Search results for: tidal current behavior
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14828

Search results for: tidal current behavior

3488 Translation Skills and Language Acquisition

Authors: Frieda Amitai

Abstract:

The field of Translation Studies includes both descriptive and applied aspects, one of which is developing curricula. Within this topic there are theories dealing with curricula aimed at translator training, and theories meant to explore teaching translation as means through which awareness to language is developed in order to enhance language knowledge. An example of the latter is a unique study program in Israeli high schools – Teaching Translation Skills Program (TTSP). This study program has been taught in Israel for more than two decades and is aimed at raising students' meta-linguistic awareness as well as their language proficiency in both source language and target language in order to enable them become better language learners. The objective of the current research was to examine whether the goals of this program are achieved – increase in students' metalinguistic awareness and language proficiency. A follow-up case study was aimed at examining the level of proficiency which would develop most by this way of teaching English. The study was conducted in two stages – before and after participating in the program. 400 subjects took part in the first stage, and 100 took part in the second. In both parts of the study, participants were given the same five tasks in both Hebrew and English in addition to a questionnaire, in which they were asked about their own knowledge of Hebrew and in comparison to that of their peers. Their teachers were asked about the success of the program and about the methodology they use in class. Findings show significant change in the level of meta-linguistic awareness of the students as well as their language proficiency. A comparison between their answers before and after the program shows that their meta-linguistic awareness increased, as did their ability to recognize linguistic mistakes. These findings serve as strong evidence for the positive effect such study program has on the development of meta-linguistic awareness and linguistic knowledge. The follow-up case study tests the change among weaker language learners.

Keywords: comparison, metalinguistic awareness, language learning, translation skills

Procedia PDF Downloads 356
3487 Metrology in Egyptian Architecture, Interrelation with Archaeology

Authors: Monica M. Marcos

Abstract:

In the framework of Archaeological Research, Heritage Conservation and Restoration, the object of study is metrology applied in composition of religious architecture in ancient Egypt, and usefulness in Archaology. The objective is the determination of the geometric and metrological relations in architectural models and the module used in the initial project of the buildings. The study and data collection of religious buildings, tombs and temples of the ancient Egypt, is completed with plans. The measurements systematization and buildings modulation makes possible to establish common compositional parameters, with a module determined by the measurement unit used. The measurement system corresponding to the main period of egyptian history, was the Egyptian royal cubit. The analysis of units measurements, used in architectural design, provides exact numbers on buildable spaces dimensions. It allows establishing proportional relationships between them, and finding a geometric composition module, on which the original project was based. This responds to a philosophical and functional concept of projected spaces. In the heritage rehabilitation and restoration field, knowledge of metrology helps in excavation, reconstruction and restoration of construction elements. The correct use of metrology contributes to the identification of possible work areas, helping to locate where the damaged or missing areas are. Also in restoration projects, metrology is useful for reordering and locating decontextualized parts of buildings. The conversion of measurements taken in the current International System to the ancient egyptian measurements, allows understand its conceptual purpose and its functionality, which makes easier to carry out archaeological intervention. In the work carried out in archaeological excavations, metrology is an essential tool for locating sites and establishing work zones.

Keywords: egyptology, metrology, archaeology, measurements, Egyptian cubit

Procedia PDF Downloads 25
3486 Full-Scale 3D Simulation of the Electroslag Rapid Remelting Process

Authors: E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig

Abstract:

The standard electroslag remelting (ESR) process can ideally control the solidification of an ingot and produce homogeneous structure with minimum defects. However, the melt rate of electrode is rather low that makes the whole process uneconomical especially to produce small ingot sizes. In contrast, continuous casting is an economical process to produce small ingots such as billets at high casting speed. Unfortunately, deep liquid melt pool forms in the billet ingot of continuous casting that leads to center porosity and segregation. As such, continuous casting is not suitable to produce segregation prone alloys like tool steel or several super alloys. On the other hand, the electro slag rapid remelting (ESRR) process has advantages of both traditional ESR and continuous casting processes to produce billets. In the ESRR process, a T-shaped mold is used including a graphite ring that takes major amount of current through the mold. There are only a few reports available in the literature discussing about this topic. The research on the ESRR process is currently ongoing aiming to improve the design of the T-shaped mold, to decrease overall heat loss in the process, and to obtain a higher temperature at metal meniscus. In the present study, a 3D model is proposed to investigate the electromagnetic, thermal, and flow fields in the whole process as well as solidification of the billet ingot. We performed a fully coupled numerical simulation to explore the influence of the electromagnetically driven flow (MHD) on the thermal field in the slag and ingot. The main goal is to obtain some fundamental understanding of the formation of melt pool of the solidifying billet ingot in the ESRR process.

Keywords: billet ingot, magnetohydrodynamics (mhd), numerical simulation, remelting, solidification, t-shaped mold.

Procedia PDF Downloads 295
3485 An Object-Oriented Modelica Model of the Water Level Swell during Depressurization of the Reactor Pressure Vessel of the Boiling Water Reactor

Authors: Rafal Bryk, Holger Schmidt, Thomas Mull, Ingo Ganzmann, Oliver Herbst

Abstract:

Prediction of the two-phase water mixture level during fast depressurization of the Reactor Pressure Vessel (RPV) resulting from an accident scenario is an important issue from the view point of the reactor safety. Since the level swell may influence the behavior of some passive safety systems, it has been recognized that an assumption which at the beginning may be considered as a conservative one, not necessary leads to a conservative result. This paper discusses outcomes obtained during simulations of the water dynamics and heat transfer during sudden depressurization of a vessel filled up to a certain level with liquid water under saturation conditions and with the rest of the vessel occupied by saturated steam. In case of the pressure decrease e.g. due to the main steam line break, the liquid water evaporates abruptly, being a reason thereby, of strong transients in the vessel. These transients and the sudden emergence of void in the region occupied at the beginning by liquid, cause elevation of the two-phase mixture. In this work, several models calculating the water collapse and swell levels are presented and validated against experimental data. Each of the models uses different approach to calculate void fraction. The object-oriented models were developed with the Modelica modelling language and the OpenModelica environment. The models represent the RPV of the Integral Test Facility Karlstein (INKA) – a dedicated test rig for simulation of KERENA – a new Boiling Water Reactor design of Framatome. The models are based on dynamic mass and energy equations. They are divided into several dynamic volumes in each of which, the fluid may be single-phase liquid, steam or a two-phase mixture. The heat transfer between the wall of the vessel and the fluid is taken into account. Additional heat flow rate may be applied to the first volume of the vessel in order to simulate the decay heat of the reactor core in a similar manner as it is simulated at INKA. The comparison of the simulations results against the reference data shows a good agreement.

