Search results for: grid connected photovoltaic system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18846

Search results for: grid connected photovoltaic system

17736 An Investigation into the Potential of Industrial Low Grade Heat in Membrane Distillation for Freshwater Production

Authors: Yehia Manawi, Ahmad Kayvanifard

Abstract:

Membrane distillation is an emerging technology which has been used to produce freshwater and purify different types of aqueous mixtures. Qatar is an arid country where almost 100% of its freshwater demand is supplied through the energy-intensive thermal desalination process. The country’s need for water has reached an all-time high which stipulates finding an alternative way to augment freshwater without adding any drastic affect to the environment. The objective of this paper was to investigate the potential of using the industrial low grade waste heat to produce freshwater using membrane distillation. The main part of this work was conducting a heat audit on selected Qatari chemical industries to estimate the amounts of freshwater produced if such industrial waste heat were to be recovered. By the end of this work, the main objective was met and the heat audit conducted on the Qatari chemical industries enabled us to estimate both the amounts of waste heat which can be potentially recovered in addition to the amounts of freshwater which can be produced if such waste heat were to be recovered. By the end, the heat audit showed that around 605 Mega Watts of waste heat can be recovered from the studied Qatari chemical industries which resulted in a total daily production of 5078.7 cubic meter of freshwater. This water can be used in a wide variety of applications such as human consumption or industry. The amount of produced freshwater may look small when compared to that produced through thermal desalination plants; however, one must bear in mind that this water comes from waste and can be used to supply water for small cities or remote areas which are not connected to the water grid. The idea of producing freshwater from the two widely-available wastes (thermal rejected brine and waste heat) seems promising as less environmental and economic impacts will be associated with freshwater production which may in the near future augment the conventional way of producing freshwater currently being thermal desalination. This work has shown that low grade waste heat in the chemical industries in Qatar and perhaps the rest of the world can contribute to additional production of freshwater using membrane distillation without significantly adding to the environmental impact.

Keywords: membrane distillation, desalination, heat recovery, environment

Procedia PDF Downloads 312
17735 Combination of Plantar Pressure and Star Excursion Balance Test for Evaluation of Dynamic Posture Control on High-Heeled Shoes

Authors: Yan Zhang, Jan Awrejcewicz, Lin Fu

Abstract:

High-heeled shoes force the foot into plantar flexion position resulting in foot arch rising and disturbance of the articular congruence between the talus and tibiofibular mortice, all of which may increase the challenge of balance maintenance. Plantar pressure distribution of the stance limb during the star excursion balance test (SEBT) contributes to the understanding of potential sources of reaching excursions in SEBT. The purpose of this study is to evaluate the dynamic posture control while wearing high-heeled shoes using SEBT in a combination of plantar pressure measurement. Twenty healthy young females were recruited. Shoes of three heel heights were used: flat (0.8 cm), low (4.0 cm), high (6.6 cm). The testing grid of SEBT consists of three lines extending out at 120° from each other, which were defined as anterior, posteromedial, and posterolateral directions. Participants were instructed to stand on their dominant limb with the heel in the middle of the testing grid and hands on hips and to reach the non-stance limb as far as possible towards each direction. The distal portion of the reaching limb lightly touched the ground without shifting weight. Then returned the reaching limb to the beginning position. The excursion distances were normalized to leg length. The insole plantar measurement system was used to record peak pressure, contact area, and pressure-time integral of the stance limb. Results showed that normalized excursion distance decreased significantly as heel height increased. The changes of plantar pressure in SEBT as heel height increased were more obvious in the medial forefoot (MF), medial midfoot (MM), rearfoot areas. At MF, the peak pressure and pressure-time integral of low and high shoes increased significantly compared with that of flat shoes, while the contact area decreased significantly as heel height increased. At MM, peak pressure, contact area, and pressure-time integral of high and low shoes were significantly lower than that of flat shoes. To reduce posture instability, the stance limb plantar loading shifted to medial forefoot. Knowledge of this study identified dynamic posture control deficits while wearing high-heeled shoes and the critical role of the medial forefoot in dynamic balance maintenance.

Keywords: dynamic posture control, high-heeled shoes, plantar pressure, star excursion balance test.

Procedia PDF Downloads 128
17734 GIS Data Governance: GIS Data Submission Process for Build-in Project, Replacement Project at Oman Electricity Transmission Company

Authors: Rahma Al Balushi

Abstract:

Oman Electricity Transmission Company's (OETC) vision is to be a renowned world-class transmission grid by 2025, and one of the indications of achieving the vision is obtaining Asset Management ISO55001 certification, which required setting out a documented Standard Operating Procedures (SOP). Hence, documented SOP for the Geographical information system data process has been established. Also, to effectively manage and improve OETC power transmission, asset data and information need to be governed as such by Asset Information & GIS dept. This paper will describe in detail the GIS data submission process and the journey to develop the current process. The methodology used to develop the process is based on three main pillars, which are system and end-user requirements, Risk evaluation, data availability, and accuracy. The output of this paper shows the dramatic change in the used process, which results subsequently in more efficient, accurate, updated data. Furthermore, due to this process, GIS has been and is ready to be integrated with other systems as well as the source of data for all OETC users. Some decisions related to issuing No objection certificates (NOC) and scheduling asset maintenance plans in Computerized Maintenance Management System (CMMS) have been made consequently upon GIS data availability. On the Other hand, defining agreed and documented procedures for data collection, data systems update, data release/reporting, and data alterations salso aided to reduce the missing attributes of GIS transmission data. A considerable difference in Geodatabase (GDB) completeness percentage was observed between the year 2017 and the year 2021. Overall, concluding that by governance, asset information & GIS department can control GIS data process; collect, properly record, and manage asset data and information within OETC network. This control extends to other applications and systems integrated with/related to GIS systems.

