Search results for: Sandy River
180 “Towards Creating a Safe Future”: An Assessment of the Causes of Flooding in Nsanje District, Lower Shire Malawi
Authors: Davie Hope Moyo
Abstract:
The environment is a combination of two things: resources and hazards. One of the hazards that is a result of environmental changes is the occurrence of flooding. Floods are one of the disasters that are highly feared by people because they have a huge impact on the human population and their environment. In recent years, flooding disasters in the Nsanje district are increasing in both frequency and magnitude. This study aims to understand the root causes of this phenomenon. To understand the causes of flooding, this study focused on the case of TA Ndamera in the Nsanje district, southern Malawi. People in the Nsanje district face disruption in their day-to-day life because of floods that affect their communities. When floods happen, people lose their property, land, livestock, and even lives. The study was carried out in order to have a better understanding of the root causes of floods. The findings of this study may help the government and other development agencies to put in place mitigation measures that will make Nsanje District resilient to the occurrence of future flood hazards. Data was collected from the area of TA Ndamera in order to assess the causes of flooding in the district. Interviews, transect walks, and researcher observation was done to appreciate the topography of the district and evaluate other factors that are making the people become vulnerable to the impacts of flooding in the district. It was found that flooding in the district is mainly caused by heavy rainfall in the upper shire, settlements along river banks, deforestation, and the topography of the district in general. The research study ends by providing recommendation strategies that need to be put in place to increase the resilience of the communities to future flood hazards. The research recommends the development of indigenous knowledge systems to alert people of incoming floods, construction of evacuation centers to ease pressure on schools, savings, and insurance schemes, construction of dykes, desilting rivers, and afforestation.Keywords: disaster causes, mitigation, safety measures, Nsanje Malawi
Procedia PDF Downloads 85179 Enhancing Environmental Impact Assessment for Natural Gas Pipeline Systems: Lessons in Water and Wastewater Management
Authors: Kittipon Chittanukul, Chayut Bureethan, Chutimon Piromyaporn
Abstract:
In Thailand, the natural gas pipeline system requires the preparation of an Environmental Impact Assessment (EIA) report for approval by the relevant agency, the Office of Natural Resources and Environmental Policy and Planning (ONEP), in the pre-construction stage. As of December 2022, PTT has a lot of gas pipeline system spanning around the country. Our experience has shown that the EIA is a significant part of the project plan. In 2011, There was a catastrophic flood in multiple areas of Thailand. It destroyed lives and properties. This event is still in Thai people’s mind. Furthermore, rainfall has been increasing for three consecutive years (2020-2022). Moreover, municipalities are situated in low land river basin and tropical rainfall zone. So many areas still suffer from flooding. Especially in 2022, there will be a 60% increase in water demand compared to the previous year. Therefore, all activities will take into account the quality of the receiving water. The above information emphasizes water and wastewater management are significant in EIA report. PTT has accumulated a large number of lessons learned in water and wastewater management. Our pipeline system execution is composed of EIA stage, construction stage, and operation and maintenance phase. We provide practical Information on water and wastewater management to enhance the EIA process for the pipeline system. The examples of lessons learned in water and wastewater management include techniques to address water and wastewater impact throughout the overall pipelines systems, mitigation measures and monitoring results of these measures. This practical information will alleviate the anxiety of the ONEP committee when approving the EIA report and will build trust among stakeholders in the vicinity of the gas pipeline system area.Keywords: environmental impact assessment, gas pipeline system, low land basin, high risk flooding area, mitigation measure
Procedia PDF Downloads 66178 On-Farm Mechanized Conservation Agriculture: Preliminary Agro-Economic Performance Difference between Disc Harrowing, Ripping and No-Till
Authors: Godfrey Omulo, Regina Birner, Karlheinz Koller, Thomas Daum
Abstract:
Conservation agriculture (CA) as a climate-resilient and sustainable practice have been carried out for over three decades in Zambia. However, its continued promotion and adoption has been predominantly on a small-scale basis. Despite the plethora of scholarship pointing to the positive benefits of CA in regard to enhanced yield, profitability, carbon sequestration and minimal environmental degradation, these have not stimulated commensurate agricultural extensification desired for Zambia. The objective of this study was to investigate the potential differences between mechanized conventional and conservation tillage practices on operation time, fuel consumption, labor costs, soil moisture retention, soil temperature and crop yield. An on-farm mechanized conservation agriculture (MCA) experiment arranged in a randomized complete block design with four replications was used. The research was conducted on a 15 ha of sandy loam rainfed land: soybeans on 7ha with plot dimensions of 24 m by 210 m and maize on 8ha with plot dimensions of 24 m by 250 m. The three tillage treatments were: residue burning followed by disc harrowing, ripping tillage and no-till. The crops were rotated in two subsequent seasons. All operations were done using a 60hp 2-wheel tractor, a disc harrow, a two-tine ripper and a two-row planter. Soil measurements and the agro-economic factors were recorded for two farming seasons. The season results showed that the yield of maize and soybeans under no-till and ripping tillage practices were not significantly different from the conventional burning and discing. But, there was a significant difference in soil moisture content between no-till (25.31SFU±2.77) and disced (11.91SFU±0.59) plots at depths from 10-60 cm. Soil temperature in no-till plots (24.59°C±0.91) was significantly lower compared to the disced plots (26.20°C±1.75) at the depths 15 cm and 45 cm. For maize, there was a significant difference in operation time between disc-harrowed (3.68hr/ha±1.27) and no-till (1.85hr/ha±0.04) plots, and a significant difference in cost of labor between disc-harrowed (45.45$/ha±19.56) and no-till (21.76$/ha) plots. There was no significant difference in fuel consumption between ripping and disc-harrowing and direct seeding. For soybeans, there was a significant difference in operation time between no-tillage (1.96hr/ha±0.31) and ripping (3.34hr/ha±0.53) and disc harrowing (3.30hr/ha±0.16). Further, fuel consumption and labor on no-till plots were significantly different from both the ripped and disc-harrowed plots. The high seed emergence percentage on maize disc-harrowed plot (93.75%±5.87) was not significantly different from ripping and no-till plots. Again, the high seed emergence percentage for the soybean ripped plot (93.75%±13.03) had no significant difference with discing and ripping. The results show that it is economically sound and timesaving to practice MCA and get viable yields compared to conventional farming. This research fills the gap on the potential of MCA in the context of Zambia and its profitability in incentivizing policymakers to invest in appropriate and sustainable machinery and implements for extensive agricultural production.Keywords: climate-smart agriculture, labor cost, mechanized conservation agriculture, soil moisture, Zambia
Procedia PDF Downloads 148177 Dimethyl fumarate Alleviates Valproic Acid-Induced Autism in Wistar Rats via Activating NRF-2 and Inhibiting NF-κB Pathways
Authors: Sandy Elsayed, Aya Mohamed, Noha Nassar
Abstract:
Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social deficits and repetitive behavior. Multiple studies suggest that oxidative stress and neuroinflammation are key factors in the etiology of ASD and often associated with worsening of ASD-related behaviors. Nuclear factor erythroid 2-related factor 2 (NRF-2) is a transcription factor that promotes expression of antioxidant response element genes in oxidative stress. In ASD subjects, decreased expression of NRF-2 in frontal cortex shifted the redox homeostasis towards oxidative stress, and resulted in inflammation evidenced by elevation of nuclear factor kappa B (NF-κB) transcriptional activity. Dimethyl fumarate (DMF) is a NRF-2 activator that is used in the treatment of psoriasis and multiple sclerosis. It participates in the transcriptional control of inflammatory factors via inhibition of NF-κB and its downstream targets. This study aimed to investigate the role of DMF in alleviating the cognitive impairments and behavior deficits associated with ASD through mitigation of oxidative stress and inflammation in prenatal valproic acid (VPA) rat model of autism. Methods: Pregnant female Wistar rats received a single intraperitoneal injection of VPA (600 mg/kg) to induce autistic-like-behavioral and neurobiological alterations in their offspring. Chronic oral gavage of DMF (150mg/kg/day) started from postnatal day (PND) 24 till PND62 (39 days). Prenatal VPA exposure elicited autistic behaviors including decreased social interaction and stereotyped behavior. Social interaction was evaluated using three-chamber sociability test and calculation of sociability index (SI), while stereotyped repetitive behavior and anxiety associated with ASD were assessed using marble burying test (MBT). Biochemical analyses were done on prefrontal cortex homogenates including NRF-2, and NF-κB expression. Moreover, inducible nitric oxide synthase (iNOS) gene expression and tumor necrosis factor (TNF-) protein expression were evaluated as markers of inflammation. Results: Prenatal VPA elicited decreased social interaction shown by decreased SI compared to control group (p < 0.001) and DMF enhanced SI (p < 0.05). In MBT, prenatal injection of VPA manifested stereotyped behavior and enhanced number of buried marbles compared to control (p < 0.05) and DMF reduced the anxiety-related behavior in rats exhibiting ASD-like behaviors (p < 0.05). In prefrontal cortex, NRF-2 expression was downregulated in prenatal VPA model (p < 0.0001) and DMF reversed this effect (p < 0.0001). The inflammatory transcription factor NF-κB was elevated in prenatal VPA model (p < 0.0001) and reduced (p < 0.0001) upon NRF-2 activation by DMF. Prenatal VPA expressed higher levels of proinflammatory cytokine TNF- compared to control group (p < 0.0001) and DMF reduced it (p < 0.0001). Finally, the gene expression of iNOS was downregulated upon NRF-2 activation by DMF (p < 0.01). Conclusion: This study proposes that DMF is a potential agent that can be used to ameliorate autistic-like-changes through NRF-2 activation along with NF-κB downregulation and therefore, it is a promising novel therapy for ASD.Keywords: autism spectrum disorders, dimethyl fumarate, neuroinflammation, NRF-2
Procedia PDF Downloads 44176 Impact of Gold Mining on Crop Production, Livelihood and Environmental Sustainability in West Africa in the Context of Water-Energy-Food Nexus
Authors: Yusif Habib
Abstract:
The Volta River Basin (VRB) is a transboundary resource shared by Six (6) the West African States. It’s utilization spans across irrigation, hydropower generation, domestic/household water use, transportation, industrial processing, among others. Simultaneously, mineral resources such as gold are mined within the VRB catchment. Typically, the extraction/mining operation is earth-surface excavation; known as Artisanal and Small-scale mining. We developed a conceptual framework in the context of Water-Energy-Food (WEF) Nexus to delineate the trade-offs and synergies between the mineral extractive operation’s impact on Agricultural systems, specifically, cereal crops (e.g. Maize, Millet, and Rice) and the environment (water and soil quality, deforestation, etc.) on the VRB. Thus, the study examined the trade-offs and synergies through the WEF nexus lens to explore the extent of an eventual overarching mining preference for gold exploration with high economic returns as opposed to the presumably low yearly harvest and household income from food crops production to inform intervention prioritization. Field survey (household, expert, and stakeholder consultation), bibliometric analysis/literature review, scenario, and simulation models, including land-use land cover (LULC) analyses, were conducted. The selected study area(s) in Ghana was the location where the mineral extractive operation’s presence and impact are widespread co-exist with the Agricultural systems. Overall, the study proposes mechanisms of the virtuous cycle through FEW Nexus instead of the presumably existing vicious cycle to inform decision making and policy implementation.Keywords: agriculture, environmental sustainability, gold Mining, synergies, trade-off, water-energy-food nexus
Procedia PDF Downloads 165175 Multi-scale Geographic Object-Based Image Analysis (GEOBIA) Approach to Segment a Very High Resolution Images for Extraction of New Degraded Zones. Application to The Region of Mécheria in The South-West of Algeria
Authors: Bensaid A., Mostephaoui T., Nedjai R.
Abstract:
A considerable area of Algerian lands are threatened by the phenomenon of wind erosion. For a long time, wind erosion and its associated harmful effects on the natural environment have posed a serious threat, especially in the arid regions of the country. In recent years, as a result of increases in the irrational exploitation of natural resources (fodder) and extensive land clearing, wind erosion has particularly accentuated. The extent of degradation in the arid region of the Algerian Mécheriadepartment generated a new situation characterized by the reduction of vegetation cover, the decrease of land productivity, as well as sand encroachment on urban development zones. In this study, we attempt to investigate the potential of remote sensing and geographic information systems for detecting the spatial dynamics of the ancient dune cords based on the numerical processing of PlanetScope PSB.SB sensors images by September 29, 2021. As a second step, we prospect the use of a multi-scale geographic object-based image analysis (GEOBIA) approach to segment the high spatial resolution images acquired on heterogeneous surfaces that vary according to human influence on the environment. We have used the fractal net evolution approach (FNEA) algorithm to segment images (Baatz&Schäpe, 2000). Multispectral data, a digital terrain model layer, ground truth data, a normalized difference vegetation index (NDVI) layer, and a first-order texture (entropy) layer were used to segment the multispectral images at three segmentation scales, with an emphasis on accurately delineating the boundaries and components of the sand accumulation areas (Dune, dunes fields, nebka, and barkhane). It is important to note that each auxiliary data contributed to improve the segmentation at different scales. The silted areas were classified using a nearest neighbor approach over the Naâma area using imagery. The classification of silted areas was successfully achieved over all study areas with an accuracy greater than 85%, although the results suggest that, overall, a higher degree of landscape heterogeneity may have a negative effect on segmentation and classification. Some areas suffered from the greatest over-segmentation and lowest mapping accuracy (Kappa: 0.79), which was partially attributed to confounding a greater proportion of mixed siltation classes from both sandy areas and bare ground patches. This research has demonstrated a technique based on very high-resolution images for mapping sanded and degraded areas using GEOBIA, which can be applied to the study of other lands in the steppe areas of the northern countries of the African continent.Keywords: land development, GIS, sand dunes, segmentation, remote sensing
Procedia PDF Downloads 109174 The Experimental House: A Case Study to Assess the Long-Term Performance of Waste Tires Used as Replacement for Natural Material in Backfill Applications for Basement Walls in Manitoba
Authors: M. Shokry Rashwan
Abstract:
This study follows a number of experiments conducted at Red River College (RRC) to investigate the short term properties of tire derived aggregate (TDA) produced from shredding off-the-road (OTR) wasted tires in a proposed new application. The application targets replacing natural material used under concrete slabs and as backfills for residential homes’ basement slabs and walls, respectively, with TDA. The experimental work included determining: compressibility, gradation distribution, unit weight, hydraulic conductivity and lateral pressure. Based on the results of those short term properties; it was decided to move forward to study the long-term performance of this otherwise waste material through on-site demonstration. A full-scale basement replicating a typical Manitoba home was therefore built at RRC where both TDA and Natural Materials (NM) were used side-by-side. A large number of sensing and measuring systems are used to compare between the performances of each material when exposed to the typical ground and weather conditions. Parameters monitored and measured include heat losses, moisture migration, drainage ability, lateral pressure, relative movements of slabs and walls, an integrity of ground water and radon emissions. Up-to-date results have confirmed part of the conclusions reached from the earlier laboratory experiments. However, other results have shown that construction practices; such as placing and compaction, may need some adjustments to achieve more desirable outcomes. This presentation provides a review of both short-term tests as well as up-to-date analysis of the on-site demonstration.Keywords: tire derived aggregate (TDA), basement construction, TDA material properties, lateral pressure of TDA, hydraulic conductivity of TDA