Keywords: boiling water reactor, level swell, Modelica, RPV depressurization, thermal-hydraulics

Procedia PDF Downloads 210
3484 Development of Electronic Services in Georgia: Analysis of Current Situation

Authors: Dato Surmanidze, Dato Antadze, Tornike Partenadze

Abstract:

Public online services in Georgia are concentrated on main target segments: public administration, business, population, non-governmental and other interested organizations. Therefore, the strategy of digital Georgia is focused on providing G2C, G2B/B2G, G2NGO and G2G services. In G2C framework sophisticated and high-technological online services have been developed in order to provide passports, identity cards, documentations concerning residence and civil acts (birth, marriage, divorce, child adoption, change of name and surname, death, etc) as well as other services. Websites like my.gov.ge and sda.gov.ge have distance services like electronic application, processing and decision making. In line with international standards automatic services like electronic tenders, product catalogues, invoices and payment have been developed. This creates better investment climate for foreign companies in Georgia in the framework of G2B politics. The website mybusiness.gov.ge creates better conditions for local business. Among electronic services is e-NRMS (electronic system for national resource management) which was introduced by the Ministry of Finance of Georgia. The system was created in order to ensure management of national resources by state and business organizations. It is integrated with bank services and provides G2C, G2B and B2G representatives with electronic services. Also a portal meteo.gov.ge was created which gives electronic services concerning air, geological, environmental and pollution issues. Also worknet.gov.ge should be mentioned which is an electronic hub of information management for employers and employees. The information portal of labor market will facilitate receipt of information, its analysis and delivery to interested people like employers and employees. However, nowadays it’s been two years that only employees portal is activated. Therefore, awareness about the portal, its competitiveness and success is undermined.

Keywords: electronic services, public administration, information technology, information society

Procedia PDF Downloads 268
3483 Preparation and Properties of Gelatin-Bamboo Fibres Foams for Packaging Applications

Authors: Luo Guidong, Song Hang, Jim Song, Virginia Martin Torrejon

Abstract:

Due to their excellent properties, polymer packaging foams have become increasingly essential in our current lifestyles. They are cost-effective and lightweight, with excellent mechanical and thermal insulation properties. However, they constitute a major environmental and health concern due to litter generation, ocean pollution, and microplastic contamination of the food chain. In recent years, considerable efforts have been made to develop more sustainable alternatives to conventional polymer packaging foams. As a result, biobased and compostable foams are increasingly becoming commercially available, such as starch-based loose-fill or PLA trays. However, there is still a need for bulk manufacturing of bio-foams planks for packaging applications as a viable alternative to their fossil fuel counterparts (i.e., polystyrene, polyethylene, and polyurethane). Gelatin is a promising biopolymer for packaging applications due to its biodegradability, availability, and biocompatibility, but its mechanical properties are poor compared to conventional plastics. However, as widely reported for other biopolymers, such as starch, the mechanical properties of gelatin-based bioplastics can be enhanced by formulation optimization, such as the incorporation of fibres from different crops, such as bamboo. This research aimed to produce gelatin-bamboo fibre foams by mechanical foaming and to study the effect of fibre content on the foams' properties and structure. As a result, foams with virtually no shrinkage, low density (<40 kg/m³), low thermal conductivity (<0.044 W/m•K), and mechanical properties comparable to conventional plastics were produced. Further work should focus on developing formulations suitable for the packaging of water-sensitive products and processing optimization, especially the reduction of the drying time.

Keywords: biobased and compostable foam, sustainable packaging, natural polymer hydrogel, cold chain packaging

Procedia PDF Downloads 105
3482 Impact of Cultural Intelligence on Decision Making Styles of Managers: A Turkish Case

Authors: Fusun Akdag

Abstract:

Today, as business becomes increasingly global, managers/leaders of multinational companies or local companies work with employees or customers from a variety of cultural backgrounds. To do this effectively, they need to develop cultural competence. Therefore, cultural intelligence (CQ) becomes a vitally important aptitude and skill, especially for leaders. The organizational success or failure depends upon the way, the kind of leadership which has been provided to its members. The culture we are born into deeply effects our values, beliefs, and behavior. Cultural intelligence (CQ) focuses on how well individuals can relate and work across cultures. CQ helps minimize conflict and maximize performance of a diverse workforce. The term 'decision,' refers to a commitment to a course of action that is intended to serve the interests and values of particular people. One dimension of culture that has received attention is individualism-collectivism or, independence-interdependence. These dimensions are associated with different conceptualizations of the 'self.' Individualistic cultures tend to value personal goal pursuit as opposed to pursuit of others’ goals. Collectivistic cultures, by contrast, view the 'self' as part of a whole. Each person is expected to work with his or her in-group toward goals, generally pursue group harmony. These differences underlie cross-cultural variation in decision-making, such as the decision modes people use, their preferences, negotiation styles, creativity, and more. The aim of this study is determining the effect of CQ on decision making styles of male and female managers in Turkey, an emergent economy framework. The survey is distributed to gather data from managers at various companies. The questionnaire consists of three parts: demographics, The Cultural Intelligence Scale (CQS) to measure the four dimensions of cultural intelligence and General Decision Making Style (GMDS) Inventory to measure the five subscales of decision making. The results will indicate the Turkish managers’ score at metacognitive, cognitive, motivational and behavioral aspects of cultural intelligence and to what extent these scores affect their rational, avoidant, dependent, intuitive and spontaneous decision making styles since business leaders make dozens of decisions every day that influence the success of the company and also having an impact on employees, customers, shareholders and the market.

Keywords: cultural intelligence, decision making, gender differences, management styles,

Procedia PDF Downloads 370
3481 Educational Sport and Quality of Life for Children and Teenagers from Brazilian Northeast

Authors: Ricardo Hugo Gonzalez, Amanda Figueiredo Vasconcelos, Francisco Loureiro Neto Monteiro, Yara Luiza Freitas Silva, Ana Cristina Lindsay, Márcia Maria Tavares Machado

Abstract:

The use of sport as an integration mean is a very important tool regarding the social involvement of children and teenagers in a vulnerability situation. This study aims to report the experiences of a multidisciplinary program that intends to improve the quality of life of children and teenagers in Fortaleza, in the Northeast of Brazil. More than 400 children and teenagers aging 11 and 16 years participated in this study. Poor communities experience many particular difficulties in the urban centers such as violence, poor housing conditions, unemployment, lack in health care and deficient physical education in school. Physical education, physiotherapy, odontology, medicine and pharmacy students are responsible for the activities in the project supervised by a general coordinator and a counselor teacher of each academic unit. There are classes about team sports like basketball and soccer. Lectures about sexual behavior and sexually transmitted diseases are ministered beside the ones about oral health education, basic life support education, first aids, use and care with pharmaceuticals and orientations about healthy nutrition. In order to get the children’s family closer, monthly informative lectures are ministered. There is also the concern about reflecting the actions and producing academic paperwork such as graduation final projects and books. The number of participants has oscillated lately, and one of the causes is the lack of practicing physical activities and sports regularly. However, 250 teenagers have participated regularly for at least two years. These teenagers have shown a healthier lifestyle and a better physical fitness profile. The resources for maintaining the project come from the Pro-Reitoria of Extension, Federal University of Ceara, as well as from the PROEXT/MEC, Federal Government. Actions of this nature need to be done thinking for long periods so the effects results can become effective. Public and private investments are needed due to low socioeconomic families who are most vulnerable and have fewer opportunities to enhance to health prevention services.

