking three sets of mobile health education applications. Finally, the outcomes from the questionnaire data helped us to approach our aims which are finding the profile for different stakeholders, finding the profile for different mobile health educations application packages, ranking different mobile health education application and guide us to build the select guidance too which is apart from the Evaluation Framework for Mobile Health Education Apps.Keywords: evaluation framework, heuristic evaluation, usability evaluation, metrics
Procedia PDF Downloads 4031719 Petrogenetic Model of Formation of Orthoclase Gabbro of the Dzirula Crystalline Massif, the Caucasus
Authors: David Shengelia, Tamara Tsutsunava, Manana Togonidze, Giorgi Chichinadze, Giorgi Beridze
Abstract:
Orthoclase gabbro intrusive exposes in the Eastern part of the Dzirula crystalline massif of the Central Transcaucasian microcontinent. It is intruded in the Baikal quartz-diorite gneisses as a stock-like body. The intrusive is characterized by heterogeneity of rock composition: variability of mineral content and irregular distribution of rock-forming minerals. The rocks are represented by pyroxenites, gabbro-pyroxenites and gabbros of different composition – K-feldspar, pyroxene-hornblende and biotite bearing varieties. Scientific views on the genesis and age of the orthoclase gabbro intrusive are considerably different. Based on the long-term pertogeochemical and geochronological investigations of the intrusive with such an extraordinary composition the authors came to the following conclusions. According to geological and geophysical data, it is stated that in the Saurian orogeny horizontal tectonic layering of the Earth’s crust of the Central Transcaucasian microcontinent took place. That is precisely this fact that explains the formation of the orthoclase gabbro intrusive. During the tectonic doubling of the Earth’s crust of the mentioned microcontinent thick tectonic nappes of mafic and sialic layers overlap the sialic basement (‘inversion’ layer). The initial magma of the intrusive was of high-temperature basite-ultrabasite composition, crystallization products of which are pyroxenites and gabbro-pyroxenites. Petrochemical data of the magma attest to its formation in the Upper mantle and partially in the ‘crustal astenolayer’. Then, a newly formed overheated dry magma with phenocrysts of clinopyrocxene and basic plagioclase intruded into the ‘inversion’ layer. From the new medium it was enriched by the volatile components causing the selective melting and as a result the formation of leucocratic quartz-feldspar material. At the same time in the basic magma intensive transformation of pyroxene to hornblende was going on. The basic magma partially mixed with the newly formed acid magma. These different magmas intruded first into the allochthonous basite layer without its significant transformation and then into the upper sialic layer and crystallized here at a depth of 7-10 km. By petrochemical data the newly formed leucocratic granite magma belongs to the S type granites, but the above mentioned mixed magma – to H (hybrid) type. During the final stage of magmatic processes the gabbroic rocks impregnated with high-temperature feldspar-bearing material forming anorthoclase or orthoclase. Thus, so called ‘orthoclase gabbro’ includes the rocks of various genetic groups: 1. protolith of gabbroic intrusive; 2. hybrid rock – K-feldspar gabbro and 3. leucocratic quartz-feldspar bearing rock. Petrochemical and geochemical data obtained from the hybrid gabbro and from the inrusive protolith differ from each other. For the identification of petrogenetic model of the orthoclase gabbro intrusive formation LA-ICP-MS- U-Pb zircon dating has been conducted in all three genetic types of gabbro. The zircon age of the protolith – mean 221.4±1.9 Ma and of hybrid K-feldspar gabbro – mean 221.9±2.2 Ma, records crystallization time of the intrusive, but the zircon age of quartz-feldspar bearing rocks – mean 323±2.9 Ma, as well as the inherited age (323±9, 329±8.3, 332±10 and 335±11 Ma) of hybrid K-feldspar gabbro corresponds to the formation age of Late Variscan granitoids widespread in the Dzirula crystalline massif.Keywords: The Caucasus, isotope dating, orthoclase-bearing gabbro, petrogenetic model
Procedia PDF Downloads 3431718 Application Potential of Forward Osmosis-Nanofiltration Hybrid Process for the Treatment of Mining Waste Water
Authors: Ketan Mahawer, Abeer Mutto, S. K. Gupta
Abstract:
The mining wastewater contains inorganic metal salts, which makes it saline and additionally contributes to contaminating the surface and underground freshwater reserves that exist nearby mineral processing industries. Therefore, treatment of wastewater and water recovery is obligatory by any available technology before disposing it into the environment. Currently, reverse osmosis (RO) is the commercially acceptable conventional membrane process for saline wastewater treatment, but consumes an enormous amount of energy and makes the process expensive. To solve this industrial problem with minimum energy consumption, we tested the feasibility of forward osmosis-nanofiltration (FO-NF) hybrid process for the mining wastewater treatment. The FO-NF process experimental results for 0.029M concentration of saline wastewater treated by 0.42 M sodium-sulfate based draw solution shows that specific energy consumption of the FO-NF process compared with standalone NF was slightly above (between 0.5-1 kWh/m3) from conventional process. However, average freshwater recovery was 30% more from standalone NF with same feed and operating conditions. Hence, FO-NF process in place of RO/NF offers a huge possibility for treating mining industry wastewater and concentrates the metals as the by-products without consuming an excessive/large amount of energy and in addition, mitigates the fouling in long periods of treatment, which also decreases the maintenance and replacement cost of the separation process.Keywords: forward osmosis, nanofiltration, mining, draw solution, divalent solute
Procedia PDF Downloads 1181717 Process Performance and Nitrogen Removal Kinetics in Anammox Hybrid Reactor
Authors: Swati Tomar, Sunil Kumar Gupta
Abstract:
Anammox is a promising and cost effective alternative to conventional treatment systems that facilitates direct oxidation of ammonium nitrogen under anaerobic conditions with nitrite as an electron acceptor without addition of any external carbon sources. The present study investigates the process kinetics of laboratory scale anammox hybrid reactor (AHR) which combines the dual advantages of attached and suspended growth. The performance & behaviour of AHR was studied under varying hydraulic retention time (HRTs) and nitrogen loading rate (NLRs). The experimental unit consisted of 4 numbers of 5L capacity anammox hybrid reactor inoculated with mixed seed culture containing anoxic and activated sludge. Pseudo steady state (PSS) ammonium and nitrite removal efficiencies of 90.6% and 95.6%, respectively, were achieved during acclimation phase. After establishment of PSS, the performance of AHR was monitored at seven different HRTs of 3.0, 2.5, 2.0, 1.5, 1.0, 0.5 and 0.25 d with increasing NLR from 0.4 to 4.8 kg N/m3d. The results showed that with increase in NLR and decrease in HRT (3.0 to 0.25 d), AHR registered appreciable decline in nitrogen removal efficiency from 92.9% to 67.4 %, respectively. The HRT of 2.0 d was considered optimal to achieve substantial nitrogen removal of 89%, because on further decrease in HRT below 1.5 days, remarkable decline in the values of nitrogen removal efficiency were observed. Analysis of data indicated that attached growth system contributes an additional 15.4 % ammonium removal and reduced the sludge washout rate (additional 29% reduction). This enhanced performance may be attributed to 25% increase in sludge retention time due to the attached growth media. Three kinetic models, namely, first order, Monod and Modified Stover-Kincannon model were applied to assess the substrate removal kinetics of nitrogen removal in AHR. Validation of the models were carried out by comparing experimental set of data with the predicted values obtained from the respective models. For substrate removal kinetics, model validation revealed that Modified Stover-Kincannon is most precise (R2=0.943) and can be suitably applied to predict the kinetics of nitrogen removal in AHR. Lawrence and McCarty model described the kinetics of bacterial growth. The predicted value of yield coefficient and decay constant were in line with the experimentally observed values.Keywords: anammox, kinetics, modelling, nitrogen removal, sludge wash out rate, AHR
Procedia PDF Downloads 3171716 The Road Ahead: Merging Human Cyber Security Expertise with Generative AI
Authors: Brennan Lodge
Abstract:
Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLM’s (Large Language Models) is exciting, such models do have their downsides. LLM’s cannot easily expand or revise their memory, and they can’t straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.Keywords: cybersecurity, gen AI, retrieval augmented generation, cybersecurity defense strategies
Procedia PDF Downloads 951715 Hybrid Model of an Increasing Unique Consumer Value on Purchases that Influences the Consumer Loyalty and the Pursuit of a Sustainable Competitive Advantage from the Institutions in Jakarta