Keywords: asset management ISO55001, standard procedures process, governance, geodatabase, NOC, CMMS

Procedia PDF Downloads 201
17733 Automatic Number Plate Recognition System Based on Deep Learning

Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi

Abstract:

In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.

Keywords: ANPR, CS, CNN, deep learning, NPL

Procedia PDF Downloads 296
17732 The Potential Role of Industrialized Building Systems in Malaysian Sustainable Construction: Awareness and Barriers

Authors: Aawag Mohsen Al-Awag, Wesam Salah Alaloul, M. S. Liew

Abstract:

Industrialized building system (IBS) is a method of construction with concentrated practices consisting of techniques, products, and a set of linked elements which operate collectively to accomplish objectives. The Industrialised Building System (IBS) has been recognised as a viable method for improving overall construction performance in terms of quality, cost, safety and health, waste reduction, and productivity. The Malaysian construction industry is considered one of the contributors to the development of the country. The acceptance level of IBS is still below government expectations. Thus, the Malaysian government has been continuously encouraging the industry to use and implement IBS. Conventional systems have several drawbacks, including project delays, low economic efficiency, excess inventory, and poor product quality. When it comes to implementing IBS, construction companies still face several obstacles and problems, notably in terms of contractual and procurement concerns, which leads to the low adoption of IBS in Malaysia. There are barriers to the acceptance of IBS technology, focused on awareness of historical failure and risks connected to IBS practices to provide enhanced performance. Therefore, the transformation from the existing conventional building systems to the industrialized building systems (IBS) is needed more than ever. The flexibility of IBS in Malaysia’s construction industry is very low due to numerous shortcomings and obstacles. Due to its environmental, economic, and social benefits, IBS could play a significant role in the Malaysian construction industry in the future. This paper concentrates on the potential role of IBS in sustainable construction practices in Malaysia. It also highlights the awareness, barriers, advantages, and disadvantages of IBS in the construction sector. The study concludes with recommendations for Malaysian construction stakeholders to encourage and increase the utilization of industrialised building systems.

Keywords: construction industry, industrialized building system, barriers, advantages and disadvantages, construction, sustainability, Malaysia

Procedia PDF Downloads 94
17731 ESS Control Strategy for Primary Frequency Response in Microgrid Considering Ramp Rate

Authors: Ho-Jun Jo, Wook-Won Kim, Yong-Sung Kim, Jin-O Kim

Abstract:

The application of ESS (Energy Storage Systems) in the future grids has been the solution of the microgrid. However, high investment costs necessitate accurate modeling and control strategy of ESS to justify its economic viability and further underutilization. Therefore, the reasonable control strategy for ESS which is subjected to generator and usage helps to curtail the cost of investment and operation costs. The rated frequency in power system is decreased when the load is increasing unexpectedly; hence the thermal power is operated at the capacity of only its 95% for the Governor Free (GF) to adjust the frequency as reserve (5%) in practice. The ESS can be utilized with governor at the same time for the frequency response due to characteristic of its fast response speed and moreover, the cost of ESS is declined rapidly to the reasonable price. This paper presents the ESS control strategy to extend usage of the ESS taken account into governor’s ramp rate and reduce the governor’s intervention as well. All results in this paper are simulated by MATLAB.

Keywords: micro grid, energy storage systems, ramp rate, control strategy

Procedia PDF Downloads 382
17730 Flammability and Smoke Toxicity of Rainscreen Façades

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

Four façade systems were tested using a reduced height BS 8414-2 (5 m) test rig. An L-shaped masonry test wall was clad with three types of insulation and an aluminum composite panel with a non-combustible filling (meeting Euroclass A2). A large (3 MW) wooden crib was ignited in a recess at the base of the L, and the fire was allowed to burn for 30 minutes. Air velocity measurements and gas samples were taken from the main ventilation duct and also a small additional ventilation duct, like those in an apartment bathroom or kitchen. This provided a direct route of travel for smoke from the building façade to a theoretical room using a similar design to many high-rise buildings where the vent is connected to (approximately) 30 m³ rooms. The times to incapacitation and lethality of the effluent were calculated for both the main exhaust vent and for a vent connected to a theoretical 30 m³ room. The rainscreen façade systems tested were the common combinations seen in many tower blocks across the UK. Three tests using ACM A2 with Stonewool, Phenolic foam, and Polyisocyanurate (PIR) foam. A fourth test was conducted with PIR and ACM-PE (polyethylene core). Measurements in the main exhaust duct were representative of the effluent from the burning wood crib. FEDs showed incapacitation could occur up to 30 times quicker with combustible insulation than non-combustible insulation, with lethal gas concentrations accumulating up to 2.7 times faster than other combinations. The PE-cored ACM/PIR combination produced a ferocious fire, resulting in the termination of the test after 13.5 minutes for safety reasons. Occupants of the theoretical room in the PIR/ACM A2 test reached a FED of 1 after 22 minutes; for PF/ACM A2, this took 25 minutes, and for stone wool, a lethal dose measurement of 0.6 was reached at the end of the 30-minute test. In conclusion, when measuring smoke toxicity in the exhaust duct, there is little difference between smoke toxicity measurements between façade systems. Toxicity measured in the main exhaust is largely a result of the wood crib used to ignite the façade system. The addition of a vent allowed smoke toxicity to be quantified in the cavity of the façade, providing a realistic way of measuring the toxicity of smoke that could enter an apartment from a façade fire.