Keywords: children and teenagers, health, multidisciplinary program, quality of life

Procedia PDF Downloads 242
3480 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem

Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães

Abstract:

This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.

Keywords: path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart

Procedia PDF Downloads 167
3479 An Adaptive Conversational AI Approach for Self-Learning

Authors: Airy Huang, Fuji Foo, Aries Prasetya Wibowo

Abstract:

In recent years, the focus of Natural Language Processing (NLP) development has been gradually shifting from the semantics-based approach to deep learning one, which performs faster with fewer resources. Although it performs well in many applications, the deep learning approach, due to the lack of semantics understanding, has difficulties in noticing and expressing a novel business case with a pre-defined scope. In order to meet the requirements of specific robotic services, deep learning approach is very labor-intensive and time consuming. It is very difficult to improve the capabilities of conversational AI in a short time, and it is even more difficult to self-learn from experiences to deliver the same service in a better way. In this paper, we present an adaptive conversational AI algorithm that combines both semantic knowledge and deep learning to address this issue by learning new business cases through conversations. After self-learning from experience, the robot adapts to the business cases originally out of scope. The idea is to build new or extended robotic services in a systematic and fast-training manner with self-configured programs and constructed dialog flows. For every cycle in which a chat bot (conversational AI) delivers a given set of business cases, it is trapped to self-measure its performance and rethink every unknown dialog flows to improve the service by retraining with those new business cases. If the training process reaches a bottleneck and incurs some difficulties, human personnel will be informed of further instructions. He or she may retrain the chat bot with newly configured programs, or new dialog flows for new services. One approach employs semantics analysis to learn the dialogues for new business cases and then establish the necessary ontology for the new service. With the newly learned programs, it completes the understanding of the reaction behavior and finally uses dialog flows to connect all the understanding results and programs, achieving the goal of self-learning process. We have developed a chat bot service mounted on a kiosk, with a camera for facial recognition and a directional microphone array for voice capture. The chat bot serves as a concierge with polite conversation for visitors. As a proof of concept. We have demonstrated to complete 90% of reception services with limited self-learning capability.

Keywords: conversational AI, chatbot, dialog management, semantic analysis

Procedia PDF Downloads 136
3478 Flow Sheet Development and Simulation of a Bio-refinery Annexed to Typical South African Sugar Mill

Authors: M. Ali Mandegari, S. Farzad, J. F. Görgens

Abstract:

Sugar is one of the main agricultural industries in South Africa and approximately livelihoods of one million South Africans are indirectly dependent on sugar industry which is economically struggling with some problems and should re-invent in order to ensure a long-term sustainability. Second generation bio-refinery is defined as a process to use waste fibrous for the production of bio-fuel, chemicals animal food, and electricity. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide and many challenges in front of bio-ethanol production were solved. Bio-refinery annexed to the existing sugar mill for production of bio-ethanol and electricity is proposed to sugar industry and is addressed in this study. Since flow-sheet development is the key element of the bio-ethanol process, in this work, a bio-refinery (bio-ethanol and electricity production) annexed to a typical South African sugar mill considering 65ton/h dry sugarcane bagasse and tops/trash as feedstock was simulated. Aspen PlusTM V8.6 was applied as simulator and realistic simulation development approach was followed to reflect the practical behavior of the plant. Latest results of other researches considering pretreatment, hydrolysis, fermentation, enzyme production, bio-ethanol production and other supplementary units such as evaporation, water treatment, boiler, and steam/electricity generation units were adopted to establish a comprehensive bio-refinery simulation. Steam explosion with SO2 was selected for pretreatment due to minimum inhibitor production and simultaneous saccharification and fermentation (SSF) configuration was adopted for enzymatic hydrolysis and fermentation of cellulose and hydrolyze. Bio-ethanol purification was simulated by two distillation columns with side stream and fuel grade bio-ethanol (99.5%) was achieved using molecular sieve in order to minimize the capital and operating costs. Also boiler and steam/power generation were completed using industrial design data. Results indicates 256.6 kg bio ethanol per ton of feedstock and 31 MW surplus power were attained from bio-refinery while the process consumes 3.5, 3.38, and 0.164 (GJ/ton per ton of feedstock) hot utility, cold utility and electricity respectively. Developed simulation is a threshold of variety analyses and developments for further studies.

Keywords: bio-refinery, bagasse, tops, trash, bio-ethanol, electricity

Procedia PDF Downloads 533
3477 Study of Mixing Conditions for Different Endothelial Dysfunction in Arteriosclerosis

Authors: Sara Segura, Diego Nuñez, Miryam Villamil

Abstract:

In this work, we studied the microscale interaction of foreign substances with blood inside an artificial transparent artery system that represents medium and small muscular arteries. This artery system had channels ranging from 75 μm to 930 μm and was fabricated using glass and transparent polymer blends like Phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide, Poly(ethylene glycol) and PDMS in order to be monitored in real time. The setup was performed using a computer controlled precision micropump and a high resolution optical microscope capable of tracking fluids at fast capture. Observation and analysis were performed using a real time software that reconstructs the fluid dynamics determining the flux velocity, injection dependency, turbulence and rheology. All experiments were carried out with fully computer controlled equipment. Interactions between substances like water, serum (0.9% sodium chloride and electrolyte with a ratio of 4 ppm) and blood cells were studied at microscale as high as 400nm of resolution and the analysis was performed using a frame-by-frame observation and HD-video capture. These observations lead us to understand the fluid and mixing behavior of the interest substance in the blood stream and to shed a light on the use of implantable devices for drug delivery at arteries with different Endothelial dysfunction. Several substances were tested using the artificial artery system. Initially, Milli-Q water was used as a control substance for the study of the basic fluid dynamics of the artificial artery system. However, serum and other low viscous substances were pumped into the system with the presence of other liquids to study the mixing profiles and behaviors. Finally, mammal blood was used for the final test while serum was injected. Different flow conditions, pumping rates, and time rates were evaluated for the determination of the optimal mixing conditions. Our results suggested the use of a very fine controlled microinjection for better mixing profiles with and approximately rate of 135.000 μm3/s for the administration of drugs inside arteries.