Authors: Wilhelmus Hary Susilo
Abstract:
The marketplace would have at least some resources that are unique (e.g., well communication, knowledgeable employees, consumer value, effective transaction, efficient production processes and institutional branding). The institutions should have an advantage in resources and then could lead to positions of competitive advantage. These major challenges focus on increasing unique consumer value on reliable purchases that influence of loyalty and pursuit of a sustainable competitive advantage from the Institutions in Jakarta. Furthermore, a research was conducted with a quantitative method and a confirmatory strategic research design. The research resulted in entire confirmatory factors analysis (1st CFA and 2nd CFA) among variables pertains to; χ2//Df (9.30, 4.38, 6.95, 2.76, 2.97, 2.91, 2.32 and 6.90), GFI (0.72, 0.82, 0.82, 0.81, 0.78, 0.84, 0.89 and 0.70) and CFI (0.90, 0.95, 0.93, 0.92, 0.95, 0.91, 0.96 and 0.89), which indicates a good model. Furthermore, the hybrid model is well fit with, χ2//Df=1.84, P value = 0.00, RMSEA = 0.076, GFI = 0.76, NNFI= 0.95, PNFI= 0.82, IFI= 0.96, RFI= 0.91, AGFI= 0.71 and CFI= 0.96. The result was significant hypothesis, i.e. variables of communitization marketing 3.0 and price perception influenced to unique value of consumer with tvalue =4.46 and 5.89. Furthermore, the consumers value influenced the purchasing with t value = 5.94. Additionally, the loyalty, the ‘communitization’, and the character building marketing 3.0 are affecting the pursuit of a sustainable competitive advantage from institutions with t value = 7.57, -2.12, and 2.04. Finally, the test between the most superior variable dimensions is significantly correlated between INOV and WDES, RESPON and ATT covariance matrix value= 0.72 and 0.71. Thus, ‘communitization’ and character building marketing 3.0 with dimensions of responsibility and technologies would increase a competitive advantage with the dimensions of the innovation and the job design from the institutions.Keywords: consumer loyalty, marketing 3.0, unique consumer value, purchase, sustainable competitive advantage
Procedia PDF Downloads 2851714 The Search for the Self in Psychotherapy: Findings from Relational Theory and Neuroanatomy
Authors: Harry G. Segal
Abstract:
The idea of the “self” has been essential ever since the early modern period in western culture, especially since the development of psychotherapy, but advances in neuroscience and cognitive theory challenge traditional notions of the self. More specifically, neuroanatomists have found no location of “the self” in the brain; instead, consciousness has been posited to be a rapid combination of perception, memory, anticipation of future events, and judgment. In this paper, a theoretical model is presented to address these neuroanatomical findings and to revise the historical understanding of “selfhood” in the practice of psychotherapy.Keywords: the self, psychotherapy, the self and the brain
Procedia PDF Downloads 1051713 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation
Procedia PDF Downloads 2351712 A Neuroscience-Based Learning Technique: Framework and Application to STEM
Authors: Dante J. Dorantes-González, Aldrin Balsa-Yepes
Abstract:
Existing learning techniques such as problem-based learning, project-based learning, or case study learning are learning techniques that focus mainly on technical details, but give no specific guidelines on learner’s experience and emotional learning aspects such as arousal salience and valence, being emotional states important factors affecting engagement and retention. Some approaches involving emotion in educational settings, such as social and emotional learning, lack neuroscientific rigorousness and use of specific neurobiological mechanisms. On the other hand, neurobiology approaches lack educational applicability. And educational approaches mainly focus on cognitive aspects and disregard conditioning learning. First, authors start explaining the reasons why it is hard to learn thoughtfully, then they use the method of neurobiological mapping to track the main limbic system functions, such as the reward circuit, and its relations with perception, memories, motivations, sympathetic and parasympathetic reactions, and sensations, as well as the brain cortex. The authors conclude explaining the major finding: The mechanisms of nonconscious learning and the triggers that guarantee long-term memory potentiation. Afterward, the educational framework for practical application and the instructors’ guidelines are established. An implementation example in engineering education is given, namely, the study of tuned-mass dampers for earthquake oscillations attenuation in skyscrapers. This work represents an original learning technique based on nonconscious learning mechanisms to enhance long-term memories that complement existing cognitive learning methods.Keywords: emotion, emotion-enhanced memory, learning technique, STEM