Procedia PDF Downloads 214173 A Study of Mortars with Granulated Blast Furnace Slag as Fine Aggregate and Its Influence on Properties of Burnt Clay Brick Masonry
Authors: Vibha Venkataramu, B. V. Venkatarama Reddy
Abstract:
Natural river sand is the most preferred choice as fine aggregate in masonry mortars. Uncontrolled mining of sand from riverbeds for several decades has had detrimental effects on the environment. Several countries across the world have put strict restrictions on sand mining from riverbeds. However, in countries like India, the huge infrastructural boom has made the local construction industry to look for alternative materials to sand. This study aims at understanding the suitability of granulated blast furnace slag (GBS) as fine aggregates in masonry mortars. Apart from characterising the material properties of GBS, such as particle size distribution, pH, chemical composition, etc., of GBS, tests were performed on the mortars with GBS as fine aggregate. Additionally, the properties of five brick tall, stack bonded masonry prisms with various types of GBS mortars were studied. The mortars with mix proportions 1: 0: 6 (cement: lime: fine aggregate), 1: 1: 6, and 1: 0: 3 were considered for the study. Fresh and hardened properties of mortar, such as flow and compressive strength, were studied. To understand the behaviour of GBS mortars on masonry, tests such as compressive strength and flexure bond strength were performed on masonry prisms made with a different type of GBS mortars. Furthermore, the elastic properties of masonry with GBS mortars were also studied under compression. For comparison purposes, the properties of corresponding control mortars with natural sand as fine aggregate and masonry prisms with sand mortars were also studied under similar testing conditions. From the study, it was observed the addition of GBS negatively influenced the flow of mortars and positively influenced the compressive strength. The GBS mortars showed 20 to 25 % higher compressive strength at 28 days of age, compared to corresponding control mortars. Furthermore, masonry made with GBS mortars showed nearly 10 % higher compressive strengths compared to control specimens. But, the impact of GBS on the flexural strength of masonry was marginal.Keywords: building materials, fine aggregate, granulated blast furnace slag in mortars, masonry properties
Procedia PDF Downloads 121172 Flood Prevention Strategy for Reserving Quality Ground Water Considering Future Population Growth in Kabul
Authors: Said Moqeem Sadat, Saito Takahiro, Inuzuka Norikazu, Sugiyama Ikuo
Abstract:
Kabul city is the capital of Afghanistan with a population of about 4.0 million in 2009 and 6.5 million in 2025. It is geographically located in a narrow plain valley along the Kabul River and is surrounded by high mountains. Due to its sharp geological condition, the city has been suffering from floods caused by storm water and snow melting water in the rainy season. Meanwhile, potable water resources are becoming a critical issue as the underground water table is decreasing falling rapidly due to domestic usage, industrial and agricultural activities usage especially in the dry season. This paper focuses on flood water management in Kabul including suburban agricultural area considering not only for flood protection but also: 1. To reserve the quality underground water for the future population growth. 2. To irrigate farming area in dry season using storm water ponds in rainy season. 3. To discharge city contaminated flood water to the downstream safely using existing channels/new pipes. Cost and benefit is considered in this study to find out a suitable flood protection method both in rural area and city center from a view point of 1 to 3 mentioned above. In this analysis, cost mainly consists of lost opportunity to develop lands due to flood ponds in addition to construction and maintenance one including connecting channels for water collecting/discharging. Benefit mainly consists of damage reduction of flood loss due to counter measures (this is corresponding cost) in addition to the contribution to agricultural crops. As far as reservation of the ground water for the future city growth is concerned, future demand and supply are compared in case that the pumping amount is limited by this irrigation system.Keywords: cost-benefit, hydrological modeling, water management, water quality
Procedia PDF Downloads 271171 Effects of Small Impoundments on Leaf Litter Decomposition and Methane Derived Carbon in the Benthic Foodweb in Streams
Authors: John Gichimu Mbaka, Jan Helmrich Martin von Baumbach, Celia Somlai, Denis Köpfer, Andreas Maeck, Andreas Lorke, Ralf Schäfer
Abstract:
Leaf litter decomposition is an important process providing energy to biotic communities. Additionally, methane gas (CH4) has been identified as an important alternative source of carbon and energy in some freshwater food webs.Flow regulation and dams can strongly alter freshwater ecosystems, but little is known about the effect of small impoundments on leaf litter decomposition and methane derived carbon in streams. In this study, we tested the effect of small water storage impoundments on leaf litter decomposition rates and methane derived carbon. Leaf litter decomposition rates were assessed by comparing treatment sites located close to nine impoundments (Rheinland Pfalz state, Germany) and reference sites located far away from the impoundments.CH4 concentrations were measured in eleven impoundments and correlated with the δ13C values of two subfamilies of chironomid larvae (i.e. Chironomini and Tanypodinae). Leaf litter break down rates were significantly lower in study sites located immediately above the impoundments, especially associated with a reduction in the abundance of shredders. Chironomini larvae had the lower mean δ13C values (‒29.2 to ‒25.5 ‰), than Tanypodinae larvae (‒26.9 to ‒25.3 ‰).No significant relationships were established between CH4 concentrations and δ13C values of chironomids (p> 0.05).Mean δ13C values of chironomid larvae (mean: ‒26.8‰, range: ‒ 29.2‰ to ‒ 25.3‰) were similar to those of sedimentary organic matter (SOM) (mean: ‒28.4‰, range: ‒ 29.3‰ to ‒ 27.1‰) and tree leaf litter (mean: ‒29.8 ‰, range: ‒ 30.5‰ to ‒ 29.1‰). In conclusion, this study demonstrates that small impoundments may have a negative effect on leaf litter decomposition in forest streams and that CH4 has limited influence on the benthic food web in stream impoundments.Keywords: river functioning, chironomids, Alder tree, stable isotopes, methane oxidation, shredder
Procedia PDF Downloads 734170 Viability and Sensitivity of SFN6B (Host-Specific Bacteriophage) towards Shigella Flexneri in Various Water Samples
Authors: Siewchuiang Sia, Gimcheong Tan
Abstract:
Bacteriophages are the most abundant and genetically diverse living entities on earth; they help in regulating and maintaining microbial diversity and balance in its natural ecosystem. In this study, the infectivity of SFN6B tailed phage was investigated in various water samples. Host bacteria (Shigella flexneri) were spiked in sterilized environmental and domestic water samples, followed by SFN6B treatment. Two incubation conditions were selected for this study, 37 oC and room temperature. S. flexneri and SFN6B viability were monitored hourly for consecutive 7 hours and extended viability study for consecutive 4 days. Absorbance of all bacteria spiked water samples were taken to monitor the bacteria count. Results showed reduction in the absorbance of the SFN6B treated water sample as compared to negative control, indicating reduction in bacterial count either due to negative growth or lysis by the lytic bacteriophage. Consistent with the result, SFN6B titer increases for first two days. However, prolong incubation of these cultures reaches equilibrium, between phage and bacteria. Temperature and water sample source also influence the interaction between S. flexneri and SFN6B. Stronger interaction was observed in 37oC as compared to room temperature, where higher bacteria count and phage titer increase were recorded. Availability of nutrient in water sample also plays a crucial role in the interaction between bacteria and phage. Higher nutrient level, such as lake and river waters were observed to give better infectivity and viability of both bacteria and phage as compared to tab water. It is believed that S. flexneri continue to remain viable and able to grow in the present of SFN6B bacteriophage, but the number was closely regulated by surrounding phages. This allows better understanding of the characteristics of SFN6B that could serve as the basis for future studies and applications.Keywords: bacteriophage, Shigella flexneri, infection, microbial diversity