Keywords: smoke toxicity, large-scale testing, BS8414, FED

Procedia PDF Downloads 50
17729 Tunneling Current Switching in the Coupled Quantum Dots by Means of External Field

Authors: Vladimir Mantsevich, Natalya Maslova, Petr Arseyev

Abstract:

We investigated the tunneling current peculiarities in the system of two coupled by means of the external field quantum dots (QDs) weakly connected to the electrodes in the presence of Coulomb correlations between localized electrons by means of Heisenberg equations for pseudo operators with constraint. Special role of multi-electronic states was demonstrated. Various single-electron levels location relative to the sample Fermi level and to the applied bias value in symmetric tunneling contact were investigated. Rabi frequency tuning results in the single-electron energy levels spacing. We revealed the appearance of negative tunneling conductivity and demonstrated multiple switching "on" and "off" of the tunneling current depending on the Coulomb correlations value, Rabi frequency amplitude and energy levels spacing. We proved that Coulomb correlations strongly influence the system behavior. We demonstrated the presence of multi-stability in the coupled QDs with Coulomb correlations when single value of the tunneling current amplitude corresponds to the two values of Rabi frequency in the case when both single-electron energy levels are located slightly above eV and are close to each other. This effect disappears when the single-electron energy levels spacing increases.

Keywords: Coulomb correlations, negative tunneling conductivity, quantum dots, rabi frequency

Procedia PDF Downloads 442
17728 Smart Irrigation System

Authors: Levent Seyfi, Ertan Akman, Tuğrul C. Topak

Abstract:

In this study, irrigation automation with electronic sensors and its control with smartphones were aimed. In this context, temperature and soil humidity measurements of the area irrigated were obtained by temperature and humidity sensors. A micro controller (Arduino) was utilized for accessing values of these parameters and controlling the proposed irrigation system. The irrigation system could automatically be worked according to obtained measurement values. Besides, a GSM module used together with Arduino provided that the irrigation system was in connection to smartphones. Thus, the irrigation system can be remotely controlled. Not only can we observe whether the irrigation system is working or not via developed special android application but also we can see temperature and humidity measurement values. In addition to this, if desired, the irrigation system can be remotely and manually started or stopped regardless of measured sensor vales thanks to the developed android application. In addition to smartphones, the irrigation system can be alternatively controlled via the designed website (www.sulamadenetim.com).

Keywords: smartphone, Android Operating System, sensors, irrigation System, arduino

Procedia PDF Downloads 604
17727 A Hybrid Based Algorithm to Solve the Multi-objective Minimum Spanning Tree Problem

Authors: Boumesbah Asma, Chergui Mohamed El-amine

Abstract:

Since it has been shown that the multi-objective minimum spanning tree problem (MOST) is NP-hard even with two criteria, we propose in this study a hybrid NSGA-II algorithm with an exact mutation operator, which is only used with low probability, to find an approximation to the Pareto front of the problem. In a connected graph G, a spanning tree T of G being a connected and cycle-free graph, if k edges of G\T are added to T, we obtain a partial graph H of G inducing a reduced size multi-objective spanning tree problem compared to the initial one. With a weak probability for the mutation operator, an exact method for solving the reduced MOST problem considering the graph H is then used to give birth to several mutated solutions from a spanning tree T. Then, the selection operator of NSGA-II is activated to obtain the Pareto front approximation. Finally, an adaptation of the VNS metaheuristic is called for further improvements on this front. It allows finding good individuals to counterbalance the diversification and the intensification during the optimization search process. Experimental comparison studies with an exact method show promising results and indicate that the proposed algorithm is efficient.

Keywords: minimum spanning tree, multiple objective linear optimization, combinatorial optimization, non-sorting genetic algorithm, variable neighborhood search

Procedia PDF Downloads 84
17726 Embedment Design Concept of Signature Tower in Chennai

Authors: M. Gobinath, S. Balaji

Abstract:

Assumptions in model inputs: Grade of concrete=40 N/mm2 (for slab), Grade of concrete=40 N/mm2 (for shear wall), Grade of Structural steel (plate girder)=350 N/mm2 (yield strength), Ultimate strength of structural steel=490 N/mm2, Grade of rebar=500 N/mm2 (yield strength), Applied Load=1716 kN (un-factored). Following assumptions are made for the mathematical modelling of RCC with steel embedment: (1) The bond between the structural steel and concrete is neglected. (2) The stiffener is provided with shear studs to transfer the shear force. Hence nodal connectivity is established between solid nodes (concrete) and shell elements (stiffener) at those locations. (3) As the end reinforcements transfer either tension/compression, it is modeled as line element and connected to solid nodes. (4) In order to capture the bearing of bottom flange on to the concrete, the line element of plan size of solid equal to the cross section of line elements is connected between solid and shell elements below for bottom flange and above for top flange. (5) As the concrete cannot resist tension at the interface (i.e., between structural steel and RCC), the tensile stiffness is assigned as zero and only compressive stiffness is enabled to take. Hence, non-linear static analysis option is invoked.