Procedia PDF Downloads 911711 Cognition in Crisis: Unravelling the Link Between COVID-19 and Cognitive-Linguistic Impairments
Authors: Celine Davis
Abstract:
The novel coronavirus 2019 (COVID-19) is an infectious disease caused by the virus SARS-CoV-2, which has detrimental respiratory, cardiovascular, and neurological effects impacting over one million lives in the United States. New researches has emerged indicating long-term neurologic consequences in those who survive COVID-19 infections, including more than seven million Americans and another 27 million people worldwide. These consequences include attentional deficits, memory impairments, executive function deficits and aphasia-like symptoms which fall within the purview of speech-language pathology. The National Health Interview Survey (NHIS) is a comprehensive annual survey conducted by the National Center for Health Statistics (NCHS), a branch of the Centers for Disease Control and Prevention (CDC) in the United States. The NHIS is one of the most significant sources of health-related data in the country and has been conducted since 1957. The longitudinal nature of the study allows for analysis of trends in various variables over the years, which can be essential for understanding societal changes and making treatment recommendations. This current study will utilize NHIS data from 2020-2022 which contained interview questions specifically related to COVID-19. Adult cases of individuals between the ages of 18-50 diagnosed with COVID-19 in the United States during 2020-2022 will be identified using the National Health Interview Survey (NHIS). Multiple regression analysis of self-reported data confirming COVID-19 infection status and challenges with concentration, communication, and memory will be performed. Latent class analysis will be utilized to identify subgroups in the population to indicate whether certain demographic groups have higher susceptibility to cognitive-linguistic deficits associated with COVID-19. Completion of this study will reveal whether there is an association between confirmed COVID-19 diagnosis and heightened incidence of cognitive deficits and subsequent implications, if any, on activities of daily living. This study is distinct in its aim to utilize national survey data to explore the relationship between confirmed COVID-19 diagnosis and the prevalence of cognitive-communication deficits with a secondary focus on resulting activity limitations. To the best of the author’s knowledge, this will be the first large-scale epidemiological study investigating the associations between cognitive-linguistic deficits, COVID-19 and implications on activities of daily living in the United States population. These findings will highlight the need for targeted interventions and support services to address the cognitive-communication needs of individuals recovering from COVID-19, thereby enhancing their overall well-being and functional outcomes.Keywords: cognition, COVID-19, language, limitations, memory, NHIS
Procedia PDF Downloads 531710 Co₂Fe LDH on Aromatic Acid Functionalized N Doped Graphene: Hybrid Electrocatalyst for Oxygen Evolution Reaction
Authors: Biswaranjan D. Mohapatra, Ipsha Hota, Swarna P. Mantry, Nibedita Behera, Kumar S. K. Varadwaj
Abstract:
Designing highly active and low-cost oxygen evolution (2H₂O → 4H⁺ + 4e⁻ + O₂) electrocatalyst is one of the most active areas of advanced energy research. Some precious metal-based electrocatalysts, such as IrO₂ and RuO₂, have shown excellent performance for oxygen evolution reaction (OER); however, they suffer from high-cost and low abundance which limits their applications. Recently, layered double hydroxides (LDHs), composed of layers of divalent and trivalent transition metal cations coordinated to hydroxide anions, have gathered attention as an alternative OER catalyst. However, LDHs are insulators and coupled with carbon materials for the electrocatalytic applications. Graphene covalently doped with nitrogen has been demonstrated to be an excellent electrocatalyst for energy conversion technologies such as; oxygen reduction reaction (ORR), oxygen evolution reaction (OER) & hydrogen evolution reaction (HER). However, they operate at high overpotentials, significantly above the thermodynamic standard potentials. Recently, we reported remarkably enhanced catalytic activity of benzoate or 1-pyrenebutyrate functionalized N-doped graphene towards the