Procedia PDF Downloads 279169 Arsenic and Fluoride Contamination in Lahore, Pakistan: Spatial Distribution, Mineralization Control and Sources
Authors: Zainab Abbas Soharwardi, Chunli Su, Harold Wilson Tumwitike Mapoma, Syed Zahid Aziz, Mahmut Ince
Abstract:
This study investigated the spatial variations of groundwater chemistry used by communities in Lahore city with emphasis on arsenic (As) and fluoride (F) levels. A total of 472 tubewell samples were collected from 7 towns and analyzed for physical and chemical parameters, including pH, turbidity, electrical conductivity (EC), total dissolved solids (TDS), total hardness, HCO3, Ca2+, Mg2+, Na+, K+, SO42-, Cl-, NO3-, NO2-, F- and As. There were significant spatial variations observed for total hardness, TDS, HCO3, NO3 and As. In general, the south-east of the city displayed higher TH and HCO3 while the north-east showed significantly higher As concentrations attributed to the heterogeneity of the aquifer and industrial activities. In most cases, As was higher than WHO limit value. Indiscriminate disposal of domestic and commercial wastewater into River Ravi is the cause of elevated NO3 observed in the north-west compared to other places in the area. Investigation of the groundwater type revealed facies in the order: Ca-Mg-HCO3-SO4 > Mg-Ca-HCO3-SO4 > Ca-Mg-HCO3-SO4-Cl > Mg-Ca-HCO3-SO4 > Ca-HCO3-SO4 > Ca-Mg-SO4-HCO3. The plausible mineralization control mechanism seems to be that of carbonate weathering, although silicate weathering is probable. Moreover, PHREEQC model results showed that the groundwater was under saturated with respect to evaporites (anhydrite, fluorite, gypsum and halite) while generally equilibrium to saturated with respect to aragonite, calcite and dolomite. The Hierarchical Cluster Analysis (HCA) showed that pH significantly affected As, F, NO3 and NO2 while HCO3 contributing most to the observed TDS values in Lahore. It is concluded that inherent mineral dissolution/ precipitation, pH, oxic conditions, anthropogenic activities, atmospheric transport/ wet deposition, microbial activities and surface soil characteristics play their significant roles in elevating both As and F in the city's groundwater.Keywords: Lahore, arsenic, fluoride, groundwater
Procedia PDF Downloads 550168 Effect of Duration and Frequency on Ground Motion: Case Study of Guwahati City
Authors: Amar F. Siddique
Abstract:
The Guwahati city is one of the fastest growing cities of the north-eastern region of India, situated on the South Bank of the Brahmaputra River falls in the highest seismic zone level V. The city has witnessed many high magnitude earthquakes in the past decades. The Assam earthquake occurred on August 15, 1950, of moment magnitude 8.7 epicentered near Rima, Tibet was one of the major earthquakes which caused a serious structural damage and widespread soil liquefaction in and around the region. Hence the study of ground motion characteristics of Guwahati city is very essential. In this present work 1D equivalent linear ground response analysis (GRA) has been adopted using Deep soil software. The analysis has been done for two typical sites namely, Panbazar and Azara comprising total four boreholes location in Guwahati city of India. GRA of the sites is carried out by using an input motion recorded at Nongpoh station (recorded PGA 0.048g) and Nongstoin station (recorded PGA 0.047g) of 1997 Indo-Burma earthquake. In comparison to motion recorded at Nongpoh, different amplifications of bedrock peak ground acceleration (PGA) are obtained for all the boreholes by the motion recorded at Nongstoin station; although, the Fourier amplitude ratios (FAR) and fundamental frequencies remain almost same. The difference in recorded duration and frequency content of the two motions mainly influence the amplification of motions thus getting different surface PGA and amplification factor keeping a constant bedrock PGA. From the results of response spectra, it is found that at the period of less than 0.2 sec the ground motion recorded at Nongpoh station will give a high spectral acceleration (SA) on the structures than at Nongstoin station. Again for a period greater than 0.2 sec the ground motion recorded at Nongstoin station will give a high SA on the structures than at Nongpoh station.Keywords: fourier amplitude ratio, ground response analysis, peak ground acceleration, spectral acceleration
Procedia PDF Downloads 180167 Variation of Manning’s Coefficient in a Meandering Channel with Emergent Vegetation Cover
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
Vegetation plays a major role in deciding the flow parameters in an open channel. It enhances the aesthetic view of the revetments. The major types of vegetation in river typically comprises of herbs, grasses, weeds, trees, etc. The vegetation in an open channel usually consists of aquatic plants with complete submergence, partial submergence, floating plants. The presence of vegetative plants can have both benefits and problems. The major benefits of aquatic plants are they reduce the soil erosion, which provides the water with a free surface to move on without hindrance. The obvious problems are they retard the flow of water and reduce the hydraulic capacity of the channel. The degree to which the flow parameters are affected depends upon the density of the vegetation, degree of submergence, pattern of vegetation, vegetation species. Vegetation in open channel tends to provide resistance to flow, which in turn provides a background to study the varying trends in flow parameters having vegetative growth in the channel surface. In this paper, an experiment has been conducted on a meandering channel having sinuosity of 1.33 with rigid vegetation cover to investigate the effect on flow parameters, variation of manning’s n with degree of the denseness of vegetation, vegetation pattern and submergence criteria. The measurements have been carried out in four different cross-sections two on trough portion of the meanders, two on the crest portion. In this study, the analytical solution of Shiono and knight (SKM) for lateral distributions of depth-averaged velocity and bed shear stress have been taken into account. Dimensionless eddy viscosity and bed friction have been incorporated to modify the SKM to provide more accurate results. A mathematical model has been formulated to have a comparative analysis with the results obtained from Shiono-Knight Method.Keywords: bed friction, depth averaged velocity, eddy viscosity, SKM
Procedia PDF Downloads 137166 Water Scarcity in the Gomti Nagar Area under the Impact of Climate Changes and Assessment for Groundwater Management
Authors: Rajkumar Ghosh
Abstract:
Climate change has led to decreased water availability in the Gomti Nagar area of Uttar Pradesh, India. Climate change has reduced the amount of precipitation and increased the rate of evaporation. The region is heavily reliant on surface water sources (Gomti river, Sharda Canal) and groundwater. Efficient management of groundwater resources is crucial for addressing water shortages. These may include: Exploring alternative water sources, such as wastewater recycling and desalination, can help augment water supply and reduce dependency on rainfall-dependent sources. Promoting the use of water-efficient technologies in industries, agriculture, and water-efficient infrastructure in urban areas can contribute to reducing water demand and optimizing water use. Incorporating climate change considerations into urban planning and infrastructure development can help ensure water security in the face of future climate uncertainties. Addressing water scarcity in the Gomti Nagar area requires a multi-pronged approach that combines sustainable groundwater management practices, climate change adaptation strategies, and integrated water resource management. By implementing these measures, the region can work towards ensuring a more sustainable and reliable water supply in the context of climate change. Water is the most important natural resource for the existence of living beings in the Earth's ecosystem. On Earth, 1.2 percent of the water is drinkable, but only 0.3 percent is usable by people. Water scarcity is a growing concern in India due to the impact of climate change and over-exploitation of water resources. Excess groundwater withdrawal causes regular declines in groundwater level. Due to city boundary expansion and growing urbanization, the recharge point for groundwater tables is decreasing. Rainwater infiltration into the subsoil is also reduced by unplanned, uneven settlements in urban change.Keywords: climate change, water scarcity, groundwater, rainfall, water supply