Keywords: artificial artery, drug delivery, microfluidics dynamics, arteriosclerosis

Procedia PDF Downloads 295
3476 Virtual Reality and Avatars in Education

Authors: Michael Brazley

Abstract:

Virtual Reality (VR) and 3D videos are the most current generation of learning technology today. Virtual Reality and 3D videos are being used in professional offices and Schools now for marketing and education. Technology in the field of design has progress from two dimensional drawings to 3D models, using computers and sophisticated software. Virtual Reality is being used as collaborative means to allow designers and others to meet and communicate inside models or VR platforms using avatars. This research proposes to teach students from different backgrounds how to take a digital model into a 3D video, then into VR, and finally VR with multiple avatars communicating with each other in real time. The next step would be to develop the model where people from three or more different locations can meet as avatars in real time, in the same model and talk to each other. This research is longitudinal, studying the use of 3D videos in graduate design and Virtual Reality in XR (Extended Reality) courses. The research methodology is a combination of quantitative and qualitative methods. The qualitative methods begin with the literature review and case studies. The quantitative methods come by way of student’s 3D videos, survey, and Extended Reality (XR) course work. The end product is to develop a VR platform with multiple avatars being able to communicate in real time. This research is important because it will allow multiple users to remotely enter your model or VR platform from any location in the world and effectively communicate in real time. This research will lead to improved learning and training using Virtual Reality and Avatars; and is generalizable because most Colleges, Universities, and many citizens own VR equipment and computer labs. This research did produce a VR platform with multiple avatars having the ability to move and speak to each other in real time. Major implications of the research include but not limited to improved: learning, teaching, communication, marketing, designing, planning, etc. Both hardware and software played a major role in project success.

Keywords: virtual reality, avatars, education, XR

Procedia PDF Downloads 98
3475 Fungi Associated with Decline of Kikar (Acacia nilotica) and Red River Gum (Eucalyptus camaldulensis) in Faisalabad

Authors: I. Ahmad, A. Hannan, S. Ahmad, M. Asif, M. F. Nawaz, M. A. Tanvir, M. F. Azhar

Abstract:

During this research, a comprehensive survey of tree growing areas of Faisalabad district of Pakistan was conducted to observe the symptoms, spectrum, occurrence and severity of A. nilotica and E. camaldulensis decline. Objective of current research was to investigate specific fungal pathogens involved in decline of A. nilotica and E. camaldulensis. For this purpose, infected roots, bark, neck portion, stem, branches, leaves and infected soils were collected to identify associated fungi. Potato dextrose agar (PDA) and Czepak dox agar media were used for isolations. Identification of isolated fungi was done microscopically and different fungi were identified. During survey of urban locations of Faisalabad, disease incidence on Kikar and Eucalyptus was recorded as 3.9-7.9% and 2.6-7.1% respectively. Survey of Agroforest zones of Faisalabad revealed decline incidence on kikar 7.5% from Sargodha road while on Satiana and Jhang road it was not planted. In eucalyptus trees, 4%, 8% and 0% disease incidence was observed on Jhang road, Sargodha road and Satiana road respectively. The maximum fungus isolated from the kikar tree was Drechslera australiensis (5.00%) from the stem part. Aspergillus flavus also gave the maximum value of (3.05%) from the bark. Alternaria alternata gave the maximum value of (2.05%) from leaves. Rhizopus and Mucor spp. were recorded minimum as compared to the Drechslera, Alternaria and Aspergillus. The maximum fungus isolated from the Eucalyptus tree was Armillaria luteobubalina (5.00%) from the stem part. The other fungi isolated were Macrophamina phaseolina and A. niger.

Keywords: decline, frequency of mycoflora, A. nilotica and E. camaldulensis, Drechslera australiensis, Armillaria luteobubalina

Procedia PDF Downloads 369
3474 Application of Single Tuned Passive Filters in Distribution Networks at the Point of Common Coupling

Authors: M. Almutairi, S. Hadjiloucas

Abstract:

The harmonic distortion of voltage is important in relation to power quality due to the interaction between the large diffusion of non-linear and time-varying single-phase and three-phase loads with power supply systems. However, harmonic distortion levels can be reduced by improving the design of polluting loads or by applying arrangements and adding filters. The application of passive filters is an effective solution that can be used to achieve harmonic mitigation mainly because filters offer high efficiency, simplicity, and are economical. Additionally, possible different frequency response characteristics can work to achieve certain required harmonic filtering targets. With these ideas in mind, the objective of this paper is to determine what size single tuned passive filters work in distribution networks best, in order to economically limit violations caused at a given point of common coupling (PCC). This article suggests that a single tuned passive filter could be employed in typical industrial power systems. Furthermore, constrained optimization can be used to find the optimal sizing of the passive filter in order to reduce both harmonic voltage and harmonic currents in the power system to an acceptable level, and, thus, improve the load power factor. The optimization technique works to minimize voltage total harmonic distortions (VTHD) and current total harmonic distortions (ITHD), where maintaining a given power factor at a specified range is desired. According to the IEEE Standard 519, both indices are viewed as constraints for the optimal passive filter design problem. The performance of this technique will be discussed using numerical examples taken from previous publications.

Keywords: harmonics, passive filter, power factor, power quality

Procedia PDF Downloads 306
3473 DEMs: A Multivariate Comparison Approach

Authors: Juan Francisco Reinoso Gordo, Francisco Javier Ariza-López, José Rodríguez Avi, Domingo Barrera Rosillo

Abstract:

The evaluation of the quality of a data product is based on the comparison of the product with a reference of greater accuracy. In the case of MDE data products, quality assessment usually focuses on positional accuracy and few studies consider other terrain characteristics, such as slope and orientation. The proposal that is made consists of evaluating the similarity of two DEMs (a product and a reference), through the joint analysis of the distribution functions of the variables of interest, for example, elevations, slopes and orientations. This is a multivariable approach that focuses on distribution functions, not on single parameters such as mean values or dispersions (e.g. root mean squared error or variance). This is considered to be a more holistic approach. The use of the Kolmogorov-Smirnov test is proposed due to its non-parametric nature, since the distributions of the variables of interest cannot always be adequately modeled by parametric models (e.g. the Normal distribution model). In addition, its application to the multivariate case is carried out jointly by means of a single test on the convolution of the distribution functions of the variables considered, which avoids the use of corrections such as Bonferroni when several statistics hypothesis tests are carried out together. In this work, two DEM products have been considered, DEM02 with a resolution of 2x2 meters and DEM05 with a resolution of 5x5 meters, both generated by the National Geographic Institute of Spain. DEM02 is considered as the reference and DEM05 as the product to be evaluated. In addition, the slope and aspect derived models have been calculated by GIS operations on the two DEM datasets. Through sample simulation processes, the adequate behavior of the Kolmogorov-Smirnov statistical test has been verified when the null hypothesis is true, which allows calibrating the value of the statistic for the desired significance value (e.g. 5%). Once the process has been calibrated, the same process can be applied to compare the similarity of different DEM data sets (e.g. the DEM05 versus the DEM02). In summary, an innovative alternative for the comparison of DEM data sets based on a multinomial non-parametric perspective has been proposed by means of a single Kolmogorov-Smirnov test. This new approach could be extended to other DEM features of interest (e.g. curvature, etc.) and to more than three variables