Keywords: structure, construction, signature tower, embedment design concept

Procedia PDF Downloads 291
17725 Wearable Heart Rate Sensor Based on Wireless System for Heart Health Monitoring

Authors: Murtadha Kareem, Oliver Faust

Abstract:

Wearable biosensor systems can be designed and developed for health monitoring. There is much interest in both scientific and industrial communities established since 2007. Fundamentally, the cost of healthcare has increased dramatically and the world population is aging. That creates the need to harvest technological improvements with small bio-sensing devices, wireless-communication, microelectronics and smart textiles, that leads to non-stop developments of wearable sensor based systems. There has been a significant demand to monitor patient's health status while the patient leaves the hospital in his/her personal environment. To address this need, there are numerous system prototypes which has been launched in the medical market recently, the aim of that is to provide real time information feedback about patient's health status, either to the patient himself/herself or direct to the supervising medical centre station, while being capable to give a notification for the patient in case of possible imminent health threatening conditions. Furthermore, wearable health monitoring systems comprise new techniques to address the problem of managing and monitoring chronic heart diseases for elderly people. Wearable sensor systems for health monitoring include various types of miniature sensors, either wearable or implantable. To be specific, our proposed system able to measure essential physiological parameter, such as heart rate signal which could be transmitted through Bluetooth to the cloud server in order to store, process, analysis and visualise the data acquisition. The acquired measurements are connected through internet of things to a central node, for instance an android smart phone or tablet used for visualising the collected information on application or transmit it to a medical centre.

Keywords: Wearable sensor, Heart rate, Internet of things, Chronic heart disease

Procedia PDF Downloads 155
17724 Comparison of Security Challenges and Issues of Mobile Computing and Internet of Things

Authors: Aabiah Nayeem, Fariha Shafiq, Mustabshra Aftab, Rabia Saman Pirzada, Samia Ghazala

Abstract:

In this modern era of technology, the concept of Internet of Things is very popular in every domain. It is a widely distributed system of things in which the data collected from sensory devices is transmitted, analyzed locally/collectively then broadcasted to network where action can be taken remotely via mobile/web apps. Today’s mobile computing is also gaining importance as the services are provided during mobility. Through mobile computing, data are transmitted via computer without physically connected to a fixed point. The challenge is to provide services with high speed and security. Also, the data gathered from the mobiles must be processed in a secured way. Mobile computing is strongly influenced by internet of things. In this paper, we have discussed security issues and challenges of internet of things and mobile computing and we have compared both of them on the basis of similarities and dissimilarities.

Keywords: embedded computing, internet of things, mobile computing, wireless technologies

Procedia PDF Downloads 306
17723 High Speed Response Single-Inductor Dual-Output DC-DC Converter with Hysteretic Control

Authors: Y. Kobori, S. Tanaka, N. Tsukiji, N. Takai, H. Kobayashi

Abstract:

This paper proposes two kinds of new single-inductor dual-output (SIDO) DC-DC switching converters with ripple-based hysteretic control. First SIDO converters of type 1 utilize the triangular signal generated by the CR-circuit connected across the inductor. This triangular signal is used for generating the PWM signal instead of the saw-tooth signal used in the conventional converters. Second SIDO converters of type 2 utilize the triangular signal generated by the CR-circuit connected across the voltage error amplifier. This paper describes circuit topologies, Operation principles, simulation results and experimental results of the proposed SIDO converters. In simulation results of both type of SIDO converters, static output voltage ripples are less than 5mVpp and over/under shoots of the dynamic load regulations for the output current step are less than +/- 10mV. In experimental results of single output converter of type 2, static output voltage ripples are about 20mVpp. Output ripples of SIDO type 1 converter are about 80mVpp.

Keywords: DC-DC converter, switching converter, SIDO converter, hysteretic control, ripple-based control

Procedia PDF Downloads 565
17722 Numerical Solutions of Fredholm Integral Equations by B-Spline Wavelet Method

Authors: Ritu Rani

Abstract:

In this paper, we apply minimalistically upheld linear semi-orthogonal B-spline wavelets, exceptionally developed for the limited interim to rough the obscure function present in the integral equations. Semi-orthogonal wavelets utilizing B-spline uniquely developed for the limited interim and these wavelets can be spoken to in a shut frame. This gives a minimized help. Semi-orthogonal wavelets frame the premise in the space L²(R). Utilizing this premise, an arbitrary function in L²(R) can be communicated as the wavelet arrangement. For the limited interim, the wavelet arrangement cannot be totally introduced by utilizing this premise. This is on the grounds that backings of some premise are truncated at the left or right end purposes of the interim. Subsequently, an uncommon premise must be brought into the wavelet development on the limited interim. These functions are alluded to as the limit scaling functions and limit wavelet functions. B-spline wavelet method has been connected to fathom linear and nonlinear integral equations and their systems. The above method diminishes the integral equations to systems of algebraic equations and afterward these systems can be illuminated by any standard numerical methods. Here, we have connected Newton's method with suitable starting speculation for solving these systems.