ORR in alkaline medium. The molecular and heteroatom co-doping on graphene is expected to tune the electronic structure of graphene. Therefore, an innovative catalyst architecture, in which LDHs are anchored on aromatic acid functionalized ‘N’ doped graphene may presumably boost the OER activity to a new benchmark. Herein, we report fabrication of Co₂Fe-LDH on aromatic acid (AA) functionalized ‘N’ doped reduced graphene oxide (NG) and studied their OER activities in alkaline medium. In the first step, a novel polyol method is applied for synthesis of AA functionalized NG, which is well dispersed in aqueous medium. In the second step, Co₂Fe LDH were grown on AA functionalized NG by co-precipitation method. The hybrid samples are abbreviated as Co₂Fe LDH/AA-NG, where AA is either Benzoic acid or 1, 3-Benzene dicarboxylic acid (BDA) or 1, 3, 5 Benzene tricarboxylic acid (BTA). The crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). These studies confirmed the growth of layered single phase LDH. The electrocatalytic OER activity of these hybrid materials was investigated by rotating disc electrode (RDE) technique on a glassy carbon electrode. The linear sweep voltammetry (LSV) on these catalyst samples were taken at 1600rpm. We observed significant OER performance enhancement in terms of onset potential and current density on Co₂Fe LDH/BTA-NG hybrid, indicating the synergic effect. This exploration of molecular functionalization effect in doped graphene and LDH system may provide an excellent platform for innovative design of OER catalysts.Keywords: π-π functionalization, layered double hydroxide, oxygen evolution reaction, reduced graphene oxide
Procedia PDF Downloads 2071709 Competitive Coordination Strategy Towards Reversible Hybrid Hetero-Homogeneous Oxygen-Evolving Catalyst
Authors: Peikun Zhang, Chunhua Cui
Abstract:
Photoelectrochemical (PEC) water splitting provides a promising pathway to convert solar energy into renewable fuels. However, the main and seemingly insurmountable obstacle is that the sluggish kinetics of oxygen evolution reaction (OER) severely jeopardizes the overall efficiency, thus exploring highly active, stable, and appreciable catalysts is urgently requested. Herein a competitive coordination strategy was demonstrated to form a reversible hybrid homo-heterogeneous catalyst for efficient OER in alkaline media. The dynamic process involves an in-situ anchoring of soluble nickel–bipyridine pre-catalyst to a conductive substrate under OER and a re-dissolution course under open circuit potential, induced by the competitive coordination between nickel–bipyridine and nickel-hydroxyls. This catalyst allows to elaborately self-modulate a charge-transfer layer thickness upon the catalytic on-off operation, which affords substantially increased active sites, yet remains light transparency, and sustains the stability of over 200 hours of continuous operation. The integration of this catalyst with exemplified state-of-the-art Ni-sputtered Si photoanode can facilitate a ~250 mV cathodic shift at a current density of 20 mA cm-2. This finding helps the understanding of catalyst from a “dynamic” perspective, which represents a viable alternative to address remaining hurdles toward solar-driven water oxidation.Keywords: molecular catalyst, oxygen evolution reaction, solar energy, transition metal complex, water splitting
Procedia PDF Downloads 1231708 A Foucauldian Analysis of Postcolonial Hybridity in a Kuwaiti Novel
Authors: Annette Louise Dupont
Abstract:
Background and Introduction: Broadly defined, hybridity is a condition of racial and cultural ‘cross-pollination’ which arises as a result of contact between colonized and colonizer. It remains a highly contested concept in postcolonial studies as it is implicitly underpinned by colonial notions of ‘racial purity.’ While some postcolonial scholars argue that individuals exercise significant agency in the construction of their hybrid subjectivities, others underscore associated experiences of exclusion, marginalization, and alienation. Kuwait and the Philippines are among the most disparate of contemporary postcolonial states. While oil resources transformed the former British Mandate of Kuwait into one of the world’s richest countries, enduring poverty in the former US colony of the Philippines drives a global diaspora which produces multiple Filipino hybridities. Although more Filipinos work in the Arabian Gulf than in any other region of the world, scholarly and literary accounts of their experiences of hybridization in this region are relatively scarce when compared to those set in North America, Australia, Asia, and Europe. Study Aims and Significance: This paper aims to address this