Keywords: data quality, DEM, kolmogorov-smirnov test, multivariate DEM comparison

Procedia PDF Downloads 115
3472 Navigating a Changing Landscape: Opportunities for Research Managers

Authors: Samba Lamine Cisse, Cheick Oumar Tangara, Seynabou Sissoko, Mahamadou Diakite, Seydou Doumbia

Abstract:

Introduction: Over the past two decades, the world has been constantly changing, with new trends in project management. These trends are transforming the methods and priorities of research project management. They include the rise of digital technologies, multidisciplinary, open science, and the pressure for high-impact results. Managers, therefore, find themselves at a crossroads between the challenges and opportunities offered by these new trends. This paper aims to identify the challenges and opportunities they face while proposing strategies for effectively navigating this dynamic context. Methodology: This is a qualitative study based on an analysis of the challenges and opportunities facing the University Clinical Research Center in terms of new technologies and project management methods. This blended approach provides an overview of emerging trends and practices. Results: This article shows how research managers can turn new research trends in their favor and how they can adapt to the changes they face to optimize the productivity of research teams while ensuring the quality and ethics of the work. It also explores the importance of developing skills in data management, international collaboration, and innovation management. Finally, it proposes strategies for responding effectively to the challenges posed by these new trends while strengthening the position of research managers as essential facilitators of scientific progress. Conclusion: Navigating this changing landscape requires research managers to be highly flexible and able to anticipate the realities of their institution. By adopting modern project management methodologies and cultivating a culture of innovation, they can turn challenges into opportunities and propel research toward new horizons. This paper provides a strategic framework for overcoming current obstacles and capitalizing on future developments in research.

Keywords: new trends, research management, opportunities, challenges

Procedia PDF Downloads 11
3471 Energy Storage in the Future of Ethiopia Renewable Electricity Grid System

Authors: Dawit Abay Tesfamariam

Abstract:

Ethiopia’s Climate- Resilient Green Economy strategy focuses mainly on generating and utilization of Renewable Energy (RE). The data collected in 2016 by Ethiopian Electric Power (EEP) indicates that the intermittent RE sources on the grid from solar and wind energy were only 8 % of the total energy produced. On the other hand, the EEP electricity generation plan in 2030 indicates that 36 % of the energy generation share will be covered by solar and wind sources. Thus, a case study was initiated to model and compute the balance and consumption of electricity in three different scenarios: 2016, 2025, and 2030 using the Energy PLAN Model (EPM). Initially, the model was validated using the 2016 annual power-generated data to conduct the EPM analysis for two predictive scenarios. The EPM simulation analysis using EPM for 2016 showed that there was no significant excess power generated. Hence, the model’s results are in line with the actual 2016 output. Thus, the EPM was applied to analyze the role of energy storage in RE in Ethiopian grid systems. The results of the EPM simulation analysis showed there will be excess production of 402 /7963 MW average and maximum, respectively, in 2025. The excess power was dominant in all months except in the three rainy months of the year (June, July, and August). Consequently, based on the validated outcomes of EPM indicates, there is a good reason to think about other alternatives for the utilization of excess energy and storage of RE. Thus, from the scenarios and model results obtained, it is realistic to infer that; if the excess power is utilized with a storage mechanism that can stabilize the grid system; as a result, the extra RE generated can be exported to support the economy. Therefore, researchers must continue to upgrade the current and upcoming energy storage system to synchronize with RE potentials that can be generated from RE.

Keywords: renewable energy, storage, wind, energyplan

Procedia PDF Downloads 81
3470 Application of the Shallow Seismic Refraction Technique to Characterize the Foundation Rocks at the Proposed Tushka New City Site, South Egypt

Authors: Abdelnasser Mohamed, R. Fat-Helbary, H. El Khashab, K. EL Faragawy

Abstract:

Tushka New City is one of the proposed new cities in South Egypt. It is located in the eastern part of the western Desert of Egypt between latitude 22.878º and 22.909º N and longitude 31.525º and 31.635º E, about 60 kilometers far from Abu Simble City. The main target of the present study is the investigation of the shallow subsurface structure conditions and the dynamic characteristics of subsurface rocks using the shallow seismic refraction technique. Forty seismic profiles were conducted to calculate the P- and S-waves velocity at the study area. P- and SH-waves velocities can be used to obtain the geotechnical parameters and also SH-wave can be used to study the vibration characteristics of the near surface layers, which are important for earthquakes resistant structure design. The output results of the current study indicated that the P-waves velocity ranged from 450 to 1800 m/sec and from 1550 to 3000 m/sec for the surface and bedrock layer respectively. The SH-waves velocity ranged from 300 to 1100 m/sec and from 1000 to 1800 m/sec for the surface and bedrock layer respectively. The thickness of the surface layer and the depth to the bedrock layer were determined along each profile. The bulk density ρ of soil layers that used in this study was calculated for all layers at each profile in the study area. In conclusion, the area is mainly composed of compacted sandstone with high wave velocities, which is considered as a good foundation rock. The south western part of the study area has minimum values of the computed P- and SH-waves velocities, minimum values of the bulk density and the maximum value of the mean thickness of the surface layer.

Keywords: seismic refraction, Tushak new city, P-waves, SH-waves

Procedia PDF Downloads 381
3469 Partial Purification and Characterization of a Low Molecular Weight and Industrially Important Chitinase and a Chitin Deacetylase Enzyme from Streptomyces Chilikensis RC1830, a Novel Strain Isolated from Chilika Lake, India

Authors: Lopamudra Ray, Malla Padma, Dibya Bhol, Samir Ranjan Mishra, A. N. Panda, Gurdeep Rastogi, T. K. Adhya, Ajit Kumar Pattnaik, Mrutyunjay Suar, Vishakha Raina

Abstract:

Chilika Lake is the largest coastal estuarine brackish water lagoon in Asia situated on the east coast of India and is a designated Ramsar site. In the current study, several chitinolytic microorganisms were isolated and screened by appearance of clearance zone on 0.5% colloidal chitin agar plate. A strain designated as RC 1830 displayed maximum colloidal chitin degradation by release of 112 μmol/ml/min of N-acetyl D-glucosamine (GlcNAc) in 48h. The strain was taxonomically identified by polyphasic approach based on a range of phenotypic and genotypic properties and was found to be a novel species named Streptomyces chilikensis RC1830. The organism was halophilic (12% NaCl w/v), alkalophilic (pH10) and was capable of hydrolyzing chitin, starch, cellulose, gelatin, casein, tributyrin and tween 80. The partial purification of chitinase enzymes from RC1830 was performed by DEAE Sephacel anion exchange chromatography which revealed the presence of a very low molecular weight chitinase(10.5kD) which may be a probable chitobiosidase enzyme. The study reports the presence of a low MW chitinase (10.5kD) and a chitin decaetylase from a novel Streptomyces strain RC1830 isolated from Chilika Lake. Previously chitinases less than 20.5kD have not been reported from any other Streptomyces species. The enzymes was characterized with respect to optimum pH, temperature, and substrate specificity and temperature stability.