Procedia PDF Downloads 84165 Impact of Gender Difference on Crop Productivity: The Case of Decha Woreda, Ethiopia
Authors: Getinet Gezahegn Gebre
Abstract:
The study examined the impact of gender differences on Crop productivity in Decha woreda of southwest Kafa zone, located 140 Km from Jimma Town and 460 km southwest of Addis Ababa, between Bonga town and Omo River. The specific objectives were to assess the extent to which the agricultural production system is gender oriented, to examine access and control over productive resources, and to estimate men’s and women’s productivity in agriculture. Cross-sectional data collected from a total of 140 respondents were used in this study, whereby 65 were female-headed and 75 were male-headed households. The data were analyzed by using Statistical Package for Social Science (SPSS). Descriptive statistics such as frequency, mean, percentage, t-test and chi-square were used to summarize and compare the information between the two groups. Moreover, Cobb-Douglas(CD) production function was used to estimate the productivity difference in agriculture between male and female-headed households. Results of the study showed that male-headed households (MHH) own more productive resources such as land, livestock, labor and other agricultural inputs as compared to female-headed households (FHH). Moreover, the estimate of CD production function shows that livestock, herbicide use, land size and male labor were statistically significant for MHH, while livestock, land size, herbicides use and female labor were significant variables for FHH. The crop productivity difference between MHH and FHH was about 68.83% in the study area. However, if FHH had equal access to the inputs as MHH, the gross value of the output would be higher by 23.58% for FHH. This might suggest that FHH would be more productive than MHH if they had equal access to inputs as MHH. Based on the results obtained, the following policy implication can be drawn: accessing FHH to inputs that increase the productivity of agriculture, such as herbicides, livestock and male labor; increasing the productivity of land; and introducing technologies that reduce the time and energy of women, especially for enset processing.Keywords: gender difference, crop productivity, GDP, efficiency
Procedia PDF Downloads 76164 The Effects of Some Organic Amendments on Sediment Yield, Splash Loss, and Runoff of Soils of Selected Parent Materials in Southeastern Nigeria
Authors: Leonard Chimaobi Agim, Charles Arinzechukwu Igwe, Emmanuel Uzoma Onweremadu, Gabreil Osuji
Abstract:
Soil erosion has been linked to stream sedimentation, ecosystem degradation, and loss of soil nutrients. A study was conducted to evaluate the effect of some organic amendment on sediment yield, splash loss, and runoff of soils of selected parent materials in southeastern Nigeria. A total of 20 locations, five from each of four parent materials namely: Asu River Group (ARG), Bende Ameki Group (BAG), Coastal Plain Sand (CPS) and Falsebedded Sandstone (FBS) were used for the study. Collected soil samples were analyzed with standard methods for the initial soil properties. Rainfall simulation at an intensity of 190 mm hr-1was conducted for 30 minutes on the soil samples at both the initial stage and after amendment to obtain erosion parameters. The influence of parent material on sediment yield, splash loss and runoff based on rainfall simulation was tested for using one way analyses of variance, while the influence of organic material and their combinations were a factorially fitted in a randomized complete block design. The organic amendments include; goat dropping (GD), poultry dropping (PD), municipal solid waste (MSW) and their combinations (COA) applied at four rates of 0, 10, 20 and 30 t ha-1 respectively. Data were analyzed using analyses of variance suitable for a factorial experiment. Significant means were separated using LSD at 5 % probability levels. Result showed significant (p ≤ 0.05) lower values of sediment yield, splash loss and runoff following amendment. For instance, organic amendment reduced sediment yield under wet and dry runs by 12.91 % and 26.16% in Ishiagu, 40.76% and 45.67%, in Bende, 16.17% and 50% in Obinze and 22.80% and 42.35% in Umulolo respectively. Goat dropping and combination of amendment gave the best results in reducing sediment yield.Keywords: organic amendment, parent material, rainfall simulation, soil erosion
Procedia PDF Downloads 345163 Statistical Modeling and by Artificial Neural Networks of Suspended Sediment Mina River Watershed at Wadi El-Abtal Gauging Station (Northern Algeria)
Authors: Redhouane Ghernaout, Amira Fredj, Boualem Remini
Abstract:
Suspended sediment transport is a serious problem worldwide, but it is much more worrying in certain regions of the world, as is the case in the Maghreb and more particularly in Algeria. It continues to take disturbing proportions in Northern Algeria due to the variability of rains in time and in space and constant deterioration of vegetation. Its prediction is essential in order to identify its intensity and define the necessary actions for its reduction. The purpose of this study is to analyze the concentration data of suspended sediment measured at Wadi El-Abtal Hydrometric Station. It also aims to find and highlight regressive power relationships, which can explain the suspended solid flow by the measured liquid flow. The study strives to find models of artificial neural networks linking the flow, month and precipitation parameters with solid flow. The obtained results show that the power function of the solid transport rating curve and the models of artificial neural networks are appropriate methods for analysing and estimating suspended sediment transport in Wadi Mina at Wadi El-Abtal Hydrometric Station. They made it possible to identify in a fairly conclusive manner the model of neural networks with four input parameters: the liquid flow Q, the month and the daily precipitation measured at the representative stations (Frenda 013002 and Ain El-Hadid 013004 ) of the watershed. The model thus obtained makes it possible to estimate the daily solid flows (interpolate and extrapolate) even beyond the period of observation of solid flows (1985/86 to 1999/00), given the availability of the average daily liquid flows and daily precipitation since 1953/1954.Keywords: suspended sediment, concentration, regression, liquid flow, solid flow, artificial neural network, modeling, mina, algeria
Procedia PDF Downloads 104162 Improvement of Environment and Climate Change Canada’s Gem-Hydro Streamflow Forecasting System
Authors: Etienne Gaborit, Dorothy Durnford, Daniel Deacu, Marco Carrera, Nathalie Gauthier, Camille Garnaud, Vincent Fortin
Abstract:
A new experimental streamflow forecasting system was recently implemented at the Environment and Climate Change Canada’s (ECCC) Canadian Centre for Meteorological and Environmental Prediction (CCMEP). It relies on CaLDAS (Canadian Land Data Assimilation System) for the assimilation of surface variables, and on a surface prediction system that feeds a routing component. The surface energy and water budgets are simulated with the SVS (Soil, Vegetation, and Snow) Land-Surface Scheme (LSS) at 2.5-km grid spacing over Canada. The routing component is based on the Watroute routing scheme at 1-km grid spacing for the Great Lakes and Nelson River watersheds. The system is run in two distinct phases: an analysis part and a forecast part. During the analysis part, CaLDAS outputs are used to force the routing system, which performs streamflow assimilation. In forecast mode, the surface component is forced with the Canadian GEM atmospheric forecasts and is initialized with a CaLDAS analysis. Streamflow performances of this new system are presented over 2019. Performances are compared to the current ECCC’s operational streamflow forecasting system, which is different from the new experimental system in many aspects. These new streamflow forecasts are also compared to persistence. Overall, the new streamflow forecasting system presents promising results, highlighting the need for an elaborated assimilation phase before performing the forecasts. However, the system is still experimental and is continuously being improved. Some major recent improvements are presented here and include, for example, the assimilation of snow cover data from remote sensing, a backward propagation of assimilated flow observations, a new numerical scheme for the routing component, and a new reservoir model.Keywords: assimilation system, distributed physical model, offline hydro-meteorological chain, short-term streamflow forecasts