existing lacuna by investigating hybridity and other postcolonial themes in a novel by a Kuwaiti author which vividly portrays the lives of immigrants and citizens in Kuwait and which gives a rare voice and insight into the struggles of an Arab-Filipino and European-Filipina. Specifically, this paper explores the relationships between colonial discourses of ‘black’ and ‘white’ and postcolonial discourses pertaining to ‘brown’ Filipinos and ‘brown’ Arabs, in order to assess their impacts on the protagonists’ hybrid subjectivities. Methodology: Foucault’s notions of discourse not only provide a conceptual basis for analyzing the colonial ideology of Orientalism, but his theories related to the social exclusion of the ‘mad’ also elucidate the mechanisms by which power can operate to marginalize, alienate and subjectify the Other, therefore a Foucauldian lens is applied to the analysis of postcolonial themes and hybrid subjectivities portrayed in the novel. Findings: The study finds that Kuwaiti and Filipino discursive practices mirror those of former white colonialists and colonized black laborers and that these discursive practices combine with a former British colonial system of foreign labor sponsorship to create a form of governmentality in Kuwait which is based on exclusion and control. The novel’s rich social description and the reflections of the key protagonist and narrator suggest that such fiction has a significant role to play in highlighting the historical and cultural specificities of experiences of postcolonial hybridity in under-researched geographic, economic, social, and political settings. Whereas hybridity can appear abstract in scholarly accounts, the significance of literary accounts in which the lived experiences of hybrid protagonists are anchored to specific historical periods, places and discourses, is that contextual particularities are neither obscured nor dehistoricized. Conclusions: The application of Foucauldian theorizations of discourse, disciplinary, and biopower to the analysis of this Kuwaiti literary text serves to extend an understanding of the effects of contextually-specific discourses on hybrid Filipino subjectivities, as well as a knowledge of prevailing social dynamics in a little-researched postcolonial Arabian Gulf state.Keywords: Filipino, Foucault, hybridity, Kuwait
Procedia PDF Downloads 1281707 Geographic and Territorial Knowledge as Epistemic Contexts for Intercultural Curriculum Development
Authors: Verónica Muñoz-Rivero
Abstract:
The historically marginalized indigenous communities in the Atacama Desert continue to experience and struggle curricular hegemony in a prevalent monocultural educational context that denies heritage, culture and epistemologies in a documented attempted knowledge negation by the educational policies, the national curriculum and educational culture. The ancestral indigenous community of Toconce demands a territorial-based intercultural education and a school in their ancestral land to prevent the progressive cultural loss as they reclaim their memory and identity negated. This case study makes use of the intercultural theoretical framework and open qualitative methodology to analyze local socio-educational reality integrating aspects related to the educational experience, education demands for future generations and importance given to formal education. The interlocutors: elders, parents, caretakers and former teachers raised the educational experience for the indigenous childhood as an intergenerational voice that experienced discrimination, exclusion and racism on their K-12 trajectories. By center, the indigenous epistemologies, geography and memory, this research proposes a project-based learning approach anchored to the Limpia de Canales ceremony to develop a situated territorial intercultural curriculum unpacking from the local epistemology and structure thinking. The work on terraces gives students the opportunity to co-create a real-life application with practical purpose and present the importance of reinforcing notions related to the relevance of a situated intercultural curriculum for social justice in the formative development of prospective teachers.Keywords: cultural studies, decolonial education, epistemic symmetry, intercultural curriculum, multidimensional curriculum
Procedia PDF Downloads 1931706 Solar and Wind Energy Potential Study of Sindh Province, Pakistan for Power Generation
Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha A. Siddiqui, Adeel Tahir
Abstract:
Global and diffuse solar radiation on horizontal surface of southern sindh namely Karachi, Hyderabad, Nawabshah were carried out using sunshine hour data of the area to asses the feasibility of solar Energy utilization at Sindh province for power generation. From the observation, result is derived which shows a drastic variation in the diffuse and direct component of solar radiation for summer and winter for Southern Sindh that is both contributes 50% for Karachi and Hyderabad. In Nawabshah area, the contribution of diffuse solar radiation is low in monsoon months, July and August. The Kᴛ value of Nawabshah indicates a clear sky almost throughout the year. The percentage of diffuse radiation does not exceed more than 20%. In Nawabshah, the appearance of cloud is rare even in monsoon months. The estimated values indicate that Nawabshah has high solar potential whereas Karachi and Hyderabad has low solar potential. During the monsoon months, the southern part of Sind can utilize the hybrid system with wind power. Near Karachi and Hyderabad, the wind speed ranges between 6.2 to 6.9 m/sec. There exist a wind corridor near Karachi, Hyderabad, Gharo, Keti Bander and Shah Bander. The short fall of solar can be compensated by wind because in monsoon months July and August the wind speed are higher in the southern region of Sindh.Keywords: hybrid power system, power generation, solar and wind energy potential, southern Sindh
Procedia PDF Downloads 2361705 Of an 80 Gbps Passive Optical Network Using Time and Wavelength Division Multiplexing
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Faizan Khan, Xiaodong Yang
Abstract:
Internet Service Providers are driving endless demands for higher bandwidth and data throughput as new services and applications require higher bandwidth. Users want immediate and accurate data delivery. This article focuses on converting old conventional networks into passive optical networks based on time division and wavelength division multiplexing. The main focus of this research is to use a hybrid of time-division multiplexing and wavelength-division multiplexing to improve network efficiency and performance. In this paper, we design an 80 Gbps Passive Optical Network (PON), which meets the need of the Next Generation PON Stage 2 (NGPON2) proposed in this paper. The hybrid of the Time and Wavelength division multiplexing (TWDM) is said to be the best solution for the implementation of NGPON2, according to Full-Service Access Network (FSAN). To co-exist with or replace the current PON technologies, many wavelengths of the TWDM can be implemented simultaneously. By utilizing 8 pairs of wavelengths that are multiplexed and then transmitted over optical fiber for 40 Kms and on the receiving side, they are distributed among 256 users, which shows that the solution is reliable for implementation with an acceptable data rate. From the results, it can be concluded that the overall performance, Quality Factor, and bandwidth of the network are increased, and the Bit Error rate is minimized by the integration of this approach.Keywords: bit error rate, fiber to the home, passive optical network, time and wavelength division multiplexing
Procedia PDF Downloads 701704 Role of Selenium and Vitamin E in Occupational Exposure to Heavy Metals (Mercury, Lead and Cadmium): Impact of Working in Lamp Factory
Authors: Tarek Elnimr, Rabab El-kelany
Abstract:
Heavy metals are environmental contaminants that may pose long-term health risks. Unfortunately, the consequent implementation of preventive measures was generally delayed, causing important negative effects to the exposed populations. The objective of this study was to determine whether co-consumption of nutritional supplements as selenium and vitamin E would treat the hazardous effects of exposure to mercury, lead and cadmium. 108 workers (60 males and 48 females) were the subject of this study, their ages ranged from 19-63 years, (M = 29.5±10.12). They were working in lamp factory for an average of 0.5-40 years (M= 5.3±8.8). Twenty control subjects matched for age and gender were used for comparison. All workers were subjected to neuropsychiatric evaluation. General Health Questionnaire (GHQ-28) revealed that 44.4% were complaining of anxiety, 52.7% of depression, 41.6% of social dysfunction and 22.2% of somatic symptoms. Cognitive tests revealed that long-term memory was not affected significantly when compared with controls, while short term memory and perceptual ability were affected significantly. Blood metal levels were measured by Inductively Coupled Plasma – optical emission spectrometry(ICP-OES), and revealed that the mean blood mercury, lead and cadmium concentrations before treatment were 1.6 mg/l, 0.39 mg/l and 1.7 µg/l, while they decreased significantly after treatment to 1.2 mg/l, 0.29 mg/l and 1.3 µg/l respectively. Anti-oxidative enzymes (paraoxonase and catalase) and lipid peroxidation product (malondialdehyde) were measured before and after treatment with selenium and vitamin E, and showed significant improvement. It could be concluded that co-consumption of selenium and vitamin E produces significant decrease in mercury, lead and cadmium levels in blood.Keywords: mercury, lead, cadmium, neuropsychiatric impairment, selenium, vitamin E