Keywords: chitinases, chitobiosidase, Chilika Lake, India

Procedia PDF Downloads 499
3468 Energy Production with Closed Methods

Authors: Bujar Ismaili, Bahti Ismajli, Venhar Ismaili, Skender Ramadani

Abstract:

In Kosovo, the problem with the electricity supply is huge and does not meet the demands of consumers. Older thermal power plants, which are regarded as big environmental polluters, produce most of the energy. Our experiment is based on the production of electricity using the closed method that does not affect environmental pollution by using waste as fuel that is considered to pollute the environment. The experiment was carried out in the village of Godanc, municipality of Shtime - Kosovo. In the experiment, a production line based on the production of electricity and central heating was designed at the same time. The results are the benefits of electricity as well as the release of temperature for heating with minimal expenses and with the release of 0% gases into the atmosphere. During this experiment, coal, plastic, waste from wood processing, and agricultural wastes were used as raw materials. The method utilized in the experiment allows for the release of gas through pipes and filters during the top-to-bottom combustion of the raw material in the boiler, followed by the method of gas filtration from waste wood processing (sawdust). During this process, the final product is obtained - gas, which passes through the carburetor, which enables the gas combustion process and puts into operation the internal combustion machine and the generator and produces electricity that does not release gases into the atmosphere. The obtained results show that the system provides energy stability without environmental pollution from toxic substances and waste, as well as with low production costs. From the final results, it follows that: in the case of using coal fuel, we have benefited from more electricity and higher temperature release, followed by plastic waste, which also gave good results. The results obtained during these experiments prove that the current problems of lack of electricity and heating can be met at a lower cost and have a clean environment and waste management.

Keywords: energy, heating, atmosphere, waste, gasification

Procedia PDF Downloads 235
3467 Novel Electrospun Polymeric Nanofibers Loaded Different Medicaments as Drug Delivery Systems for Regenerative Endodontics

Authors: Nura Brimo, Dilek Cokeliler Serdaroglu, Tansel Uyar, Busra Uysal, Elif Bahar Cakici, Miris Dikmen, Zerrin Canturk

Abstract:

Background: A combination of antibiotics, including metronidazole (MET), ciprofloxacin (CIP), and minocycline (MINO), has been demonstrated to disinfect bacteria in necrotic teeth before regenerative processes. It has been presented clinically that antibiotic pastes may drive to possible stem cell death and difficulties in removing from the canal system, which can limit the regenerative procedure. This study was designed to (1) synthesize nanofibrous webs containing various concentrations of different medicaments (triple, double, and calcium hydroxide,Ca(OH)2), and (2) coat thiselectrospun fibrous gutta-percha (GP) cones. Methods: Poly(vinylpyrrolidone) (PVP)-based electrospun fibrous webs were processed with low medicaments concentrations. Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), and X-Ray Photoelectron Spectroscopy (XPS) were carried out to investigate fiber morphology, antibiotic incorporation, and characterized GP-coated fibrous webs, respectively. The chemical and physical properties of dentine were carried out via Fourier Transform Infrared Spectroscopy (FTIR) and Nano-SEM, respectively. The antimicrobial properties of the different fibrous webs were assessed against various bacteria by direct nanofiber/bacteria contact. Cytocompatibility was measured by applying the MTT method. Results: The mean fiber diameter of the experiment groups of medicament-containing fibers ranged in the nm scale and was significantly smaller than PVP fibers. EDX analysis confirmed the presence of medicaments in the nanofibers. XPS analysis presented a complete coating of the fibers with GPs; FTIR and Nano-SEM showed no chemical and physical configuration of intracanal medicaments on the dentine surface. Meanwhile, nanofibrous webs led to a significant reduction in the percentage of viable bacteria compared with the negative control and PVP. Conclusion: Our findings suggest that TA-NFs, DA-NFs, and Cₐ(OH)₂)-NFs coated GP cones have significant potential in eliminating intracanal bacteria, cell-friendly behavior, and clinical usage features.

Keywords: drug delivery, drug carrier, electrospinning, nano/microfibers, regenerative endodontic, morphology

Procedia PDF Downloads 112
3466 Distribution of Dynamical and Energy Parameters in Axisymmetric Air Plasma Jet

Authors: Vitas Valinčius, Rolandas Uscila, Viktorija Grigaitienė, Žydrūnas Kavaliauskas, Romualdas Kėželis

Abstract:

Determination of integral dynamical and energy characteristics of high-temperature gas flows is a very important task of gas-dynamic for hazardous substances destruction systems. They are also always necessary for the investigation of high-temperature turbulent flow dynamics, heat and mass transfer. It is well known that distribution of dynamical and thermal characteristics of high-temperature flows and jets is strongly related to heat flux variation over an imposed area of heating. As is visible from numerous experiments and theoretical considerations, the fundamental properties of an isothermal jet are well investigated. However, the establishment of regularities in high-temperature conditions meets certain specific behavior comparing with moderate-temperature jets and flows. Their structures have not been thoroughly studied yet, especially in the cases of plasma ambient. It is well known that the distribution of local plasma jet parameters in high temperature and isothermal jets and flows may significantly differ. High temperature axisymmetric air jet generated by atmospheric pressure DC arc plasma torch was investigated employing enthalpy probe 3.8∙10-3 m of diameter. Distribution of velocities and temperatures were established in different cross-sections of the plasma jet outflowing from 42∙10-3 m diameter pipe at the average mean velocity of 700 m∙s-1, and averaged temperature of 4000 K. It has been found that gas heating fractionally influences shape and values of a dimensionless profile of velocity and temperature in the main zone of plasma jet and has a significant influence in the initial zone of the plasma jet. The width of the initial zone of the plasma jet has been found to be lesser than in the case of isothermal flow. The relation between dynamical thickness and turbulent number of Prandtl has been established along jet axis. Experimental results were generalized in dimensionless form. The presence of convective heating shows that heat transfer in a moving high-temperature jet also occurs due to heat transfer by moving particles of the jet. In this case, the intensity of convective heat transfer is proportional to the instantaneous value of the flow velocity at a given point in space. Consequently, the configuration of the temperature field in moving jets and flows essentially depends on the configuration of the velocity field.