Procedia PDF Downloads 130161 Morphological Studies of the Gills of the Red Swamp Freshwater Crayfish Procambarus clarkii (Crustacea: Decapoda: Cambarids) (Girard 1852) from the River Nile and Its Branches in Egypt
Authors: Mohamed M. A. Abumandour
Abstract:
The red swamp freshwater crayfish breathe through three types of feather-like trichobranchiate gills; podobranchiae, arthrobranchiae and pleurobranchiae. All gills have the same general structure and appearance; plume-like with single broad setiferous, and single axis. The gill consists of axis with numerous finger-like filaments, having three morphological types; round, pointed and somewhat hooked shaped. The direction of filaments vary according their position; in middle region were nearly perpendicular to gill axis while in the apex were nearly parallel to axis. There were characteristic system of gill spines on; central axis (two types were distinguishable by presence of socket), basal plate, setobranch (long non-branched and short multidenticulate) and on the bilobed epipodal plate. There are four shape of spinated-like distal region of setobranch seta; two pointed processes (longitudinal arrangement and irregular arranged) and two broad processes (transverse triangular and multidenticulate). The bilobed epipodal plate devoid from any filaments and extended from outer side of podobranchiae as triangular basal part then extended between the gills as cord-like middle part then pass under the gill to lies against the thoracic body wall. By SEM, the apical part of bilobed epipodal plate have serrated free border and corrugated surface while the middle part have none serrated free border. There are two methods of gill cleaning mechanism in crayfish; passive and active method. The passive method occurred by; setae of setobranch, branchiostegite, bilobed epipodal plate, setiferous arthrodial lamellae and reversing the respiratory water through a narrow spaced branchial chamber.Keywords: crayfis, gill spines, setobranch, gill setae, cleaning mechanisms
Procedia PDF Downloads 410160 Occurrence of Pharmaceutical Compounds in an Urban Lake
Authors: J. D. Villanueva, N. Peyraube, I. Allan, G. D. Salvosa, M. Reid, C. Harman, K. D. Salvosa, J. M. V. Castro, M. V. O. Espaldon, J. B. Sevilla-Nastor, P. Le Coustumer
Abstract:
The main objectives of this research are to (1) assess the occurrence of the pharmaceutical compounds and (2) present the environmental challenges posed by the existence of these pharmaceutical compounds in the surface water. These pharmaceuticals were measured in Napindan Lake, Philippines. This lake is not only a major tributary of the Pasig River (an estuary) and Laguna Lake (freshwater). It also joins these two important surface waters of the National Capital Region. Pharmaceutical compounds such as Atenolol, Carbamazepine, and two other over the counter medicines: Cetirizine, and Ibuprofen were measured in Napindan Lake. Atenolol is a beta blocker that helps in lowering hypertensions. Carbamazepine is an anticonvulsant used as treatment for epilepsy and neuropathic pain. Cetirizine is an antihistamine that can relieve allergies. Ibuprofen is a non-steroidal anti-inflammatory drug normally used to relieve pains. Three different climatological conditions with corresponding hydro physico chemical characteristics were considered. First, was during a dry season with a simultaneous dredging. Second was during a transition period from dry to wet season. Finally, the third was during a continuous wet event. Based from the results of the study, most of these pharmaceuticals can be found in Napindan Lake. This is a proof that these pharmaceutical compounds are being released to a natural surface water. Even though climatological conditions were different, concentrations of these pharmaceuticals can still be detected. This implies that there is an incessant supply of these pharmaceutical compounds in Napindan Lake. Chronic exposure to these compounds even at low concentrations can lead to possible environmental and health risks. Given this information and since consistent occurrence of these compounds can be expected, the main challenge, at present, is on how to control the sources of these pharmaceutical compounds. Primarily, there is a need to manage the disposal of the pharmaceutical compounds. Yet, the main question is how to? This study would like to present the challenges and institutional roles in helping manage the pharmaceutical disposals in a developing country like the Philippines.Keywords: atenolol, carbamazepine, cetirizine, ibuprofen, institutional roles, Napindan lake, pharmaceutical compound disposal management, surface water, urban lake
Procedia PDF Downloads 162159 The Impact of Gender Difference on Crop Productivity: The Case of Decha Woreda, Ethiopia
Authors: Getinet Gezahegn Gebre
Abstract:
The study examined the impact of gender differences on Crop productivity in Decha woreda of south west Kafa zone, located 140 Km from Jimma Town and 460 km south west of Addis Ababa, between Bonga town and Omo River. The specific objectives were to assess the extent to which the agricultural production system is gender oriented, to examine access and control over productive resources, and to estimate men’s and women’s productivity in agriculture. Cross-sectional data collected from a total of 140 respondents were used in this study, whereby 65 were female headed and 75 were male headed households. The data were analyzed by using Statistical Package for Social Science (SPSS). Descriptive statistics such as frequency, mean, percentage, t-test, and chi-square were used to summarize and compare the information between the two groups. Moreover, Cobb-Douglas(CD) production function was to estimate the productivity difference in agriculture between male and female headed households. Results of the study showed that male headed households (MHH) own more productive resources such as land, livestock, labor, and other agricultural inputs as compared to female headed households (FHH). Moreover, the estimate of CD production function shows that livestock, herbicide use, land size, and male labor were statistically significant for MHH, while livestock, land size, herbicides use and female labor were significant variables for FHH. The crop productivity difference between MHH and FHH was about 68.83% in the study area. However, if FHH had equal access to the inputs as MHH, the gross value of the output would be higher by 23.58% for FHH. This might suggest that FHH would be more productive than MHH if they had equal access to inputs as MHH. Based on the results obtained, the following policy implication can be drawn: accessing FHH to inputs that increase the productivity of agriculture, such as herbicides, livestock, and male labor; increasing the productivity of land; and introducing technologies that reduce the time and energy of women, especially for inset processing.Keywords: gender difference, crop, productivity, efficiency
Procedia PDF Downloads 98158 The Community Structure of Fish and its Correlation with Mangrove Forest Litter Production in Panjang Island, Banten Bay, Indonesia
Authors: Meilisha Putri Pertiwi, Mufti Petala Patria
Abstract:
Mangrove forest often categorized as a productive ecosystem in trophic water and the highest carbon storage among all the forest types. Mangrove-derived organic matter determines the food web of fish and invertebrates. In Indonesia trophic water ecosystem, 80% commersial fish caught in coastal area are high related to food web in mangrove forest ecosystem. Based on the previous research in Panjang Island, Bojonegara, Banten, Indonesia, removed mangrove litterfall to the sea water were 9,023 g/m³/s for two stations (west station–5,169 g/m³/s and north station-3,854 g/m³/s). The vegetation were dominated from Rhizophora apiculata and Rhizopora stylosa. C element is the highest content (27,303% and 30,373%) than N element (0,427% and 0,35%) and P element (0,19% and 0,143%). The aim of research also to know the diversity of fish inhabit in mangrove forest. Fish sampling is by push net. Fish caught are collected into plastics, total length measured, weigh measured, and individual and total counted. Meanwhile, the 3 modified pipes (1 m long, 5 inches diameter, and a closed one hole part facing the river by using a nylon cloth) set in the water channel connecting mangrove forest and sea water for each stasiun. They placed for 1 hour at low tide. Then calculate the speed of water flow and volume of modified pipes. The fish and mangrove litter will be weigh for wet weight, dry weight, and analyze the C, N, and P element content. The sampling data will be conduct 3 times of month in full moon. The salinity, temperature, turbidity, pH, DO, and the sediment of mangrove forest will be measure too. This research will give information about the fish diversity in mangrove forest, the removed mangrove litterfall to the sea water, the composition of sediment, the total element content (C, N, P) of fish and mangrove litter, and the correlation of element content absorption between fish and mangrove litter. The data will be use for the fish and mangrove ecosystem conservation.Keywords: fish diversity, mangrove forest, mangrove litter, carbon element, nitrogen element, P element, conservation