Keywords: semi-orthogonal, wavelet arrangement, integral equations, wavelet development

Procedia PDF Downloads 170
17721 Numerical Approach for Characterization of Flow Field in Pump Intake Using Two Phase Model: Detached Eddy Simulation

Authors: Rahul Paliwal, Gulshan Maheshwari, Anant S. Jhaveri, Channamallikarjun S. Mathpati

Abstract:

Large pumping facility is the necessary requirement of the cooling water systems for power plants, process and manufacturing facilities, flood control and water or waste water treatment plant. With a large capacity of few hundred to 50,000 m3/hr, cares must be taken to ensure the uniform flow to the pump to limit vibration, flow induced cavitation and performance problems due to formation of air entrained vortex and swirl flow. Successful prediction of these phenomena requires numerical method and turbulence model to characterize the dynamics of these flows. In the past years, single phase shear stress transport (SST) Reynolds averaged Navier Stokes Models (like k-ε, k-ω and RSM) were used to predict the behavior of flow. Literature study showed that two phase model will be more accurate over single phase model. In this paper, a 3D geometries simulated using detached eddy simulation (LES) is used to predict the behavior of the fluid and the results are compared with experimental results. Effect of different grid structure and boundary condition is also studied. It is observed that two phase flow model can more accurately predict the mean flow and turbulence statistics compared to the steady SST model. These validate model will be used for further analysis of vortex structure in lab scale model to generate their frequency-plot and intensity at different location in the set-up. This study will help in minimizing the ill effect of vortex on pump performance.

Keywords: grid structure, pump intake, simulation, vibration, vortex

Procedia PDF Downloads 170
17720 Energy System Analysis Using Data-Driven Modelling and Bayesian Methods

Authors: Paul Rowley, Adam Thirkill, Nick Doylend, Philip Leicester, Becky Gough

Abstract:

The dynamic performance of all energy generation technologies is impacted to varying degrees by the stochastic properties of the wider system within which the generation technology is located. This stochasticity can include the varying nature of ambient renewable energy resources such as wind or solar radiation, or unpredicted changes in energy demand which impact upon the operational behaviour of thermal generation technologies. An understanding of these stochastic impacts are especially important in contexts such as highly distributed (or embedded) generation, where an understanding of issues affecting the individual or aggregated performance of high numbers of relatively small generators is especially important, such as in ESCO projects. Probabilistic evaluation of monitored or simulated performance data is one technique which can provide an insight into the dynamic performance characteristics of generating systems, both in a prognostic sense (such as the prediction of future performance at the project’s design stage) as well as in a diagnostic sense (such as in the real-time analysis of underperforming systems). In this work, we describe the development, application and outcomes of a new approach to the acquisition of datasets suitable for use in the subsequent performance and impact analysis (including the use of Bayesian approaches) for a number of distributed generation technologies. The application of the approach is illustrated using a number of case studies involving domestic and small commercial scale photovoltaic, solar thermal and natural gas boiler installations, and the results as presented show that the methodology offers significant advantages in terms of plant efficiency prediction or diagnosis, along with allied environmental and social impacts such as greenhouse gas emission reduction or fuel affordability.

Keywords: renewable energy, dynamic performance simulation, Bayesian analysis, distributed generation

Procedia PDF Downloads 489
17719 Development and Characterization of a Fluorinated-Ethylene-Propylene (FEP) Polymer Coating on Brass Faucets

Authors: S. Zouari, H. Ghorbel, H. Liao, R. Elleuch

Abstract:

Research is increasingly moving towards the use of surface treatment processes to limit environmental effects. Electrolytic plating has traditionally been seen as a way to protect brass products, especially faucets, from mechanical and chemical damage. However, this method was not effective industrially, economically and ecologically. The aim of this work is to develop non-usual polymer coatings for brass faucets in order to improve the performance of brass and to replace electrolytic chromium coatings, thereby reducing environmental impact. Fluorinated-Ethylene-Propylene polymer (FEP) was chosen for its excellent mechanical and chemical properties and its good environmental performance. This coating was developed by spraying (painting) process onto brass substrates. The coatings obtained were characterized using a scanning electron microscope to evaluate the morphology of the deposits and their porosity rate. Grid adhesion, surface energy and corrosion tests (salt spray) were also performed to evaluate the mechanical and chemical behavior of these coatings properly. The results show that the deposits obtained have a homogeneous microstructure with a very low porosity rate. The results of the grid adhesion test prove the conformity of the test according to the NF077 standard. The coatings have a hydrophobic character following the low values of surface energy obtained and a very good resistance to corrosion. These results are interesting and may represent real technological issues in the industrial field.

Keywords: FEP coatings, spraying process, brass, adhesion, surface energy, corrosion resistance

Procedia PDF Downloads 134
17718 Controlled Nano Texturing in Silicon Wafer for Excellent Optical and Photovoltaic Properties

Authors: Deb Kumar Shah, M. Shaheer Akhtar, Ha Ryeon Lee, O-Bong Yang, Chong Yeal Kim

Abstract:

The crystalline silicon (Si) solar cells are highly renowned photovoltaic technology and well-established as the commercial solar technology. Most of the solar panels are globally installed with the crystalline Si solar modules. At the present scenario, the major photovoltaic (PV) market is shared by c-Si solar cells, but the cost of c-Si panels are still very high as compared with the other PV technology. In order to reduce the cost of Si solar panels, few necessary steps such as low-cost Si manufacturing, cheap antireflection coating materials, inexpensive solar panel manufacturing are to be considered. It is known that the antireflection (AR) layer in c-Si solar cell is an important component to reduce Fresnel reflection for improving the overall conversion efficiency. Generally, Si wafer exhibits the 30% reflection because it normally poses the two major intrinsic drawbacks such as; the spectral mismatch loss and the high Fresnel reflection loss due to the high contrast of refractive indices between air and silicon wafer. In recent years, researchers and scientists are highly devoted to a lot of researches in the field of searching effective and low-cost AR materials. Silicon nitride (SiNx) is well-known AR materials in commercial c-Si solar cells due to its good deposition and interaction with passivated Si surfaces. However, the deposition of SiNx AR is usually performed by expensive plasma enhanced chemical vapor deposition (PECVD) process which could have several demerits like difficult handling and damaging the Si substrate by plasma when secondary electrons collide with the wafer surface for AR coating. It is very important to explore new, low cost and effective AR deposition process to cut the manufacturing cost of c-Si solar cells. One can also be realized that a nano-texturing process like the growth of nanowires, nanorods, nanopyramids, nanopillars, etc. on Si wafer can provide a low reflection on the surface of Si wafer based solar cells. The above nanostructures might be enhanced the antireflection property which provides the larger surface area and effective light trapping. In this work, we report on the development of crystalline Si solar cells without using the AR layer. The Silicon wafer was modified by growing nanowires like Si nanostructures using the wet controlled etching method and directly used for the fabrication of Si solar cell without AR. The nanostructures over Si wafer were optimized in terms of sizes, lengths, and densities by changing the etching conditions. Well-defined and aligned wires like structures were achieved when the etching time is 20 to 30 min. The prepared Si nanostructured displayed the minimum reflectance ~1.64% at 850 nm with the average reflectance of ~2.25% in the wavelength range from 400-1000 nm. The nanostructured Si wafer based solar cells achieved the comparable power conversion efficiency in comparison with c-Si solar cells with SiNx AR layer. From this study, it is confirmed that the reported method (controlled wet etching) is an easy, facile method for preparation of nanostructured like wires on Si wafer with low reflectance in the whole visible region, which has greater prospects in developing c-Si solar cells without AR layer at low cost.

Keywords: chemical etching, conversion efficiency, silicon nanostructures, silicon solar cells, surface modification

Procedia PDF Downloads 117
17717 Comparison of Traditional and Green Building Designs in Egypt: Energy Saving

Authors: Hala M. Abdel Mageed, Ahmed I. Omar, Shady H. E. Abdel Aleem

Abstract:

This paper describes in details a commercial green building that has been designed and constructed in Marsa Matrouh, Egypt. The balance between homebuilding and the sustainable environment has been taken into consideration in the design and construction of this building. The building consists of one floor with 3 m height and 2810 m2 area while the envelope area is 1400 m2. The building construction fulfills the natural ventilation requirements. The glass curtain walls are about 50% of the building and the windows area is 300 m2. 6 mm greenish gray tinted temper glass as outer board lite, 6 mm safety glass as inner board lite and 16 mm thick dehydrated air spaces are used in the building. Visible light with 50% transmission, 0.26 solar factor, 0.67 shading coefficient and 1.3 W/m2.K thermal insulation U-value are implemented to realize the performance requirements. Optimum electrical distribution for lighting system, air conditions and other electrical loads has been carried out. Power and quantity of each type of the lighting system lamps and the energy consumption of the lighting system are investigated. The design of the air conditions system is based on summer and winter outdoor conditions. Ventilated, air conditioned spaces and fresh air rates are determined. Variable Refrigerant Flow (VRF) is the air conditioning system used in this building. The VRF outdoor units are located on the roof of the building and connected to indoor units through refrigerant piping. Indoor units are distributed in all building zones through ducts and air outlets to ensure efficient air distribution. The green building energy consumption is evaluated monthly all over one year and compared with the consumed energy in the non-green conditions using the Hourly Analysis Program (HAP) model. The comparison results show that the total energy consumed per year in the green building is about 1,103,221 kWh while the non-green energy consumption is about 1,692,057 kWh. In other words, the green building total annual energy cost is reduced from 136,581 $ to 89,051 $. This means that, the energy saving and consequently the money-saving of this green construction is about 35%. In addition, 13 points are awarded by applying one of the most popular worldwide green energy certification programs (Leadership in Energy and Environmental Design “LEED”) as a rating system for the green construction. It is concluded that this green building ensures sustainability, saves energy and offers an optimum energy performance with minimum cost.

Keywords: energy consumption, energy saving, green building, leadership in energy and environmental design, sustainability

Procedia PDF Downloads 291
17716 Screening Deformed Red Blood Cells Irradiated by Ionizing Radiations Using Windowed Fourier Transform

Authors: Dahi Ghareab Abdelsalam Ibrahim, R. H. Bakr

Abstract:

Ionizing radiation, such as gamma radiation and X-rays, has many applications in medical diagnoses and cancer treatment. In this paper, we used the windowed Fourier transform to extract the complex image of the deformed red blood cells. The real values of the complex image are used to extract the best fitting of the deformed cell boundary. Male albino rats are irradiated by γ-rays from ⁶⁰Co. The male albino rats are anesthetized with ether, and then blood samples are collected from the eye vein by heparinized capillary tubes for studying the radiation-damaging effect in-vivo by the proposed windowed Fourier transform. The peripheral blood films are prepared according to the Brown method. The peripheral blood film is photographed by using an Automatic Image Contour Analysis system (SAMICA) from ELBEK-Bildanalyse GmbH, Siegen, Germany. The SAMICA system is provided with an electronic camera connected to a computer through a built-in interface card, and the image can be magnified up to 1200 times and displayed by the computer. The images of the peripheral blood films are then analyzed by the windowed Fourier transform method to extract the precise deformation from the best fitting. Based on accurate deformation evaluation of the red blood cells, diseases can be diagnosed in their primary stages.