Procedia PDF Downloads 3461703 Rescaled Range Analysis of Seismic Time-Series: Example of the Recent Seismic Crisis of Alhoceima
Authors: Marina Benito-Parejo, Raul Perez-Lopez, Miguel Herraiz, Carolina Guardiola-Albert, Cesar Martinez
Abstract:
Persistency, long-term memory and randomness are intrinsic properties of time-series of earthquakes. The Rescaled Range Analysis (RS-Analysis) was introduced by Hurst in 1956 and modified by Mandelbrot and Wallis in 1964. This method represents a simple and elegant analysis which determines the range of variation of one natural property (the seismic energy released in this case) in a time interval. Despite the simplicity, there is complexity inherent in the property measured. The cumulative curve of the energy released in time is the well-known fractal geometry of a devil’s staircase. This geometry is used for determining the maximum and minimum value of the range, which is normalized by the standard deviation. The rescaled range obtained obeys a power-law with the time, and the exponent is the Hurst value. Depending on this value, time-series can be classified in long-term or short-term memory. Hence, an algorithm has been developed for compiling the RS-Analysis for time series of earthquakes by days. Completeness time distribution and locally stationarity of the time series are required. The interest of this analysis is their application for a complex seismic crisis where different earthquakes take place in clusters in a short period. Therefore, the Hurst exponent has been obtained for the seismic crisis of Alhoceima (Mediterranean Sea) of January-March, 2016, where at least five medium-sized earthquakes were triggered. According to the values obtained from the Hurst exponent for each cluster, a different mechanical origin can be detected, corroborated by the focal mechanisms calculated by the official institutions. Therefore, this type of analysis not only allows an approach to a greater understanding of a seismic series but also makes possible to discern different types of seismic origins.Keywords: Alhoceima crisis, earthquake time series, Hurst exponent, rescaled range analysis
Procedia PDF Downloads 3211702 Performance Improvement of Electric Vehicle Using K - Map Constructed Rule Based Energy Management Strategy for Battery/Ultracapacitor Hybrid Energy Storage System
Authors: Jyothi P. Phatak, L. Venkatesha, C. S. Raviprasad
Abstract:
The performance improvement of Hybrid Energy Storage System (HESS) in Electric Vehicle (EV) has been in discussion over the last decade. The important issues in terms of performance parameters addressed are, range of vehicle and battery (BA) peak current. Published literature has either addressed battery peak current reduction or range improvement in EV. Both the issues have not been specifically discussed and analyzed. This paper deals with both range improvement in EV and battery peak current reduction by applying a new Karnaugh Map (K-Map) constructed rule based energy management strategy to proposed HESS. The strategy allows Ultracapacitor (UC) to assist battery when the vehicle accelerates there by reducing the burden on battery. Simulation is carried out for various operating modes of EV considering both urban and highway driving conditions. Simulation is done for different values of UC by keeping battery rating constant for each driving cycle and results are presented. Feasible value of UC is selected based on simulation results. The results of proposed HESS show an improvement in performance parameters compared to Battery only Energy Storage System (BESS). Battery life is improved to considerable extent and there is an overall development in the performance of electric vehicle.Keywords: electric vehicle, PID controller, energy management strategy, range, battery current, ultracapacitor
Procedia PDF Downloads 1191701 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations
Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher
Abstract:
In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps
Procedia PDF Downloads 1251700 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
Authors: Bahareh Golchin, Nooshin Riahi
Abstract:
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.Keywords: emotion classification, sentiment analysis, social networks, deep neural networks
Procedia PDF Downloads 137