Procedia PDF Downloads 485157 Satellite Derived Evapotranspiration and Turbulent Heat Fluxes Using Surface Energy Balance System (SEBS)
Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar
Abstract:
One of the key components of the water cycle is evapotranspiration (ET), which represents water consumption by vegetated and non-vegetated surfaces. Conventional techniques for measurements of ET are point based and representative of the local scale only. Satellite remote sensing data with large area coverage and high temporal frequency provide representative measurements of several relevant biophysical parameters required for estimation of ET at regional scales. The objective is of this research is to exploit satellite data in order to estimate evapotranspiration. This study uses Surface Energy Balance System (SEBS) model to calculate daily actual evapotranspiration (ETa) in Larkana District, Sindh Pakistan using Landsat TM data for clouds-free days. As there is no flux tower in the study area for direct measurement of latent heat flux or evapotranspiration and sensible heat flux, therefore, the model estimated values of ET were compared with reference evapotranspiration (ETo) computed by FAO-56 Penman Monteith Method using meteorological data. For a country like Pakistan, agriculture by irrigation in the river basins is the largest user of fresh water. For the better assessment and management of irrigation water requirement, the estimation of consumptive use of water for agriculture is very important because it is the main consumer of water. ET is yet an essential issue of water imbalance due to major loss of irrigation water and precipitation on cropland. As large amount of irrigated water is lost through ET, therefore its accurate estimation can be helpful for efficient management of irrigation water. Results of this study can be used to analyse surface conditions, i.e. temperature, energy budgets and relevant characteristics. Through this information we can monitor vegetation health and suitable agricultural conditions and can take controlling steps to increase agriculture production.Keywords: SEBS, remote sensing, evapotranspiration, ETa
Procedia PDF Downloads 333156 Infection Risk of Fecal Coliform Contamination in Drinking Water Sources of Urban Slum Dwellers: Application of Quantitative Microbiological Risk Assessment
Authors: Sri Yusnita Irda Sari, Deni Kurniadi Sunjaya, Ardini Saptaningsih Raksanagara
Abstract:
Water is one of the fundamental basic needs for human life, particularly drinking water sources. Although water quality is getting better, fecal-contamination of water is still found around the world, especially in the slum area of mid-low income countries. Drinking water source contamination in urban slum dwellers increases the risk of water borne diseases. Low level of sanitation and poor drinking water supply known as risk factors for diarrhea, moreover bacteria-contaminated drinking water source is the main cause of diarrhea in developing countries. This study aimed to assess risk infection due to Fecal Coliform contamination in various drinking water sources in urban area by applying Quantitative Microbiological Risk Assessment (QMRA). A Cross-sectional survey was conducted in a period of August to October 2015. Water samples were taken by simple random sampling from households in Cikapundung river basin which was one of urban slum area in the center of Bandung city, Indonesia. About 379 water samples from 199 households and 15 common wells were tested. Half of the households used treated drinking water from water gallon mostly refill water gallon which was produced in drinking water refill station. Others used raw water sources which need treatment before consume as drinking water such as tap water, borehole, dug well and spring water source. Annual risk to get infection due to Fecal Coliform contamination from highest to lowest risk was dug well (1127.9 x 10-5), spring water (49.7 x 10-5), borehole (1.383 x 10-5) and tap water (1.121 x 10-5). Annual risk infection of refill drinking water was 1.577 x 10-5 which is comparable to borehole and tap water. Household water treatment and storage to make raw water sources drinkable is essential to prevent risk of water borne diseases. Strong regulation and intense monitoring of refill water gallon quality should be prioritized by the government; moreover, distribution of tap water should be more accessible and affordable especially in urban slum area.Keywords: drinking water, quantitative microbiological risk assessment, slum, urban
Procedia PDF Downloads 282155 Uncertainty and Multifunctionality as Bridging Concepts from Socio-Ecological Resilience to Infrastructure Finance in Water Resource Decision Making
Authors: Anita Lazurko, Laszlo Pinter, Jeremy Richardson
Abstract:
Uncertain climate projections, multiple possible development futures, and a financing gap create challenges for water infrastructure decision making. In contrast to conventional predict-plan-act methods, an emerging decision paradigm that enables social-ecological resilience supports decisions that are appropriate for uncertainty and leverage social, ecological, and economic multifunctionality. Concurrently, water infrastructure project finance plays a powerful role in sustainable infrastructure development but remains disconnected from discourse in socio-ecological resilience. At the time of research, a project to transfer water from Lesotho to Botswana through South Africa in the Orange-Senqu River Basin was at the pre-feasibility stage. This case was analysed through documents and interviews to investigate how uncertainty and multifunctionality are conceptualised and considered in decisions for the resilience of water infrastructure and to explore bridging concepts that might allow project finance to better enable socio-ecological resilience. Interviewees conceptualised uncertainty as risk, ambiguity and ignorance, and multifunctionality as politically-motivated shared benefits. Numerous efforts to adopt emerging decision methods that consider these terms were in use but required compromises to accommodate the persistent, conventional decision paradigm, though a range of future opportunities was identified. Bridging these findings to finance revealed opportunities to consider a more comprehensive scope of risk, to leverage risk mitigation measures, to diffuse risks and benefits over space, time and to diverse actor groups, and to clarify roles to achieve multiple objectives for resilience. In addition to insights into how multiple decision paradigms interact in real-world decision contexts, the research highlights untapped potential at the juncture between socio-ecological resilience and project finance.Keywords: socio-ecological resilience, finance, multifunctionality, uncertainty
Procedia PDF Downloads 127154 Dynamic of an Invasive Insect Gut Microbiome When Facing to Abiotic Stress
Authors: Judith Mogouong, Philippe Constant, Robert Lavallee, Claude Guertin
Abstract:
The emerald ash borer (EAB) is an exotic wood borer insect native from China, which is associated with important environmental and economic damages in North America. Beetles are known to be vectors of microbial communities related to their adaptive capacities. It is now established that environmental stress factors may induce physiological events on the host trees, such as phytochemical changes. Consequently, that may affect the establishment comportment of herbivorous insect. Considering the number of insects collected on ash trees (insects’ density) as an abiotic factor related to stress damage, the aim of our study was to explore the dynamic of EAB gut microbial community genome (microbiome) when facing that factor and to monitor its diversity. Insects were trapped using specific green Lindgren© traps. A gradient of the captured insect population along the St. Lawrence River was used to create three levels of insects’ density (low, intermediate, and high). After dissection, total DNA extracted from insect guts of each level has been sent for amplicon sequencing of bacterial 16S rRNA gene and fungal ITS2 region. The composition of microbial communities among sample appeared largely diversified with the Simpson index significantly different across the three levels of density for bacteria. Add to that; bacteria were represented by seven phyla and twelve classes, whereas fungi were represented by two phyla and seven known classes. Using principal coordinate analysis (PCoA) based on Bray Curtis distances of 16S rRNA sequences, we observed a significant variation between the structure of the bacterial communities depending on insects’ density. Moreover, the analysis showed significant correlations between some bacterial taxa and the three classes of insects’ density. This study is the first to present a complete overview of the bacterial and fungal communities associated with the gut of EAB base on culture-independent methods, and to correlate those communities with a potential stress factor of the host trees.Keywords: gut microbiome, DNA, 16S rRNA sequences, emerald ash borer