Keywords: plasma jet, plasma torch, heat transfer, enthalpy probe, turbulent number of Prandtl

Procedia PDF Downloads 182
3465 Impact of Breed and Physiological Status on Blood Content of Goats in Arid Conditions of Algeria

Authors: Lilia Belkacem, Zahra Rouabah, Assia Allaoui, Karina Bachtarzi, Souhila Belkadi, Boubakeur Safsaf, Madjid Tlidjane

Abstract:

The Damascus breed, known for its prolificacy and milking ability, is recently imported in Algeria. Farmers tend to improve the local native herds by crossbreeding with Damascus bucks. The aim of the current investigation was to study the effects of physiological status on blood progesterone and some biochemical parameters in Shami goats and their crosses with local breed in arid conditions of Algeria. Ten does with an age range of 1.5- 3 years and BSC between 2.5 and 3.5 were used. Female goats were divided into two groups of five animals each: Damascus, and crossbred (Damascus x Arbia). All females were estrus synchronized and naturally mated. Blood samples were collected before intravaginal sponge insertion (non- pregnant), in early (30 days after sponge removal), mid (90 days), late pregnancy (130 days) and after kidding (30 days post-partum). Results demonstrate a significant effect of the reproductive stage on progesterone (P4) levels in both groups, on glycemia and cholesterolemia in crossbred does (p<0.05) and on albuminemia and uremia in Damascus ones. Concentrations of triglycerides, total proteins, globulin and creatinine revealed no significant difference between physiological phases in both groups (p>0.05). Breed effect was detected in early and mid-pregnancy for P4, in early pregnancy and lactation for total proteins and in lactation for globulin with lower concentrations in Damascus compared to crossbred does. Changes in P4 and biochemical profiles of both groups reflect the female goat’s adaptation to increased requirement of gestation and lactation in arid conditions of Algeria.

Keywords: damascus goat, crossbred, reproductive status, progesterone, biochemical metabolites

Procedia PDF Downloads 61
3464 Investigation of Wind Farm Interaction with Ethiopian Electric Power’s Grid: A Case Study at Ashegoda Wind Farm

Authors: Fikremariam Beyene, Getachew Bekele

Abstract:

Ethiopia is currently on the move with various projects to raise the amount of power generated in the country. The progress observed in recent years indicates this fact clearly and indisputably. The rural electrification program, the modernization of the power transmission system, the development of wind farm is some of the main accomplishments worth mentioning. As it is well known, currently, wind power is globally embraced as one of the most important sources of energy mainly for its environmentally friendly characteristics, and also that once it is installed, it is a source available free of charge. However, integration of wind power plant with an existing network has many challenges that need to be given serious attention. In Ethiopia, a number of wind farms are either installed or are under construction. A series of wind farm is planned to be installed in the near future. Ashegoda Wind farm (13.2°, 39.6°), which is the subject of this study, is the first large scale wind farm under construction with the capacity of 120 MW. The first phase of 120 MW (30 MW) has been completed and is expected to be connected to the grid soon. This paper is concerned with the investigation of the wind farm interaction with the national grid under transient operating condition. The main concern is the fault ride through (FRT) capability of the system when the grid voltage drops to exceedingly low values because of short circuit fault and also the active and reactive power behavior of wind turbines after the fault is cleared. On the wind turbine side, a detailed dynamic modelling of variable speed wind turbine of a 1 MW capacity running with a squirrel cage induction generator and full-scale power electronics converters is done and analyzed using simulation software DIgSILENT PowerFactory. On the Ethiopian electric power corporation side, after having collected sufficient data for the analysis, the grid network is modeled. In the model, a fault ride-through (FRT) capability of the plant is studied by applying 3-phase short circuit on the grid terminal near the wind farm. The results show that the Ashegoda wind farm can ride from voltage deep within a short time and the active and reactive power performance of the wind farm is also promising.

Keywords: squirrel cage induction generator, active and reactive power, DIgSILENT PowerFactory, fault ride-through capability, 3-phase short circuit

Procedia PDF Downloads 172
3463 Effect of Acid and Alkali Treatment on Physical and Surface Charge Properties of Clayey Soils

Authors: Nikhil John Kollannur, Dali Naidu Arnepalli

Abstract:

Most of the surface related phenomena in the case of fine-grained soil are attributed to their unique surface charge properties and specific surface area. The temporal variations in soil behavior, to some extent, can be credited to the changes in these properties. Among the multitude of factors that affect the charge and surface area of clay minerals, the inherent system chemistry occupies the cardinal position. The impact is more profound when the chemistry change is manifested in terms of the system pH. pH plays a significant role by modifying the edge charges of clay minerals and facilitating mineral dissolution. Hence there is a need to address the variations in physical and charge properties of fine-grained soils treated over a range of acidic as well as alkaline conditions. In the present study, three soils (two soils commercially procured and one natural soil) exhibiting distinct mineralogical compositions are subjected to different pH environment over a range of 2 to 13. The soil-solutions prepared at a definite liquid to solid ratio are adjusted to the required pH value by adding measured quantities of 0.1M HCl/0.1M NaOH. The studies are conducted over a range of interaction time, varying from 1 to 96 hours. The treated soils are then analyzed for their physical properties in terms of specific surface area and particle size characteristics. Further, modifications in surface morphology are evaluated from scanning electron microscope (SEM) imaging. Changes in the surface charge properties are assessed in terms of zeta potential measurements. Studies show significant variations in total surface area, probably because of the dissolution of clay minerals. This observation is further substantiated by the morphological analysis with SEM imaging. The zeta potential measurements on soils indicate noticeable variation upon pH treatment, which is partially ascribed to the modifications in the pH-dependant edge charges and partially due to the clay mineral dissolution. The results provide valuable insight into the role of pH in a clay-electrolyte system upon surface related phenomena such as species adsorption, fabric modification etc.

Keywords: acid and alkali treatment, mineral dissolution , specific surface area, zeta potential

Procedia PDF Downloads 184
3462 Investigation of Poly P-Dioxanone as Promising Biodegradable Polymer for Short-Term Medical Application

Authors: Stefanie Ficht, Lukas Schübel, Magdalena Kleybolte, Markus Eblenkamp, Jana Steger, Dirk Wilhelm, Petra Mela

Abstract:

Although 3D printing as transformative technology has become of increasing interest in the medical field and the demand for biodegradable polymers has developed to a considerable extent, there are only a few additively manufactured, biodegradable implants on the market. Additionally, the sterilization of such implants and its side effects on degradation have still not been sufficiently studied. Within this work, thermosensitive poly p-dioxanone (PPDO) samples were printed with fused filament fabrication (FFF) and investigated. Subsequently, H₂O₂ plasma and gamma radiation were used as low-temperature sterilization techniques and compared among each other and the control group (no sterilization). In order to assess the effect of different sterilization on the degradation behavior of PPDO, the samples were immersed in phosphate-buffered solution (PBS) over 28 days, and surface morphology, thermal properties, molecular weight, inherent viscosity, and mechanical properties were examined at regular time intervals. The study demonstrates that PPDO was printed with great success and that thermal properties, molecular weight (Mw), and inherent viscosity (IV) were not significantly affected by the printing process itself. H₂O₂ plasma sterilization did not significantly harm the thermosensitive polymer, while gamma radiation lowered IV and Mw statistically significantly compared to the control group (p < 0.001). During immersion in PBS, a decrease in Mw and mechanical strength occurred for all samples. However, gamma sterilized samples were affected to a much higher extent compared to the two other sample groups both in final values and timeline. This was confirmed by scanning electron microscopy showing no changes of surface morphology of (non-sterilized) control samples, first microcracks appearing on plasma sterilized samples after two weeks while being present on gamma sterilized samples already immediately after radiation to then further deteriorate over immersion duration. To conclude, we demonstrated that FFF and H₂O₂ plasma sterilization are well suited for processing thermosensitive, biodegradable polymers used for the development of innovative short-term medical applications.