Keywords: windowed Fourier transform, red blood cells, phase wrapping, Image processing

Procedia PDF Downloads 73
17715 Reliability Analysis in Power Distribution System

Authors: R. A. Deshpande, P. Chandhra Sekhar, V. Sankar

Abstract:

In this paper, we discussed the basic reliability evaluation techniques needed to evaluate the reliability of distribution systems which are applied in distribution system planning and operation. Basically, the reliability study can also help to predict the reliability performance of the system after quantifying the impact of adding new components to the system. The number and locations of new components needed to improve the reliability indices to certain limits are identified and studied.

Keywords: distribution system, reliability indices, urban feeder, rural feeder

Procedia PDF Downloads 767
17714 A Study on Design for Parallel Test Based on Embedded System

Authors: Zheng Sun, Weiwei Cui, Xiaodong Ma, Hongxin Jin, Dongpao Hong, Jinsong Yang, Jingyi Sun

Abstract:

With the improvement of the performance and complexity of modern equipment, automatic test system (ATS) becomes widely used for condition monitoring and fault diagnosis. However, the conventional ATS mainly works in a serial mode, and lacks the ability of testing several equipments at the same time. That leads to low test efficiency and ATS redundancy. Especially for a large majority of equipment under test, the conventional ATS cannot meet the requirement of efficient testing. To reduce the support resource and increase test efficiency, we propose a method of design for the parallel test based on the embedded system in this paper. Firstly, we put forward the general framework of the parallel test system, and the system contains a central management system (CMS) and several distributed test subsystems (DTS). Then we give a detailed design of the system. For the hardware of the system, we use embedded architecture to design DTS. For the software of the system, we use test program set to improve the test adaption. By deploying the parallel test system, the time to test five devices is now equal to the time to test one device in the past. Compared with the conventional test system, the proposed test system reduces the size and improves testing efficiency. This is of great significance for equipment to be put into operation swiftly. Finally, we take an industrial control system as an example to verify the effectiveness of the proposed method. The result shows that the method is reasonable, and the efficiency is improved up to 500%.

Keywords: parallel test, embedded system, automatic test system, automatic test system (ATS), central management system, central management system (CMS), distributed test subsystems, distributed test subsystems (DTS)

Procedia PDF Downloads 291
17713 Fault Location Detection in Active Distribution System

Authors: R. Rezaeipour, A. R. Mehrabi

Abstract:

Recent increase of the DGs and microgrids in distribution systems, disturbs the tradition structure of the system. Coordination between protection devices in such a system becomes the concern of the network operators. This paper presents a new method for fault location detection in the active distribution networks, independent of the fault type or its resistance. The method uses synchronized voltage and current measurements at the interconnection of DG units and is able to adapt to changes in the topology of the system. The method has been tested on a 38-bus distribution system, with very encouraging results.

Keywords: fault location detection, active distribution system, micro grids, network operators

Procedia PDF Downloads 775
17712 Design and Construction of an Intelligent Multiplication Table for Enhanced Education and Increased Student Engagement

Authors: Zahra Alikhani Koopaei

Abstract:

In the fifth lesson of the third-grade mathematics book, students are introduced to the concept of multiplication. However, some students showed a lack of interest in learning this topic. To address this, a simple electronic multiplication table was designed with the aim of making the concept of multiplication entertaining and engaging for students. It provides them with moments of excitement during the learning process. To achieve this goal, a device was created that produced a bell sound when two wire ends were connected. Each wire end was connected to a specific number in the multiplication table, and the other end was linked to the corresponding answer. Consequently, if the answer is correct, the bell will ring. This study employs interactive and engaging methods to teach mathematics, particularly to students who have previously shown little interest in the subject. By integrating game-based learning and critical thinking, we observed an increase in understanding and interest in learning multiplication compared to before using this method. This further motivated the students. As a result, the intelligent multiplication table was successfully designed. Students, under the instructor's supervision, could easily construct the device during the lesson. Through the implementation of these operations, the concept of multiplication was firmly established in the students' minds. Engaging multiple intelligences in each student enhances a more stable and improved understanding of the concept of multiplication.

Keywords: intelligent multiplication table, design, construction, education, increased interest, students

Procedia PDF Downloads 58
17711 Controlling Drone Flight Missions through Natural Language Processors Using Artificial Intelligence

Authors: Sylvester Akpah, Selasi Vondee

Abstract:

Unmanned Aerial Vehicles (UAV) as they are also known, drones have attracted increasing attention in recent years due to their ubiquitous nature and boundless applications in the areas of communication, surveying, aerial photography, weather forecasting, medical delivery, surveillance amongst others. Operated remotely in real-time or pre-programmed, drones can fly autonomously or on pre-defined routes. The application of these aerial vehicles has successfully penetrated the world due to technological evolution, thus a lot more businesses are utilizing their capabilities. Unfortunately, while drones are replete with the benefits stated supra, they are riddled with some problems, mainly attributed to the complexities in learning how to master drone flights, collision avoidance and enterprise security. Additional challenges, such as the analysis of flight data recorded by sensors attached to the drone may take time and require expert help to analyse and understand. This paper presents an autonomous drone control system using a chatbot. The system allows for easy control of drones using conversations with the aid of Natural Language Processing, thus to reduce the workload needed to set up, deploy, control, and monitor drone flight missions. The results obtained at the end of the study revealed that the drone connected to the chatbot was able to initiate flight missions with just text and voice commands, enable conversation and give real-time feedback from data and requests made to the chatbot. The results further revealed that the system was able to process natural language and produced human-like conversational abilities using Artificial Intelligence (Natural Language Understanding). It is recommended that radio signal adapters be used instead of wireless connections thus to increase the range of communication with the aerial vehicle.