Procedia PDF Downloads 404153 Aerial Photogrammetry-Based Techniques to Rebuild the 30-Years Landform Changes of a Landslide-Dominated Watershed in Taiwan
Authors: Yichin Chen
Abstract:
Taiwan is an island characterized by an active tectonics and high erosion rates. Monitoring the dynamic landscape of Taiwan is an important issue for disaster mitigation, geomorphological research, and watershed management. Long-term and high spatiotemporal landform data is essential for quantifying and simulating the geomorphological processes and developing warning systems. Recently, the advances in unmanned aerial vehicle (UAV) and computational photogrammetry technology have provided an effective way to rebuild and monitor the topography changes in high spatio-temporal resolutions. This study rebuilds the 30-years landform change in the Aiyuzi watershed in 1986-2017 by using the aerial photogrammetry-based techniques. The Aiyuzi watershed, located in central Taiwan and has an area of 3.99 Km², is famous for its frequent landslide and debris flow disasters. This study took the aerial photos by using UAV and collected multi-temporal historical, stereo photographs, taken by the Aerial Survey Office of Taiwan’s Forestry Bureau. To rebuild the orthoimages and digital surface models (DSMs), Pix4DMapper, a photogrammetry software, was used. Furthermore, to control model accuracy, a set of ground control points was surveyed by using eGPS. The results show that the generated DSMs have the ground sampling distance (GSD) of ~10 cm and ~0.3 cm from the UAV’s and historical photographs, respectively, and vertical error of ~1 m. By comparing the DSMs, there are many deep-seated landslides (with depth over 20 m) occurred on the upstream in the Aiyuzi watershed. Even though a large amount of sediment is delivered from the landslides, the steep main channel has sufficient capacity to transport sediment from the channel and to erode the river bed to ~20 m in depth. Most sediments are transported to the outlet of watershed and deposits on the downstream channel. This case study shows that UAV and photogrammetry technology are useful for topography change monitoring effectively.Keywords: aerial photogrammetry, landslide, landform change, Taiwan
Procedia PDF Downloads 157152 Geomorphometric Analysis of the Hydrologic and Topographic Parameters of the Katsina-Ala Drainage Basin, Benue State, Nigeria
Authors: Oyatayo Kehinde Taofik, Ndabula Christopher
Abstract:
Drainage basins are a central theme in the green economy. The rising challenges in flooding, erosion or sediment transport and sedimentation threaten the green economy. This has led to increasing emphasis on quantitative analysis of drainage basin parameters for better understanding, estimation and prediction of fluvial responses and, thus associated hazards or disasters. This can be achieved through direct measurement, characterization, parameterization, or modeling. This study applied the Remote Sensing and Geographic Information System approach of parameterization and characterization of the morphometric variables of Katsina – Ala basin using a 30 m resolution Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM). This was complemented with topographic and hydrological maps of Katsina-Ala on a scale of 1:50,000. Linear, areal and relief parameters were characterized. The result of the study shows that Ala and Udene sub-watersheds are 4th and 5th order basins, respectively. The stream network shows a dendritic pattern, indicating homogeneity in texture and a lack of structural control in the study area. Ala and Udene sub-watersheds have the following values for elongation ratio, circularity ratio, form factor and relief ratio: 0.48 / 0.39 / 0.35/ 9.97 and 0.40 / 0.35 / 0.32 / 6.0. They also have the following values for drainage texture and ruggedness index of 0.86 / 0.011 and 1.57 / 0.016. The study concludes that the two sub-watersheds are elongated, suggesting that they are susceptible to erosion and, thus higher sediment load in the river channels, which will dispose the watersheds to higher flood peaks. The study also concludes that the sub-watersheds have a very coarse texture, with good permeability of subsurface materials and infiltration capacity, which significantly recharge the groundwater. The study recommends that efforts should be put in place by the Local and State Governments to reduce the size of paved surfaces in these sub-watersheds by implementing a robust agroforestry program at the grass root level.Keywords: erosion, flood, mitigation, morphometry, watershed
Procedia PDF Downloads 91151 Seismic History and Liquefaction Resistance: A Comparative Study of Sites in California
Authors: Tarek Abdoun, Waleed Elsekelly
Abstract:
Introduction: Liquefaction of soils during earthquakes can have significant consequences on the stability of structures and infrastructure. This study focuses on comparing two liquefaction case histories in California, namely the response of the Wildlife site in the Imperial Valley to the 2010 El-Mayor Cucapah earthquake (Mw = 7.2, amax = 0.15g) and the response of the Treasure Island Fire Station (F.S.) site in the San Francisco Bay area to the 1989 Loma Prieta Earthquake (Mw = 6.9, amax = 0.16g). Both case histories involve liquefiable layers of silty sand with non-plastic fines, similar shear wave velocities, low CPT cone penetration resistances, and groundwater tables at similar depths. The liquefaction charts based on shear wave velocity field predict liquefaction at both sites. However, a significant difference arises in their pore pressure responses during the earthquakes. The Wildlife site did not experience liquefaction, as evidenced by piezometer data, while the Treasure Island F.S. site did liquefy during the shaking. Objective: The primary objective of this study is to investigate and understand the reason for the contrasting pore pressure responses observed at the Wildlife site and the Treasure Island F.S. site despite their similar geological characteristics and predicted liquefaction potential. By conducting a detailed analysis of similarities and differences between the two case histories, the objective is to identify the factors that contributed to the higher liquefaction resistance exhibited by the Wildlife site. Methodology: To achieve this objective, the geological and seismic data available for both sites were gathered and analyzed. Then their soil profiles, seismic characteristics, and liquefaction potential as predicted by shear wave velocity-based liquefaction charts were analyzed. Furthermore, the seismic histories of both regions were examined. The number of previous earthquakes capable of generating significant excess pore pressures for each critical layer was assessed. This analysis involved estimating the total seismic activity that the Wildlife and Treasure Island F.S. critical layers experienced over time. In addition to historical data, centrifuge and large-scale experiments were conducted to explore the impact of prior seismic activity on liquefaction resistance. These findings served as supporting evidence for the investigation. Conclusions: The higher liquefaction resistance observed at the Wildlife site and other sites in the Imperial Valley can be attributed to preshaking by previous earthquakes. The Wildlife critical layer was subjected to a substantially greater number of seismic events capable of generating significant excess pore pressures over time compared to the Treasure Island F.S. layer. This crucial disparity arises from the difference in seismic activity between the two regions in the past century. In conclusion, this research sheds light on the complex interplay between geological characteristics, seismic history, and liquefaction behavior. It emphasizes the significant impact of past seismic activity on liquefaction resistance and can provide valuable insights for evaluating the stability of sandy sites in other seismic regions.Keywords: liquefaction, case histories, centrifuge, preshaking
Procedia PDF Downloads 76