Keywords: additive manufacturing, sterilization, biodegradable, thermosensitive, medical application

Procedia PDF Downloads 121
3461 Relationship between Creative Market Actor and Traditional Market Vendor toward a Sustainable Market Model in Jakarta, Indonesia

Authors: Galuh Pramesti

Abstract:

In Indonesia, the rise of the middle class and consumer purchasing power has created a trend of shifting the traditional into a modern retail market. Development of the creative economy as an impact of the global economy has invaded the traditional market, due to low rents and minimum innovation, raising the issue of sustainability and urban resilience for survival of the traditional market. The study aims to understand the current market conditions by examining the challenges, resiliency, and identify the relationship between the traditional market and creative market. Using a single-case study approach as the research methodology, Santa Market has been chosen as the case study. It is a pilot project of collaboration between a traditional market and creative economy in Jakarta, Indonesia. The research was conducted as a qualitative study through in-depth interviews with the market vendors and the market management, besides a desk-based study of the leasing data and spatial analysis. The findings indicate traffic fluctuation as the main challenge. It is related to the tenant’s presence, rental fluctuation, gentrification, infrastructure, and market competition. Thus, the findings on resilience show a different response for creative and traditional markets. The traditional market’s response remained stable with minimum innovation, whereas the creative market relies on technological development. Regarding the relationship, supply and demand have become the main relationship occurring in Santa Market. It is then developed into the context of society and regulation. The conclusion provides recommendations for more solid regulation to protect the market tenants from stakeholder interests that can disrupt market viability, and a critical discussion on the concept of collaboration between traditional and creative markets. There is also a suggestion for further study on relation with the surroundings, to create a holistic study on how the collaboration can work well in the traditional market.

Keywords: creative economy, market sustainability, traditional market, urban resilience

Procedia PDF Downloads 195
3460 Bionaut™: A Microrobotic Drug-Device Platform for the Local Treatment of Brainstem Gliomas

Authors: Alex Kiselyov, Suehyun Cho, Darrell Harrington; Florent Cros, Olin Palmer, John Caputo, Michael Kardosh, Eran Oren, William Loudon, Michael Shpigelmacher

Abstract:

Despite the most aggressive surgical and adjuvant therapeutic strategies, treatment of both pediatric and adult brainstem tumors remains problematic. Novel strategies, including targeted biologics, immunotherapy, and specialized delivery systems such as convection-enhanced delivery (CED), have been proposed. While some of these novel treatments are entering phase I trials, the field is still in need of treatment(s) that exhibits dramatically enhanced potency with optimal therapeutic ratio. Bionaut Labs has developed a modular microrobotic platform for performing localized delivery of diverse therapeutics in vivo. Our biocompatible particles (Bionauts™) are externally propelled and visualized in real-time. Bionauts™ are specifically designed to enhance the effect of radiation therapy via anatomically precise delivery of a radiosensitizing agent, as exemplified by temozolomide (TMZ) and Avastin™ to the brainstem gliomas of diverse origin. The treatment protocol is designed to furnish a better therapeutic outcome due to the localized (vs systemic) delivery of the drug to the neoplastic lesion(s) for use as a synergistic combination of radiation and radiosensitizing agent. In addition, the procedure is minimally invasive and is expected to be appropriate for both adult and pediatric patients. Current progress, including platform optimization, selection of the lead radiosensitizer as well as in vivo safety studies of the Bionauts™ in large animals, specifically the spine and the brain of porcine and ovine models, will be discussed.

Keywords: Bionaut, brainstem, glioma, local delivery, micro-robot, radiosensitizer

Procedia PDF Downloads 195
3459 A Study on the Measurement of Spatial Mismatch and the Influencing Factors of “Job-Housing” in Affordable Housing from the Perspective of Commuting

Authors: Daijun Chen

Abstract:

Affordable housing is subsidized by the government to meet the housing demand of low and middle-income urban residents in the process of urbanization and to alleviate the housing inequality caused by market-based housing reforms. It is a recognized fact that the living conditions of the insured have been improved while constructing the subsidized housing. However, the choice of affordable housing is mostly in the suburbs, where the surrounding urban functions and infrastructure are incomplete, resulting in the spatial mismatch of "jobs-housing" in affordable housing. The main reason for this problem is that the residents of affordable housing are more sensitive to the spatial location of their residence, but their selectivity and controllability to the housing location are relatively weak, which leads to higher commuting costs. Their real cost of living has not been effectively reduced. In this regard, 92 subsidized housing communities in Nanjing, China, are selected as the research sample in this paper. The residents of the affordable housing and their commuting Spatio-temporal behavior characteristics are identified based on the LBS (location-based service) data. Based on the spatial mismatch theory, spatial mismatch indicators such as commuting distance and commuting time are established to measure the spatial mismatch degree of subsidized housing in different districts of Nanjing. Furthermore, the geographically weighted regression model is used to analyze the influencing factors of the spatial mismatch of affordable housing in terms of the provision of employment opportunities, traffic accessibility and supporting service facilities by using spatial, functional and other multi-source Spatio-temporal big data. The results show that the spatial mismatch of affordable housing in Nanjing generally presents a "concentric circle" pattern of decreasing from the central urban area to the periphery. The factors affecting the spatial mismatch of affordable housing in different spatial zones are different. The main reasons are the number of enterprises within 1 km of the affordable housing district and the shortest distance to the subway station. And the low spatial mismatch is due to the diversity of services and facilities. Based on this, a spatial optimization strategy for different levels of spatial mismatch in subsidized housing is proposed. And feasible suggestions for the later site selection of subsidized housing are also provided. It hopes to avoid or mitigate the impact of "spatial mismatch," promote the "spatial adaptation" of "jobs-housing," and truly improve the overall welfare level of affordable housing residents.

Keywords: affordable housing, spatial mismatch, commuting characteristics, spatial adaptation, welfare benefits

Procedia PDF Downloads 109