Keywords: artificial ntelligence, chatbot, natural language processing, unmanned aerial vehicle

Procedia PDF Downloads 135
17710 Photoelectrical Stimulation for Cancer Therapy

Authors: Mohammad M. Aria, Fatma Öz, Yashar Esmaeilian, Marco Carofiglio, Valentina Cauda, Özlem Yalçın

Abstract:

Photoelectrical stimulation of cells with semiconductor organic polymers have been shown promising applications in neuroprosthetics such as retinal prosthesis. Photoelectrical stimulation of the cell membranes can be induced through a photo-electric charge separation mechanism in the semiconductor materials, and it can alter intracellular calcium level through both stimulation of voltage-gated ion channels and increase of intracellular reactive oxygen species (ROS) level. On the other hand, targeting voltage-gated ion channels in cancer cells to induce cell apoptosis through calcium signaling alternation is an effective mechanism which has been explained before. In this regard, remote control of the voltage-gated ion channels aimed to alter intracellular calcium by using photo-active organic polymers can be novel technology in cancer therapy. In this study, we used P (ITO/Indium thin oxide)/P3HT(poly(3-hexylthiophene-2,5-diyl)) and PN (ITO/ZnO/P3HT) photovoltaic junctions to stimulate MDA-MB-231 breast cancer cells. We showed that the photo-stimulation of breast cancer cells through photo capacitive current generated by the photovoltaic junctions are able to excite the cells and alternate intracellular calcium based on the calcium imaging (at 8mW/cm² green light intensity and 10-50 ms light durations), which has been reported already to safety stimulate neurons. The control group did not undergo light treatment and was cultured in T-75 flasks. We detected 20-30% cell death for ITO/P3HT and 51-60% cell death for ITO/ZnO/P3HT samples in the light treated MDA-MB-231 cell group. Western blot analysis demonstrated poly(ADP-ribose) polymerase (PARP) activated cell death in the light treated group. Furthermore, Annexin V and PI fluorescent staining indicated both apoptosis and necrosis in treated cells. In conclusion, our findings revealed that the photoelectrical stimulation of cells (through long time overstimulation) can induce cell death in cancer cells.

Keywords: Ca²⁺ signaling, cancer therapy, electrically excitable cells, photoelectrical stimulation, voltage-gated ion channels

Procedia PDF Downloads 164
17709 Defining a Reference Architecture for Predictive Maintenance Systems: A Case Study Using the Microsoft Azure IoT-Cloud Components

Authors: Walter Bernhofer, Peter Haber, Tobias Mayer, Manfred Mayr, Markus Ziegler

Abstract:

Current preventive maintenance measures are cost intensive and not efficient. With the available sensor data of state of the art internet of things devices new possibilities of automated data processing emerge. Current advances in data science and in machine learning enable new, so called predictive maintenance technologies, which empower data scientists to forecast possible system failures. The goal of this approach is to cut expenses in preventive maintenance by automating the detection of possible failures and to improve efficiency and quality of maintenance measures. Additionally, a centralization of the sensor data monitoring can be achieved by using this approach. This paper describes the approach of three students to define a reference architecture for a predictive maintenance solution in the internet of things domain with a connected smartphone app for service technicians. The reference architecture is validated by a case study. The case study is implemented with current Microsoft Azure cloud technologies. The results of the case study show that the reference architecture is valid and can be used to achieve a system for predictive maintenance execution with the cloud components of Microsoft Azure. The used concepts are technology platform agnostic and can be reused in many different cloud platforms. The reference architecture is valid and can be used in many use cases, like gas station maintenance, elevator maintenance and many more.

Keywords: case study, internet of things, predictive maintenance, reference architecture

Procedia PDF Downloads 235
17708 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations

Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher

Abstract:

In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.

Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps

Procedia PDF Downloads 118
17707 Desalination via Electrodialysis: A Newly Designed Fixed Bed Reactor Powered by Renewable Energy Source

Authors: Hend Mesbah, Yehia Youssef, Ibrahim Hassan, Shaaban Nosier, Ahmed El-Shazly, Ahmed Helal

Abstract:

The problem of drinking water shortage is becoming more crucial nowadays as a result of the increased demand due to the population growth and the rise in the standard living. In recent years, desalination using electrodialysis powered by solar energy (PV-ED) is being widely used to help provide treated water and reduce the scarcity in water supply. In the present study, a water desalination laboratory scale ED cell with a fixed bed circulation system was designed, developed, and tested. The effect of three parameters (namely, cell voltage , flowrate, and salt concentration) on the removal percentage of salt ions was studied. The cell voltage was adjusted at 3 , 4 and 6 V. A flow rate of 5, 10, and 20 ml/s and an initial salt concentration of 2000, 5000, and 7000 ppm were investigated. The maximum salt percentage removal obtained was 52.5% at the lowest initial concentration (2000 ppm) and at the highest cell voltage (6 V). There was no significant effect of the flow rate on the removal percentage. A model of PV module has also been developed to calculate the dimensions of a solar cell based on the amount of energy consumed and it was calculated from the Overall ED cell voltage.

Keywords: desalination, electrodialysis, solar desalination, photovoltaic electrodialysis

Procedia PDF Downloads 139